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Abstract

Automatic modulation classification detects the modulation type of received communication

signals. It has important applications in military scenarios to facilitate jamming, intelligence,

surveillance, and threat analysis. The renewed interest from civilian scenes has been fuelled

by the development of intelligent communications systems such as cognitive radio and soft-

ware defined radio. More specifically, it is complementary to adaptive modulation and coding

where a modulation can be deployed from a set of candidates according to the channel con-

dition and system specification for improved spectrum efficiency and link reliability. In this

research, we started by improving some existing methods for higher classification accuracy

but lower complexity. Machine learning techniques such as k-nearest neighbour and sup-

port vector machine have been adopted for simplified decision making using known features.

Logistic regression, genetic algorithm and genetic programming have been incorporated for

improved classification performance through feature selection and combination. We have also

developed a new distribution test based classifier which is tailored for modulation classifica-

tion with the inspiration from Kolmogorov-Smirnov test. The proposed classifier is shown to

have improved accuracy and robustness over the standard distribution test. For blind classi-

fication in imperfect channels, we developed the combination of minimum distance centroid

estimator and non-parametric likelihood function for blind modulation classification without

the prior knowledge on channel noise. The centroid estimator provides joint estimation of

channel gain and carrier phase offset where both can be compensated in the following non-

parametric likelihood function. The non-parametric likelihood function, in the meantime,

provide likelihood evaluation without a specifically assumed noise model. The combination

has shown to have higher robustness when different noise types are considered. To push mod-

ulation classification techniques into a more timely setting, we also developed the principle

for blind classification in MIMO systems. The classification is achieved through expecta-

tion maximization channel estimation and likelihood based classification. Early results have

shown bright prospect for the method while more work is needed to further optimize the

method and to provide a more thorough validation.
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Chapter 1

Introduction

1.1 Motivation

1.1.1 Military applications

Automatic Modulation Classification (AMC) was first motivated by its application in military

scenarios where electronic warfare, surveillance and threat analysis requires the recognition

of signal modulations in order to identify adversary transmitting units, to prepare jamming

signals and to recover the intercepted signal. The term automatic is used as opposed to

the initial implementation of manual modulation classification where signals are processed

by engineers with the aid of signal observation and processing equipment. Most modulation

classifiers developed in the past 20 years are implemented through electronic processors.

There are three components in Electronic Warfare (EW) namely Electronic Support (ES),

Electronic Attack (EA), and Electronic Protect (EP) (Poisel, 2008). For ES, the goal is to

gather information from radio frequency emissions. This is often where AMC is employed

after the signal detection is successfully achieved. The resulting modulation information

could have several uses extending into all the components in EW. An illustration of how a

modulation classifier is incorporated in the military EW systems is given in Figure 1.1.

To further the process of ES, the modulation information can be used for demodulat-

ing the intercepted signal in order to recover the transmitted message among adversary

1
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Figure 1.1: Application of AMC in military electronic warfare systems.

units. This is, of course, completed with the aid of signal decryption and translation. Mean-

while, the modulation information alone can also provide vital information to the electronic

mapping system where it could be used to identify the adversary units and their possible

locations.

In EA, jamming is the primary measure to prevent the communication between adversary

units. There are many jamming techniques. However, the most common one relies on

deploying jammers in the communication channel between adversary units and transmitting

noise signals or made up signals using the matching modulation type. To override the

adversary communication, the jamming signal must occupy the same frequency band as

the adversary signal. This information is available from the signal detector. The power

of the jamming signal must be significantly higher which is achieved using an amplifier

before transmitting the jamming signal. More importantly, the jamming signal must be

modulated using the modulation scheme detected by the modulation classifier. It is necessary

because information can be conveyed in the carrier signal in different ways. To maximized

the interference, matching modulation is required to alter the signal component where the

adversary message is embedded.

In EP, the objective is to protect the friendly communication from adversary EA mea-

2
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sures. As mentioned above, jammers transmit higher power signals to override adversary

communication in the same frequency band. The key is to have the same signal modulation.

An effective strategy to prevent friend communication being jammed is to have awareness

of the EA effort from adversary jammers and to dodge the jamming effort. More specifi-

cally, the friendly transmitter could monitor the jamming signals modulation and switch the

friendly unit to a different modulation scheme to avoid jamming.

During the 1980s and 1990s, there were considerable numbers of researchers in the field of

signal processing and communications who dedicated their works to the problem of automatic

modulation classification. It leads to the publication of the first well received book on the

subject by Azzouz and Nandi in 1996 (Azzouz and Nandi, 1996a). The interest in AMC for

military purposes is sustained till this very day.

1.1.2 Civilian applications

The beginning of 21st century sees a large number of innovations in communications technol-

ogy. Among them are a few that have made essential contributions to the staggering increase

of transmission throughput in various communication systems. Link Adaptation (LA), also

known as adaptive modulation and coding, creates an adaptive modulation scheme where a

pool of multiple modulations are employed by the same system (Goldsmith and Chua, 1998).

It enables the optimizing of the transmission reliability and data rate through the adaptive

selection of modulation schemes according to channel conditions. While the transmitter has

the freedom to choose how the signals are modulated, the receiver must have the knowledge

of the modulation type to demodulate the signal so that the transmission could be successful.

An easy way to achieve this is to include the modulation information in each signal frame

so that the receivers would be notified about the change in modulation scheme and react

accordingly. However, this strategy affects the spectrum efficiency due to the extra modu-

lation information in each signal frame. In the current situation where wireless spectrum is

extremely limited and valuable, the aforementioned strategy is simply not efficient enough.

For this reason, AMC becomes an attractive solution to the problem.

As demonstrated in Figure 1.2, the signal modulator in the LA transmitter is replaced

3
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Figure 1.2: Application of AMC in civilian link adaptation systems.

by an adaptive modulation unit. The role of adaptive modulator is to select the modulation

from a pre-defined candidate pool and to complete the modulation process. The selection of

modulation from the candidate pool is determined by the system specification and channel

conditions. The lower order and more robust modulations such as BPSK and QPSK are of-

ten selected when the channel is noisy and complex, given that the system requires high link

reliability. The higher order and more efficient modulations such as 16-QAM and 64-QAM

are often selected to satisfy the demand for high speed transmission in clear channels. The

only communication between adaptive modulation module and the receiver is completed at

system initialization where the information of modulation candidate pool is notified to the

receiver. During normal transmission, the adaptive modulator embeds no extra information

in the communication stream. At the receiving end of the LA system, channel estimation is

performed prior to other tasks. If the channel is static, the estimation is only performed at

the initial stage. If the channel is time variant, the channel state information Channel State

Information (CSI) could be estimated regularly throughout the transmission. The estimated
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CSI and other information would then be feedback to the transmitter where the CSI will be

used for the selection of modulation schemes. More importantly, the CSI is required to assist

the modulation classifier. Depending on the AMC algorithm, different channel parameters

are needed to complete modulation classification. Normally the accuracy of channel estima-

tion has a significant impact on the performance of the modulation classifier. The resulting

modulation classification decision is then fed to the reconfigurable signal demodulator for

appropriate demodulation. If the modulation classification is accurate, the correct demodu-

lation method would capture the message and complete the successful transmission. If the

modulation classification is incorrect, the entire transmission fails as the message cannot be

recovered from the demodulator. It is not difficult to see the importance of AMC in LA

systems.

Thanks to the development in microprocessors, receivers nowadays are much more able in

terms of their computational power. Thus, the signal processing required by AMC algorithms

becomes feasible. By automatically identifying the modulation type of the received signal,

the receiver does not need to be notified about the modulation type and the demodulation

can still be successfully achieved. In the end, the spectrum efficiency is improved as no

modulation information is needed in the transmitted signal frame. AMC has become an

integral part of the intelligent radio systems including cognitive radio and software defined

radio.

1.2 Problem statement

Assuming there is a finite set of modulation candidates, the modulation pool M consists of

I number of candidate modulations with M(i) being the ith modulation candidate. The

transmitted signal s consisting of N samples is modulated usingM which is unknown to the

receiver. For each digital modulation scheme, the transmitted signal samples are mapped

from a unique set of symbol alphabet dictated by the modulation scheme. The received

signal r = Hs + ω is the main or sometime sole subject for analysis where H is associated

with different channel effects and ω is the additive noise. The task of AMC is to find
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the modulation candidate from the modulation pool which matches the actual modulation

scheme used for the signal transmission. The criteria for a good modulation classifier are

based on four aspects.

First, a modulation classifier should be able to classify as many modulation types as

possible. Such a trait makes a modulation classifier easily applicable to different applications

without needing any modification to accommodate extra modulations. Second, a modulation

classifier should provide high classification accuracy. The high classification accuracy is

relative to different noise levels. Third, the modulation classifier should be robust for many

different channel conditions. The robustness can be provided by either the built in channel

estimation and compensation mechanism or the natural resilience of the modulation classifier

against channel conditions. Fourth, the modulation classifier should be computationally

efficient. In many applications, there is a strict limitation on computation power which may

be unsuitable for over complicated algorithms. Meanwhile, some applications may require

fast decision making which demands the classification to be completed in real time. Only a

modulation classifier with high computational efficiency could meet this requirement. After

all, a simple and fast modulation classifier algorithm is always appreciated.

In practice, there is no one classifier that is perfect in all aspects. Therefore, the goal of

this research is to develop different AMC strategies that excel in certain aspects with reason-

able compromise in other departments. The significance of these different AMC strategies

is accentuated by the wide variety of applications which demand a unique set of attributes

from the classifier.

1.3 Summary of contributions

As of this stage, I believe that the following contributions to the field has been achieved

through this project:

• Machine Learning (ML) algorithms are introduced to feature based modulation classi-

fication strategy. The machine learning based classifiers incorporate logistic regression,

genetic algorithm, or genetic programming as feature selection/combination methods
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and k-nearest neighbour or support vector machine as classifiers. The machine learn-

ing based classifiers are proven to be more intuitive in their implementation and more

accurate than the traditional feature based classifiers. (Chapter 3)

• Empirical cumulative distribution of modulation signals are studied to suggest distri-

bution test based modulation classifiers as well as distribution statistics that can be

used as features. The distribution based modulation classification approaches have

very low computational complexity while preserving high classification accuracy when

limited number of signal samples are available for analysis.(Chapter 4)

• Thus far, noise models are always assumed when constructing a modulation classifier.

In this research, the blind modulation classifier which operates without an assumed

noise model is developed using a centroid estimator and a Non-parametric Likelihood

Function (NPLF). The combination provides improved robustness in fading channels

as well as superior classification performance with impulsive noises. (Chapter 5)

• The combination of expectation maximization (EM) estimator and maximum likeli-

hood classifier is extended to the Multiple-input Multiple-output (MIMO) systems.

Oppose to Independent Component Analysis (ICA) enabled MIMO modulation clas-

sifier, the EM and ML combination doesn’t require the knowledge of noise power or

extra calculation for phase offset correction. (Chapter 6)

1.4 Thesis organization

This thesis begins with a brief introduction to the subject, some basic theories, and a lit-

erature review. The following contents include different modulation classifiers developed in

this research presented in chronological order. The thesis is concluded with a review of the

developed classifiers and suggestions for further research direction. The summary of each

chapter is given below.

Chapter 1 provides the historical background of AMC as well as its important appli-

cations in military and modern civilian communication systems. The contribution of this
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research is highlighted with complimentary list of publications.

Chapter 2 provides the modelling of communication systems and different communica-

tion channels that are used for the development of modulation classifiers. The scope of the

research and assumptions made are described. A literature review is included to provide an

understanding of the development progress of AMC at the current stage. Three of the state-

of-the-art algorithms are described in details as they are used in performance benchmarking

versus the newly developed algorithms in this research.

Chapter 3 lists several machine learning techniques that have been introduced to AMC

(Zhu et al., 2011, 2013c, 2014; Aslam et al., 2012). K-nearest neighbour and support vector

machine are suggested as classifiers based on high order statistics features. Feature selection

and combination are practised using logistic regression, genetic algorithm, and genetic pro-

gramming. The combination of these classifiers and feature enhancement methods are also

discussed to provide a complete solution to AMC. For each algorithm, its implementation

is described in details. The advantages and disadvantages of each algorithm are listed with

numerical results to support the observation.

Chapter 4 explores the AMC algorithms based on signal distributions (Zhu et al., 2013c,

2014). The optimized distribution sampling test is suggested as an improved version of

the Kolmogorov-Smirnov test. The strategies of optimizing the sampling locations and the

distribution test as classifier are described in detail. The additional use of sample distribution

statistics as features is explored for AMC accompanied with ML classifiers. The numerical

results from computer aided simulations are provided to validate the proposed methods.

Chapter 5 describes the new AMC solution which does not require known noise model

(Zhu et al., 2013b; Zhu and Nandi, 2014a). The preliminary step of centroid estimation can

be achieved through two iterative algorithms. The likelihood based modulation classification

is realized by a non-parametric likelihood function. The theoretical analysis is given for the

validation of the centroid estimator and the optimization of the NPLF classifier. Numerical

results are given to illustrate the superior performance of this classifier in complex channels.

Chapter 6 gives the blind modulation classification solution for MIMO systems (Zhu and

Nandi, 2014b). The joint estimation of channel matrix and noise variance is achieved with
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expectation maximization in the context of MIMO channels. The expectation/conditional

maximization update functions for the channel parameters are derived. The classification

is completed with a ML classifier and updated likelihood functions for MIMO signals. The

simulated classification performance is given for several selected modulations.

Chapter 7 reviews the new classifiers developed in this research and concludes their

advantages and disadvantages. The remaining challenges and new directions for the subject

is also listed in this chapter.

1.5 List of publications

Journal Papers

• Zhu, Z., and Nandi, A. K. (2014). Blind Digital Modulation Classification using Min-

imum Distance Centroid Estimator and Non-parametric Likelihood Function. IEEE

Transactions on Wireless Communications, 13(8) 4483-4494.

• Zhu, Z., Aslam, M. W., and Nandi, A. K. (2014). Genetic Algorithm Optimized

Distribution Sampling Test for M-QAM Modulation Classification. Signal Processing,

94, 264-277.

• Aslam, M. W., Zhu, Z., and Nandi, A. K. (2013). Feature generation using genetic

programming with comparative partner selection for diabetes classification. Expert

Systems with Applications, 40(13), 5402-5412.

• Aslam, M. W., Zhu, Z., and Nandi, A. K. (2012). Automatic Modulation Classification

Using Combination of Genetic Programming and KNN. IEEE Transactions on Wireless

Communications, 11(8), 2742-2750.

Conference papers

• Zhu, Z., and Nandi, A. K. (2014). Blind Modulation Classification for MIMO Systems

using Expectation Maximization. In Military Communications Conference (pp. 1-6).
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• Zhu, Z., Nandi, A. K., and Aslam, M. W. (2013). Approximate Centroid Estimation

with Constellation Grid Segmentation for Blind M-QAM Classification. In Military

Communications Conference (pp. 46-51).

• Zhu, Z., Aslam, M. W., and Nandi, A. K. (2013). Adapted Geometric Semantic Genetic

Programming for Diabetes and Breast Cancer Classification. In IEEE International

Workshop on Machine Learning for Signal Processing (pp. 1-5).

• Aslam, M. W., Zhu, Z., and Nandi, A. K. (2013). Improved Comparative Partner

Selection with Brood Recombination for Genetic Programming. In IEEE International

Workshop on Machine Learning for Signal Processing (pp. 1-5).

• Zhu, Z., Nandi, A. K., and Aslam, M. W. (2013). Robustness Enhancement of Distri-

bution Based Binary Discriminative Features for Modulation Classification. In IEEE

International Workshop on Machine Learning for Signal Processing (pp. 1-6).

• Zhu, Z., Aslam, M. W., and Nandi, A. K. (2011). Support Vector Machine Assisted Ge-

netic Programming for MQAM Classification. In International Symposium on Signals,

Circuits and Systems (pp. 1-6).

• Aslam, M. W., Zhu, Z., and Nandi, A. K. (2011). Robust QAM Classification Using

Genetic Programming and Fisher Criterion. In European Signal Processing Conference

(pp. 995-999).

• Zhu, Z., Aslam, M. W., and Nandi, A. K. (2010). Augmented Genetic Programming

for Automatic Digital Modulation Classification. In IEEE International Workshop on

Machine Learning for Signal Processing (pp. 391-396).

• Aslam, M. W., Zhu, Z., and Nandi, A. K. (2010). Automatic Digital Modulation Clas-

sification Using Genetic Programming with K-Nearest Neighbor. In Military Commu-

nications Conference (pp. 1731-1736).

10



Chapter 2

Signal Model and Existing Methods

2.1 Introduction

Signal models are the starting point of every meaningful modulation classification strategy.

Algorithms such as likelihood based, distribution test based and feature based classifiers all

require an established signal model to derive the corresponding rules for classification decision

making. While some unsupervised machine learning algorithms could function without a

reference signal model, the optimization of such algorithms still relies on the knowledge of a

known signal model. Meanwhile, as the validation of modulation classifiers is often realized

by computer-aided simulation, accurate signal modelling provides meaningful scenarios for

evaluating the performance of various modulation classifiers. The objective of this chapter is

to establish some unified signal models for different modulation classifiers listed in Chapter

3 to Chapter 6. Through the process, the accuracy of the models will be the first priority.

That, however, is with a fine balance of simplicity in the models to enable theoretical analysis

and to provide computational efficient implementations. Signal models are presented in three

different channels namely AWGN channel, fading channel, and non-Gaussian channel.

To establish an understanding of the current AMC development status, a literature review

of some the key existing methods is also included in this chapter. Three major categories

of classifiers are visited including likelihood based classifiers, distribution test based clas-

sifiers and feature based classifiers. For some classifiers that are used in the performance
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benchmarking, their implementation is describe in details.

2.2 Signal model in AWGN channels

Additive white Gaussian noise is one of the most widely used noise models in many signal

processing problems. It is of much relevance to the transmission of signals in both wired

and wireless communication media where wideband Gaussian noise is produced by thermal

vibration in conductors and radiation from various sources. The popularity of additive

white Gaussian noise is evidential in most published literature on modulation classification

where the noise (model) is considered the fundamental limitation to accurate modulation

classification.

Additive white Gaussian noise is characterized with constant spectral density and a Gaus-

sian amplitude distribution of zero mean. Giving the additive noise a complex representation

ω = I(ω) + jQ(ω), the complex Probability Density Function (PDF) of the complex noise

can be found as

fω(x) =
1

2π
√
|Σ|

e
− |x|2

2
√
|Σ| (2.1)

where Σ is the covariance matrix of the complex noise, |Σ| is the determinant of Σ, |x|is the

Euclidean norm of the complex noise and the noise mean is zero. Since many algorithms

are interested in the in-phase and quadrature segments of the signal, it is important to

derive the corresponding PDF of the in-phase and quadrature segments of the additive

noise. Fortunately, when AWGN noises are projected onto any orthonormal segments the

resulting projection has independent and identical Gaussian distribution (Gallager, 2008).

The resulting covariance matrix can be found as

Σ =

 σ2
I ρσIσQ

ρσIσQ σ2
Q

 =

 σ2 0

0 σ2

 (2.2)

where variance for the in-phase segment σ2
I and the quadrature segment σ2

Q and are replaced

with a shared identical variance σ2, and the correlation between two segments is zero. Thus,
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the desired PDFs of each segment can be easily derived as

fI(ω)(x) = fQ(ω)(x) =
1

σ
√

2π
e−
|x|2

2σ2 (2.3)

As suggested by the term “additive”, the AWGN noise is added to the transmitted signal

giving the signal model in AWGN channel.

r(t) = s(t) + ω(t). (2.4)

Assuming the signal modulation M has an alphabet A of M symbols and the symbol Am

having the equal probability to be transmitted, with overall distribution being considered

as M number of AWGN noise distributions shifted to different modulation symbols, the

complex PDF of the received signal is given by

fr(x) =
M∑
m=1

1

M
fω(x|Am,Σ) =

M∑
m=1

1

M

1

2π
√
|Σ|

e
− |x−Am|

2

2
√
|Σ| (2.5)

where 1/M is the probability of Am being transmitted.

Following the same logic of the derivation of the complex PDF, the distribution of received

signals on their in-phase and quadrature segments can be found by replacing the variance by

half of the noise variance and the mean of the noise distribution with in-phase and quadrature

segments of the modulation symbols.

fI(r)(x) =

M∑
m=1

1

M
fI(ω)(x|Am, σ) =

M∑
m=1

1

M

1

σ
√

2π
e−
|x−I(Am)|2

2σ2 (2.6)

2.3 Signal model in fading channels

The fading channel is largely concerned with wireless communication, where signals are

received as delayed and attenuated copies after being absorbed, reflected and diffracted

by different objects. Fading, especially deep fading, drastically changes the property of the

transmitted signal and imposes a tough challenge on the robustness of a modulation classifier.

Though early literature on modulation classifier focuses on the validation of algorithms

in AWGN channel, the current standard requires the robustness in fading channel as an

important attribute In this chapter, a unified model of a fading channel is presented with
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flexible representation of different fading scenarios. It is worth noting that AWGN noise will

also be considered in the fading channel as to approach a more realistic real world channel

condition.

Instead of modelling each fading type, we characterize the joint effect of them into three

categories: attenuation, phase offset, and frequency offset. Depending on the nature of the

fading channel, two types of fading scenarios are generally considered for signal phase offset:

slow fading and fast fading. Slow fading are normally caused by shadowing (or shadow

fading) when the signal is obscured by large object from a line of sight communication

(Goldsmith, 2005). As the coherent time of the shadow fading channel is significantly longer

than the signal period, the effect of attenuation and phase offset remains constant. Therefore,

a constant channel gain α and phase offset θo can be used to model the received signal after

slow fading.

r(t) = αejθos(t) + ω(t) (2.7)

Fast fading, caused by multipath fading where signals are reflected by objects in the radio

channel of different properties, imposes a much different effect on the transmitted signal.

As the coherent channel time in a fast fading channel is considered small. The effects

of attenuation and phase offset vary with time. In this research, we assume that both

the attenuation and phase offset are random processes with Gaussian distributions. The

attenuation is given by

α(t) ∼ N (α, σα) (2.8)

where α(t) is the channel gain at time t, α is the mean attenuation, and σα is the variance

of the channel gain. The phase offset is given by

θo(t) ∼ N (θo, σθo) (2.9)

where θo(t) is the channel gain at time t, θo is the mean attenuation, and σθo is the variance

of the channel gain. Both expressions give a combined effect of slow and fast fading. When α

and θo are both zero, the fading consist of only fast attenuation and fast phase offset. When

σα and σθo are both zero, the model reverts back to the case of slow fading. The resulting
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channel model becomes

r(t) = α(t)ejθo(t)s(t) + ω(t). (2.10)

Apart from the channel attenuation and phase offset, frequency offset is another impor-

tant effect in a fading channel that is worth investigating. The shift in frequency of received

signal is mostly cause by moving antennas in mobile communication devices. Given the car-

rier frequency of a modulated signal as fc, when the antenna is moving at a speed of v the

resulting frequency offset caused by Doppler shift can be found as fcv/c where c is the speed

of travelling light in the channel medium (Gallager, 2008). As we are only interested in the

amount of frequency offset, the expression is simplified by denoting the frequency offset set

as fo and the resulting signal model with frequency offset set given by

r(t) = ej2πtfos(t) + ω(t) (2.11)

Combining the attenuation, phase offset, and frequency offset, we can derive a signal

model of fading channel of all mentions effects.

r(t) = α(t)ej(2πtfo+θo(t))s(t) + ω(t) (2.12)

2.4 Signal model in non-Gaussian channels

Non-Gaussian noises are often used to model impulsive noises which are a step further to

model the noises in a real radio communication channel. Impulsive noise, unlike Gaussian

noise, has heavy-tailed probability density function meaning higher probability for high power

noise components. Such noises are often the result of incidental electromagnetic radiation

from man-made sources. While not featured in most modulation classification literature,

impulsive noises have received increasing amount of attention in recent years. Despite the

complexity in the modelling of impulsive noise, it is worth the effort to try and accommodate

the signal model for a more practical approximation of the real world radio channels. In this

chapter, two non-Gaussian noise models will be presented for modelling the impulsive noise.

However, such noises will be considered solely without extra AWGN noise or fading effects.
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In this section, we start with Middleton’s class A non-Gaussian noise model as a complex

but accurate modelling of impulsive noises. In addition, the Gaussian mixture model is

established for the analytical convenience in some of the complex modulation classification

algorithms. The subject of non-Gaussian noise in AMC has been studied by Chavali and

Silva extensively (Chavali and da Silva, 2011, 2013).

Middleton proposed a series of noise models (Middleton, 1999) to approximate the impul-

sive noise generated by different natural and man-made electromagnetic activities in physical

environments. These models have become popular in many fields, including wireless commu-

nication, thanks to the canonical nature of the model which is invariant of the noise sauce,

noise waveform, and propagation environments. The versatility of the model is enhanced by

the model parameters which provide possibility to specify the source distribution, propaga-

tion properties, and bean patterns. The class A model is defined for the non-Gaussian noises

with bandwidth narrower than the receiver bandwidth, while the class B model is defined

for the non-Gaussian noises with wider spectrum than the receiver. In the meantime, the

class C model provides a combination of the class A and class B model. The PDF of the

class A noise is derived as

fω(x) = e−AA
∞∑
k=0

AkA

k!
√

4πσ2
kA

e
− x2

4πσ2
kA (2.13)

where AA is the overlap index which defines the number of noise emissions per second times

the mean duration of the typical emission (Middleton, 1999). The variance of the kth emission

element is given by

2σ2
kA =

k
AA

+ ΓA

1 + ΓA
(2.14)

where ΓA is the Gaussian factor defined by the ratio of the average power of the Gaussian

component to the average power of the non-Gaussian components. To approximate the de-

sired impulsive nature in this section, small overlap index and Gaussian factor are suggested

to provide a heavy-tailed distribution for the noise simulation.

In the meantime, Vastola proposed to approximate the Middletons class A model through

a mixture of Gaussian noises (Vastola, 1984). The conclusion was drawn that the Gaussian
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Mixture Model (GMM) provides a close approximation to the Millertons class A model while

being computationally much more efficient. The PDF of the GMM mode is given by

fω(x) =
K∑
k=1

λk
2πσ2

k

e
− |x|

2

2σ2
k (2.15)

where K is the total number of Gaussian components, λk is the probability of the noise

being chosen from the kth component, and σ2
k is the variance of the kth component. As the

GMM will be used as the primary model for impulsive noise, there we derive the PDFs of

received signals in the non-Gaussian channel with a GMM noise model. Assume the GMM

uses components where the probability and variance for each component are either known

or estimated. The PDF of complex signal in the non-Gaussian channel can be derived as

fr(x) =
M∑
m=1

1

M

K∑
k=1

fr(x|Am, λk, σk) =

M∑
m=1

1

M

K∑
k=1

λk
2πσ2

k

e−
|x−Am|2

2σ2 (2.16)

with the corresponding variation for signal I-Q segments given by

fI(r)(x) =
M∑
m=1

1

M

K∑
k=1

fI(r)(x|Am, λk, σk) =
M∑
m=1

1

M

K∑
k=1

λk

σk
√

2π
e−
|x−I(Am)|2

2σ2 (2.17)

2.5 Likelihood based classifiers

Likelihood Based (LB) modulation classifiers are by far the most popular modulation clas-

sification approaches. The interest in LB classifiers is motivated by the optimality of its

classification accuracy when perfect channel model and channel parameters are known to

the classifiers. The common approach of a LB modulation classifier consists of two steps.

In the first step, the likelihood is evaluated for each modulation hypothesis with observed

signal samples. The likelihood functions are derived from the selected signal model and can

be modified to fulfil the need of reduced computational complexity or to be applicable in

non-cooperative environments. In the second step, the likelihood of different modulation

hypothesizes are compared to conclude the classification decision.
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2.5.1 Maximum likelihood classifier

Likelihood evaluation is equivalent to the calculation of probabilities of observed signal sam-

ples belonging to the models with given parameters. In a maximum likelihood classifier (Wei

and Mendel, 2000), with perfect channel knowledge, all parameters are known except the

signal modulation. Therefore, the classification process can also be perceived as a maximum

likelihood estimation of the modulation type where the modulation type is found in a finite

set of candidates. Given that the likelihood of the observed signal sample r[n] belongs to

the modulationM is equal to the probability of the signal sample r[n] being observed in the

AWGN channel modulated with M,

L(r[n]|M, σ) = p(r[n]|M, σ) (2.18)

as we recall the complex form PDF of received signal in AWGN channel, the likelihood

function can be found as

L(r[n]|M, σ) =
M∑
m=1

1

M

1

2πσ2
e−
|r[n]−Am|2

2σ2 (2.19)

Without knowing which modulation symbol the signal sample r[n] belong to, the likelihood

is calculated using the average of the likelihood value between the observed signal sample

and each modulation symbol Am. The joint likelihood given multiple observed samples is

calculated with the multiplication of all likelihood of individual samples.

L(r|M, σ) =

N∏
n=1

M∑
m=1

1

M

1

2πσ2
e−
|r[n]−Am|2

2σ2 (2.20)

For analytical convenience in many cases, the natural logarithm of the likelihood is used as

likelihood value to be compared in a maximum likelihood classifier.

logL(r|M, σ) = log

(
N∏
n=1

M∑
m=1

1

M

1

2πσ2
e−
|r[n]−Am|2

2σ2

)

=
N∑
n=1

log

(
M∑
m=1

1

M

1

2πσ2
e−
|r[n]−Am|2

2σ2

)
(2.21)

The likelihood, in the meantime, can be derived from probabilities of different aspects of

sampled signals. As we have derived the PDF for In-phase segments of received signal in

18



Signal Model and Existing Methods Likelihood based classifiers

AWGN channel, the corresponding likelihood function of the in-phase segments of a signal

can be found as

LI(r)(r|M, σ) =
N∏
n=1

M∑
m=1

1

M

1

σ
√
π
e−
|I(r[n])−I(Am)|2

σ2 . (2.22)

Having established the likelihood functions in AWGN channel, the decision making in

a ML classifier becomes rather straightforward. Assuming a pool M with finite number

of I modulation candidates, among which hypothesis HM(i) of each modulation M(i) is

evaluated using estimated channel parameters Θ̂M(i) and suitable likelihood function to

obtain its likelihood evaluation L(r|HM(i)). With all the likelihood collected the decision

made simply by finding the hypothesis with the highest likelihood.

M̂ = arg max
M(i)∈M

L(r|HM(i)) (2.23)

2.5.2 Likelihood ratio test classifier

The issue of unknown parameter in a ML classifier is pivotal as the likelihood function is

unable to handle any missing parameter. Average Likelihood Ratio Test (ALRT) is one way

to overcome such limitation of a ML classifier. Polydoros and Kim first applied ALRT on

modulation classification (Polydoros and Kim, 1990) which was later adopted by Huang and

Polydoros (Huang and Polydoros, 1995), Beidas and Weber, Sills (Sills, 1999), Hong and

Ho (Hong and Ho, 2000). Different from the ML likelihood function, the ALRT likelihood

function replaces unknown parameters with the integral of all its possible values and their

corresponding probabilities. Assuming that the channel parameters set Θ consisting channel

gain α, noise variance σ2, and phase offset θo is unknown to the classifier, the ALRT likelihood

function is given by

LALRT (r) =

∫
Θ
L(r|Θ)f(Θ|H)dΘ

=

∫
Θ

N∏
n=1

M∑
m=1

1

M

1

2πσ2
e−
|r[n]−αe−jθoAm|2

2σ2 f(α, σ, θo|H)dΘ (2.24)

where L(r|Θ) is the likelihood given the channel parameter set Θ, f(Θ|H) is the probability

of the parameters Θ under modulation hypothesis H. The probability depends on deification
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of prior probability of the unknown parameters. The common assumption of prior PDFs of

different channel parameters are given below

f(α|H) ∼ N (α|µα, σα) (2.25)

f(σ2|H) ∼ Gamma(σ2|aσ, bσ) (2.26)

f(θo|H) ∼ N (θo|µθo , σθo) (2.27)

where channel gain α is given a normal distribution with mean µα, variance σ2
α, noise variance

is given a Gamma distribution with shape parameter aσ and scale parameter bσ, and phase

offset is given a normal distribution with mean µθo and variance σ2
θo

. All the additional

parameters associated with PDF of channels parameters are often called hyperparameters.

The estimation of hyperparameters is not discussed in this research. Suitable schemes have

been proposed by Roberts and Penny using variational Bayes estimator (Roberts and Penny,

2002).

The likelihood ratio test required for the classification decision making is conducted with

the assistance of a threshold γA. The actual likelihood ratio is calculated as follows

ΛA(i, j) =

∫
Θ L(r|θ)f(θ|HM(i))dθ∫
Θ L(r|θ)f(θ|HM(j))dθ

(2.28)

where the classification result is given using the conditional equation

M̂ =

 M(i) if ΛA(i, j) ≥ γA
M(j) if ΛA(i, j) < γA

(2.29)

An easy assignment of the ratio test threshold is to define all thresholds to be one. The deci-

sion making becomes simple process of comparing the average likelihood of two hypotheses.

M̂ =

 M(i) if LALRT (r|HM(i)) ≥ LALRT (r|HM(j))

M(j) if LALRT (r|HM(i)) < LALRT (r|HM(j))
(2.30)

Using the same assignment, the maximum likelihood decision making can also be applied

using (2.23) with the likelihood function with average likelihood.

It is not difficult to see that the ALRT likelihood function has a much more complex

form when unknown parameters are introduced. The requirement of underlining models
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for unknown parameters rules that successful classification depends on the accuracy of the

models. Consequently, if an accurate channel model is not known, the method becomes

suboptimal and only an approximation to the optimal ALRT classifier. The additional

requirement of the estimation hyperparameters adds yet another level of complexity and

inaccuracy to the overall performance of the ALRT classifier. This is without mentioning

that the likelihood function is more complex through an added integration operation.

For the above reason, Panagiotou, Anastasopoulos, and Polydoros proposed the General

Likelihood Ratio Test (GLRT) as an alternative (Panagiotou et al., 2000). The GLRT in

essence is a combination of a maximum likelihood estimator and a maximum likelihood

classifier. The likelihood function, unlike the ALRT, replaces the integration of unknown

parameters with a maximization of the likelihood over a possible interval for the unknown

parameters. The likelihood function of the GLRT method is given by

LGLRT (r) = max
Θ
L(r|α, σ, θo) = max

Θ

N∏
n=1

max
Am∈A

1

M

1

2πσ2
e−
|r[n]−αe−jθoAm|2

2σ2 (2.31)

The complexity is notably further reduced. However, the classifier based on the modified

GLRT likelihood function now becomes biased in both low SNR and high SNR scenarios.

Assuming the modified GLRT likelihood function is used to classify among 4-QAM and

16-QAM signals. At low SNR, when signals are well spread, a 4-QAM modulated signal

is always more likelihood to produce higher likelihood to a 16-QAM symbol, because the

16-QAM has more symbols and they are more densely populated under the assumption of

unit power. At high SNR, when the signal is tight around the transmitted symbol, the max-

imization of the likelihood through channel gain is likely to be scaled the 16-QAM alphabets

so that four symbols in the alphabet will be overlapping with the alphabet of the 4-QAM

modulation. Such phenomenon observed in nested modulations produces equal likelihood

between low order modulations and high order modulations when low order modulations are

being classified. Therefore, the method is clearly biased for high order modulations in most

scenarios.

While GLRT likelihood function provides alternative to ALRT, the fact that it is a biased

classifier, as discussed in the previous section, makes it unsuitable for modulation with nested
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modulations (e.g. QPSK, 8-PSK; 16-QAM, 64-QAM). For this reason, Panagiotou et al.

proposed another likelihood ratio test named Hybrid Likelihood Ratio Test (HLRT). In the

original publication, the HLRT is suggested as a LB classifier for unknown carrier phase

offset. The likelihood in HLRT is calculated by averaging over the transmitted symbols and

then maximizing the resulting likelihood function with respect to the carrier phase. The

likelihood function is thus derived as

LHLRT (r) = max
θo∈[0,2π]

L(r|θo) = max
θo∈[0,2π]

N∏
n=1

M∑
m=1

1

M

1

2πσ2
e−
|r[n]−αe−jθoAm|2

2σ2 . (2.32)

It is clear that the HLRT likelihood function calculates the likelihood of each signal

sample belong to each alphabet symbol. Therefore, the case where a nested constellation

creates a biased classification is of no existence. In addition, the maximization process

replaces the integral of the unknown parameters and there PDFs for much lower analytical

and computational complexity.

2.6 Distribution test based classifiers

When the observed signal is of sufficient length, the empirical distribution of the modulated

signal becomes an interesting subject to study for modulation classification. In the beginning

of this chapter, the signal distributions in various channels are given. It is clear that the signal

distributions are mostly determined by two factors namely modulation symbol mapping and

channel parameters. Assuming that the channel parameters are pre-estimated and available,

the only variable in the signal distribution becomes the symbol mapping which is directly

associated with the modulation scheme.

By reconstructing the signal distribution using the empirical distribution, the observed

signals can be analysed through their signal distributions. If the theoretical distribution

of different modulation candidates is available, there will exist one which best matches the

underlying distribution of the signal to be classified. The evaluation of equality between

difference distributions is also known as Goodness of Fit (GoF) which indicates how the

sampled data fit the reference distribution. Ultimately, the classification is completed by

finding the hypothesised signal distribution that has the best goodness of fit.
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2.6.1 One-sample KS test

Kolmogorov-Smirnov test is a goodness of fit test which evaluates the equality of two proba-

bility distributions (Conover, 1980). The reference probability distributions can be sampled

or theoretical Cumulative Distribution Function (CDF). There are two types of of KS test:

one-sample KS test and two-sample test. In this section, we start with one-sample KS test

which samples only the observed signal. In the next section, the two-sample KS test which

samples both the observed signal and the reference signal is presented.

Massey first introduced the KS test (Massey 1951) building on theories developed by

Kolmogorov (Kolmogorov, 1933) and Smirnov (Smirnov, 1939). The KS test has since been

applied in many signal processing problems. F. Wang and X. Wang (Wang and Wang, 2010)

first adopted the KS test for modulation classification highlighting its low complexity against

likelihood based classifiers and high robustness versus cumulant based classifiers. Urriza, et

al modified F. Wang and X. Wang’s method for improved computational efficiency (Urriza

et al., 2011).

In the context of modulation classification, we assume there are N number of received

signal samples r[1], r[2], ..., r[N ] in the AWGN channel. The signal samples are first normal-

ized to zero mean and unit power. The normalization is implemented on both the in-phase

and quadrature segments of the signal samples separately.

rI [n] =
<(r[n])−<(r)

σ(<(r))
(2.33)

rQ[n] =
=(r[n])−=(r)

σ(=(r))
(2.34)

Where <(r) and =(r) are the mean of the real and imaginary part of the complex signal

with σ(<(r)) and σ(=(r)) being the standard deviation of the real and imaginary part of

the complex signal. In the case of non-blind modulation classification, the effective channel

gain and noise variance after normalization is assumed to be known. The assumption is

demanding whilst an alternative is found where these parameters are estimated as part of a

blind modulation classification.

For the hypothesis modulation M(i) (with alphabet set Am ∈ A,m = 1, ..,M) in the
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AWGN channel with effective gain α and noise variance σ2, the hypothesis cumulative dis-

tribution function can be derived from the PDF of signal I-Q segments in (2.6).

F Ii (x) =

x∫
−∞

M∑
m=1

1

M

1

σ
√

2π
e−
|x−<(αAm)|2

2σ2 dx (2.35)

FQi (x) =

x∫
−∞

M∑
m=1

1

M

1

σ
√

2π
e−
|x−=(αAm)|2

2σ2 dx (2.36)

As only the cumulative distribution at the signal samples is needed, the cumulative distri-

bution values are calculated for F Ii (<(r[1])), F Ii (<(r[2])),..., F Ii (<(r[N ])) and FQi (=(r[1])),

FQi (=(r[2])),..., FQi (=(r[N ])). These values are calculated during the classification process

and therefore the computation complexity should be included as part of the classifier. The

empirical cumulative distribution function is calculated as

F̂ I(x) =
1

N

N∑
n=1

I(<(r[n]) ≤ x) (2.37)

and

F̂Q(x) =
1

N

N∑
n=1

I(=(r[n]) ≤ x) (2.38)

where I(·) is an indicator function which outputs of 1 if the input is true and 0 if the input is

false. It is worth noting that the empirical cumulative distribution is independent of the test

hypothesis. Therefore the collected values can be reused for all modulation hypotheses. With

both the hypothesised cumulative distribution function and empirical cumulative distribution

function ready, the test statistics of the one-sample Kolmogorov-Smirnov test can be found

for each signal I-Q segments

DI
i = max

1≤n≤N

∣∣∣F̂ I(<(r[n]))− F Ii (<(r[n]))
∣∣∣ (2.39)

DQ
i = max

1≤n≤N

∣∣∣F̂Q(=(r[n]))− FQi (=(r[n]))
∣∣∣ (2.40)

To accommodation the multiple test statistics calculated from multiple signal segments, they

are simply averaged to create a single test statistics for the modulation decision making.

Di =
1

2

(
max

1≤n≤N

∣∣∣F̂ I(<(r[n]))− F Ii (<(r[n]))
∣∣∣+ max

1≤n≤N

∣∣∣F̂Q(=(r[n]))− FQi (=(r[n]))
∣∣∣)
(2.41)
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In some cases when the modulation candidates have identical distribution (e.g. M-PSK,

M-QAM) on their in-phase and quadrature segments their empirical cumulative distribution

can be combine to form an empirical cumulative distribution function with larger statistics.

F̂ (x) =
1

2N

N∑
n=1

I(<(r[n]) ≤ x) + I(=(r[n]) ≤ x) (2.42)

Since the signal samples are complex, the multi-dimensional version of the KS test has been

discussed in (Peacock, 1983; Fasano and Franceschini, 1987). We suggest to that correspond-

ing test statistics can be modified to

Di = max
1≤n≤2N

∣∣∣F̂ (z[n])− F Ii (z[n])
∣∣∣ (2.43)

where the test sampling locations are a collection of the in-phase and quadrature segments

of the signal samples

z2n−1 = <(r[n]), z2n = =(r[n]) (2.44)

Regardless the format of test statistics the classification decision is based on the comparison

of the test statistics of all modulation hypotheses. The modulation decision is assigned to

the hypothesis with a smallest test statistics.

M̂ = arg min
Mi∈M

Di (2.45)

2.6.2 Two-sample KS test

When the channel is relatively complex and the hypothesis cumulative distribution function

is difficult to be modelled accurately, the two sample Kolmogorov-Smirnov test maybe much

easier to implement. However, training/pilot samples are needed to construct the reference

empirical cumulative distribution functions. Without any prior assumption on the channel

state, K number of training samples x[1], x[2], ..., x[K] are transmitted using modulation

M(i). The empirical cumulative distribution function can be found following (2.37) and

(2.38)

F̂ Ii (x) =
1

N

N∑
n=1

I(<(x[n]) ≤ x) (2.46)
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F̂Qi (x) =
1

N

N∑
n=1

I(=(x[n]) ≤ x) (2.47)

The empirical cumulative distribution function of the N number of testing signal samples

r[1], r[2], ..., r[N ] are formulated in the same way as (2.37) and (2.38). Using the two-sample

test statistic, the two-sample test statistics for modulation classification can be found as

Di =
1

2

(
max

−∞<x<∞

∣∣∣F̂ I(x)− F̂ Ii (x)
∣∣∣+ max

−∞<x<∞

∣∣∣F̂Q(x)− F̂Qi (x)
∣∣∣) (2.48)

In a practical implementation, it is easier to quantize the testing range of into a set of

evenly distributed sampling locations. The classification rule is the same as the one-sample

Kolmogorov-Smirnov test where the modulation hypothesis with the smallest test statistics

is assigned as the classification decision.

2.7 Feature based classifiers

In this section, we list some of the well-recognised features designed for modulation classifi-

cation. We first investigate the spectral based feature which exploits the spectral properties

of different signal components. The high order static features are examined as opposed to

classifier digital modulations of different type and orders.

2.7.1 Signal spectral based features

Nandi and Azzouz proposed some key signal spectral based features in the 1990s for the

classification of basic analogue and digital modulations (Azzouz and Nandi, 1995, 1996b;

Nandi and Azzouz, 1995). These key features generalized and advanced the works of Fabrizi

et al. (Fabrizi et al., 1986); Chan and Gadbois (Chan and Gadbois, 1989); Jovanovic et al.

(Jovanovic et al., 1990); which suggested different feature extraction method. The features

exploit the unique spectral characters of different signal modulations in three key signal

aspects namely the amplitude, phase, and frequency. Since different signal modulations

exhibit different properties in their amplitude, phase, and frequency, a complete pool of

modulation candidates are broken down to sets and subsets which can be discriminated

with the most effective features. A decision tree, consisting of nodes of sequential tests
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dedicated by different features, is often employed to give a clear guideline for the classification

procedure.

The first feature, γmax, is the maximum value of the spectral power density of the nor-

malized and centred instantaneous amplitude of the received signal (Azzouz and Nandi,

1996b).

γmax = max |DFT(Acn)|2/N (2.49)

where DFT(·) is the discrete Fourier transform (DFT), Acn is the normalized and centred

instantaneous amplitude of the received signal r, and N is the total number signal samples.

The normalization is achieved by

Acn[n] = An[n]− 1, where An[n] =
A[n]

µA
, (2.50)

where µA is the mean of the instantaneous amplitude one signal segment.

µA =
1

N

N∑
n=1

a[n] (2.51)

The normalization of the signal amplitude is designed to compensate the unknown channel

attenuation.

The second feature, σap, is the standard deviation of the absolute value of the non-linear

component of the instantaneous phase.

σap =

√√√√√ 1

Nc

 ∑
An[n]>At

φ2
NL[n]

−
 1

Nc

∑
An[n]>At

|φNL[n]|

2

(2.52)

where Nc is the number of sample that meets the condition: An[n] > At. The variable At

is a threshold value which filters out the low amplitude signal sample because of their high

sensitivity to noise. φNL[n] denotes the non-linear component of the instantaneous phase of

the nth signal sample.

The third feature, σdp, is the standard deviation of the non-linear component of the direct

instantaneous phase.

σdp =

√√√√√ 1

Nc

 ∑
An[n]>At

φ2
NL[n]

−
 1

Nc

∑
An[n]>At

φNL[n]

2

(2.53)
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where all parameter remains same as in the expression for σap. However, it is noticeable that

the absolute operation on the non-linear component of the instantaneous phase is removed.

The fourth feature, P , is an evaluation of the spectrum symmetry around the carrier

frequency.

P =
PL − PU
PL + PU

(2.54)

where

PL =

fcn∑
n=1

|Xc[n]|2 (2.55)

PU =

fcn∑
n=1

|Xc[n+ fcn + 1]|2 (2.56)

Xc[n] is the Fourier transform of the signal xc[n]. (fcn+1) is the sample number correspond-

ing to the carrier frequency fc. fs is the sampling rate.

fcn =
fcN

fs
− 1 (2.57)

The fifth feature, σaa, is the standard deviation of the absolute value of the normalized

and centred instantaneous amplitude of the signal samples.

σaa =

√√√√ 1

N

(
N∑
n=1

A2
cn[n]

)
−
(

1

N

N∑
n=1

|Acn[n]|
)2

(2.58)

The sixth feature, σaf , is the standard deviation of the absolute value of the normalized

and centred instantaneous frequency.

σaf =

√√√√√ 1

Nc

 ∑
An[n]>At

f2
N [n]

−
 1

Nc

∑
An[n]>At

|fN [n]|

2

(2.59)

where the centred instantaneous frequency fm is normalized by the sampling frequency fs.

fN [n] = fm[n]/fs (2.60)

The instantaneous frequency is centred using the frequency mean µf

fm[n] = f [n]− µf (2.61)
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µf =
1

N

N∑
n=1

f [n] (2.62)

The seventh feature, σa, is the standard deviation of the normalised and centred instan-

taneous amplitude.

σa =

√√√√√ 1

Nc

 ∑
An[n]>At

a2
cn[n]

−
 1

Nc

∑
An[n]>At

acn[n]

2

(2.63)

The eighth feature, µa42, is the kurtosis of the normalised and centred instantaneous

amplitude.

µa42 =
E{A4

cn[n]}
{E{A2

cn[n]}}2
(2.64)

The ninth feature, µf42, is the kurtosis of the normalised and centred instantaneous am-

plitude.

µf42 =
E{f4

N [n]}
{E{f2

N [n]}}2
(2.65)

Azzouz and Nandi designed decision trees for the classification analogue and digital mod-

ulations. The trees consist of an input node where all the features extracted and imported.

The input node is followed by a sequence of conditional or decision steps facilitated with

selected individual features. In this section, we have reorganized these decision trees and

created a decision tree in Figure 2.1 for the classification of the aforementioned modulations.

The diamond block in Figure 2.1 represents a conditional sub-stage classification, with t(·)
being the suitable threshold for different features.

2.7.2 High-order statistics based features

Hipp was the first to adopt the third-order moment of the demodulated signal amplitude as

a modulation classification feature (Hipp, 1986). Since we consider the demodulated signal

as a luxury for any modulation classifier, this moment based feature is not investigated in

this section. The usage of moment of moments in modulation classification is later extended

by Soliman and Hsue who investigated the high-order moments of the signal phase for the

classification of M-PSK modulations (Soliman and Hsue, 1992). They derived the theoretical

kth moment of signal phase in Gaussian channel which leads to the conclusion that the

29



Signal Model and Existing Methods Feature based classifiers

Figure 2.1: Decision tree for signal spectral based features.
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moments are monotonically increasing function with respect to the order of the M-PSK

modulation. Thus, high order M-PSK modulations have higher moment values which provide

the condition for the classification of M-PSK modulations of different orders. Meanwhile,

Soliman and Hsue also made the observation that the difference in moment values between

higher order modulations is not distinct for lower-order moments. Therefore, they conclude

that the effective classification of M-PSK modulation with higher order requires the moments

of higher-order. The calculation of the kth order moment of the signal phase is defined as

µk(r) =
1

N

N∑
n=1

φk(n) (2.66)

where φ(n) is the phase of the nth signal sample. Azzouz and Nandi, proposed the kurtosis

of the normalized-centred instantaneous amplitude µa42 and the kurtosis of the normalized-

centred instantaneous frequency µf42 for the classification of M-ASK and M-FSK modulations.

The expressions for these two features are given in (5.16) and (5.17). Hero and Hadinejad-

Mahram generalized the moment based features to include the high order moment of signal

phase and frequency magnitude (Hero and Hadinejad-Mahram, 1998). Spooner employs

high-order cyclic moments as features (along with cyclic moments) for the classification of

modulation with identical cyclic autocorrelation functions (Spooner, 1996). In later chapter,

we use the following formula to calculate different kth moment of the complex-valued signal

µxy(r) =
1

N

N∑
n=1

rx[n] · r∗y[n] (2.67)

where x+ y = k and r∗[n] is the complex conjugate of r[n].

Swami and Sadler suggested the fourth-order cumulant of the complex-valued signal as

features for the classification of M-PAM, M-PSK, and M-QAM modulations (Swami and

Sadler, 2000). For signal the second-order moments can be defined in two different ways.

The two-digit subscript describes the order of the cumulant and the number of complex

conjugate involved.

C20 = E{r2[n]} (2.68)

C21 = E{|r[n]|2} (2.69)
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Likewise, the fourth-order moments and cumulants can be expressed in three different ways

using different placement of conjugation,

C40 = cum(r[n], r[n], r[n], r[n]) (2.70)

C41 = cum(r[n], r[n], r[n], r ∗ [n]) (2.71)

C42 = cum(r[n], r[n], r ∗ [n], r ∗ [n]) (2.72)

where cum(·) is joint cumulant function defined by

cum(w, x, y, z) = E(wxyz)− E(wx)E(yz)− E(wy)E(xz)− E(wz)E(xy) (2.73)

Meanwhile, the estimation of the second and fourth cumulants is achieved using the following

processes,

Ĉ20 =
1

N

N∑
n=1

r2[n] (2.74)

Ĉ21 =
1

N

N∑
n=1

|r[n]|2 (2.75)

Ĉ40 =
1

N

N∑
n=1

r4[n]− 3Ĉ20 (2.76)

Ĉ41 =
1

N

N∑
n=1

r3[n]r ∗ [n]− 3Ĉ20Ĉ21 (2.77)

Ĉ42 =
1

N

N∑
n=1

|r[n]|4 −
∣∣∣Ĉ20

∣∣∣2 − 2Ĉ2
21 (2.78)

Cumulant values for some noise free modulation signals are listed in Table 2.1. It is clear from

Table 2.1 that different modulations have different cumulant values between each other. Thus

the classification of these modulations can be realized. The classification decision making

could be achieve with a decision where modulations are divided in to subgroups for each

cumulant.
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C20 C21 C40 C41 C42

2-PAM 1.0000 1.0000 -2.0000 -2.0000 -2.0000

4-PAM 1.0000 1.0000 -1.3600 -1.3600 -1.3600

8-PAM 1.0000 1.0000 -1.2381 -1.2381 -1.2381

BPSK 1.0000 1.0000 -2.0000 -2.0000 -2.0000

QPSK 0.0000 1.0000 1.0000 0.0000 -1.0000

8-PSK 0.0000 1.0000 0.0000 0.0000 -1.0000

4-QAM 0.0000 1.0000 1.0000 0.0000 -1.0000

16-QAM 0.0000 1.0000 -0.6800 0.0000 -0.6800

64-QAM 0.0000 1.0000 -0.6191 0.0000 -0.6191

Table 2.1: Decision tree for modulations classification using spectral based features

2.8 Summary

In this chapter, the signal models in the AWGN channel, fading channel, and non-Gaussian

are defined. The received signals are expressed using the the corresponding channel parame-

ters, additive noise and transmitted signals. The resulting probability density functions are

derived for the received signals the corresponding channels. Three main categories of classi-

fiers are presented in the later part of the chapter. For likelihood based classifiers, maximum

likelihood classifier and classifiers based on likelihood ratio tests are discussed in details. For

distribution test based classifiers, the one-sample and two-sample Kolmogorov-Smirnov tests

are illustrated with their implementation in modulation classification. Some of the modula-

tion classification features are listed including signal spectral based features and high order

statistics features.
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Chapter 3

Machine Learning for Modulation

Classification

3.1 Introduction

In Chapter 2, we list a collection of signal features for modulation classification. Some of the

classification decision making is based on multi-stage decision trees where each stage utilizes

a different feature. However, the need for designing the decision tree and optimization of

multiple decision thresholds is not very convenient. To overcome these problems, various

machine learning techniques have been employed to accomplish two major tasks in feature

based modulation classification. First, the machine learning techniques can provide a clas-

sification decision making process that is much easier to implement. Second, the machine

learning techniques can reduce the dimension of the feature set. It is achieved by feature

selection and feature generation, which enables the consideration of a more versatile feature

set while maintaining the computational efficiency of the classifier.

In this chapter, we first give two machine learning based classifiers namely k-nearest

neighbour classifier and support vector machine classifier for modulation classification in

combination with the features listed in Chapter 2. Next, the issue of feature space dimen-

sion reduction is explored through different algorithms including linear regression, genetic
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algorithm, and genetic programming.

3.2 Machine learning based classifiers

3.2.1 K-nearest neighbour classifier

The K-nearest Neighbour (KNN) classifier is a non-parametric algorithm which assigns the

class to a testing signal by analysing the number of nearest reference signals in the feature

space. It has been used to solve many different classification problems (Espejo et al., 2010;

Guo and Nandi, 2006).There are three mains steps in a KNN classifier.

To enable KNN classification, a reference feature space must be established first. The

features space should include M reference values of each feature from each modulation class.

The selection of M depends on the problem and is normally optimized heuristically. The

motivation for a larger number of M is that the reference feature space provides a more

accurate representation of the likely distribution of the testing signal features. On the other

hand, a larger M value is likely to impose a higher computational complexity in the later

steps of the KNN classifier.

For modulation classification, Zhu et al. suggested the use of training data from the same

signal source for the generation of reference feature values (Zhu et al., 2010). The advantage

of this approach is that the training signal shares the same source as the testing signal. Thus

the reference feature space is an accurate representation of the feature distribution of the

testing signal. Meanwhile, the construction of the reference feature space is really easy as

the only step required is to calculate the feature values for the training signals. However,

because of the random nature of the training signal, one cannot guarantee the accuracy of

the feature space to be high enough. Synthesised reference values are more controlled over

the construction of the reference feature space. Nevertheless, there need to be a hypothesised

feature distribution which is often not reliable.

Since the classifier requires the evaluation of distances between the test signal and refer-

ence signals, a distance metric must be defined before the search of neighbouring reference

signals can be achieved. There are many different metric systems that can be used for
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distance measurement in a KNN classifier. Euclidean distance is one of the most common

distance metrics for KNN classifier. Given a feature set F = {f1, f2...fL} with L number of

features, the Euclidean distance between feature set of signal A and B is calculated as

D(F(A),F(B)) =

√√√√ L∑
l=1

[fl(A)− fl(B)]2 (3.1)

Having established the distance measurement, the classification decision is achieved by find-

ing the nearest number of reference samples and analysing the demography with these k

number of samples.

When the distances between test signal and all reference signals are evaluated, k number

of the reference signals are recorded as the k nearest neighbour. The selection of the value

of k should follow these rules:

• The value should ideally be a prime number, to avoid the case where the k neighbour

consisting of an equal number of reference signals from different classes.

• The value should be less than the total number of reference signals from a signal class.

• The value of k should be big enough to avoid false classification caused by outliers.

The actual optimization of the value k can be heuristic because it has been shown that the

classification does not vary much if the k value is in a reasonable range. The end classification

result is achieved by finding the majority of the k-nearest neighbour that share the same class.

This class will be assigned to the testing signal as the classification result. A pseudo code

for the KNN classifier implementation is given below.

The KNN is non-parametric and capable of multi-class classification. However it suffers

with increasing number of features which raises the dimension of the feature space and the

complexity of the distance calculation. Therefore, some sort of dimension reduction is needed

to make this method viable. Another disadvantage of the KNN classifier is that the features

contribution to the classification decision making is not weighted. There maybe cases where

the final distance is mostly affected by only one feature, if the distribution of this feature is

sparse and the distance between the testing sample and the reference sample on this feature
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Algorithm 1: K-nearest Neighbour Classifier

Input: M reference signals from every candidate modulation M(i), i = 1, 2, ..., I,

each with a set of extracted features Fi(m), an observed unknown signal with

extracted feature set F, a pre-defined k value

begin

Distance between and every reference feature set is calculated using (3.1)

The resulting distances D(F,Fi(m)) are sorted in descending order

The first k distances are selected

The modulation label for each distance D(F,Fi(m)) is extracted

The mode of the set extracted label set i′ is used to identify the modulation

Output: classified modulation type M̂

dimension is on a larger scale compared to other feature dimensions. The classification of

some modulations relaying on other features may be affected.

In AWGN channel, BPSK, QPSK, 16-QAM and 64-QAM signals are simulated using

(2.4) to evaluate the performance of a KNN classifier. A set of 16 different signal length and

SNR combinations are simulated with each consisting 10,000 signal realizations from each

modulation. In addition, 50 realizations of each modulation signal are generated to form

the reference feature space in each channel setting. The k value is set to 11. High order

cumulants including C40, C41, C42, C60, C61, C62 and C63 are extracted from each testing

signals as classification features. The classification accuracy Pcc for each signal modulation

is calculated using the following formula,

Pcc =
Ls
L

(% ) (3.2)

where Ls is the number of signal realizations been successfully classified. The classification

of all modulations are averaged to produce the classification accuracy in Table 3.1.

It is clear that the percentage of correct classification increases with higher SNR and

longer signal length. It is a phenomenon commonly observed in most modulation classifiers.

This KNN classifier is a rather simple approaches to the problem. The improved KNN classi-

fier with feature enhancement and multi-stage classification is given more detailed discussion
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Number of Samples

SNR 512 1024 2048 4096

5 dB 79% 81% 91% 96%

10 dB 88% 93% 99% 100%

15 dB 90% 97% 100% 100%

20 dB 93% 98% 100% 100%

Table 3.1: Modulation classification performance of a KNN classifier in AWGN channels

in Section 3.3.3.

3.2.2 Support vector machine classifier

Support Vector Machine (SVM) provides another way to achieve classification in the existing

multi-dimensional feature space. It has been adopted for the classification of many differ-

ent data sets (Mustafa and Doroslovacki, 2004; Polat and Güne, 2007; Akay, 2009). SVM

achieve classification by finding the hyperplane that separates data from different classes.

The hyperplane, meanwhile, is optimized by maximizing its distance to the signal samples

on each side of the hyper-plane. Depending on the nature of the signal being classified, the

SVM classifiers can be divided into linear and non-linear versions.

The linear SVM classifiers have linear kernels. The kernel is defined by

K(x,w) = xTw (3.3)

where x = [x1...xK ] is the input feature vector and is the weight vector to be optimized.

The kernel defines a linear separation hyperplane (Theodoridis, 2008)

g(x) = xTw + w0 (3.4)

where w0 is a constant. The classification of a two-class (between modulation candidate

M(a) and M(b)) problem is achieved by simply using the sign of g(x)

M̂ =

 M(a), g(x) = xTw + w0 ≥ 0

M(b), g(x) = xTw + w0 < 0
(3.5)
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To obtain the weight through training, the following optimization process is exercised

maximize J(w,w0) =
2

‖w‖2
(3.6)

subject to yi(w
Txi + w0) ≥ 1, i = 1, 2, ..., N (3.7)

where yi is the class indicator for the ith feature vector (+1 forM(a) and -1 forM(b)). An

illustration of a SVM for a two-class problem is given in Figure 3.1.

Figure 3.1: Feature space and SVM with linear kernel and X1 and X2 representing two separate feature

dimensions.

The non-linear version of the SVM classifier shares the same training and classification

process as the linear SVM classifier. Except, the kernel used for hyper-plane is replaced by a

non-linear kernel. We have tested in the past that a polynomial kernel is enough to provide

effective classification. The polynomial kernel is given by

K(x,w) = (xTw)d (3.8)
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where d is the degrees of the polynomials. A general procedure of the SVM classifier for

AMC described using pseudo code in Algorithm 2.

Algorithm 2: Support Vector Machine Modulation Classifier

Input: M reference signals from two candidate modulationM(i), i = 1, 2 each with a

set of extracted feature set Fi(m), an observed unknown signal with extracted

feature set F, a pre-defined value d if using non-linear SVM classifier

begin

initialize weights w and w0

repeat

update the weights through (3.6) and (3.7) using Fi(m)

until maximum number iteration reached

K(F,w) + w0 is calculated

if K(F,w) + w0 ≥ 0 then

M(1) is given as classification decision M̂
if K(F,w) + w0 < 0 then

M(2) is given as classification decision M̂

Output: classified modulation type M̂

Compared to the KNN classifier, the SVM classifier only needed to use the training signal

when establishing the separating hyperplane. Once the hyperplane is optimized, there is no

need to involve the training signal in any sort of further calculation. The benefit is that the

computation needed at the testing stage is relatively inexpensive compared to KNN. However,

the SVM classifier is most natural for two-class classification. There are implementations of

a multi-classes classification using SVM however the implementation is much less intuitive

than the two-class case. Gunn first suggested SVM for modulation classification (Gunn,

1998). It was later extended by several other studies (Mustafa and Doroslovacki, 2004; Dan

et al., 2005; Wu et al., 2005). In this research, we incorporated the SVM classifier as part of

the fitness evaluation process in genetic programming. More details on the implementation,

performance and analysis are given in Section 3.3.3.
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3.3 Feature selection and combination

For both KNN and SVM classifier, it is always preferable to have as many features as possible

for improving the classification accuracy. However, both classifiers suffer when the number

of features increase. That is why reducing the feature space dimension is necessary. Using

machine learning algorithms, there are two ways to do so. First, feature space dimension

can be reduced by eliminating some of the features which make less or no contribution to

the classification task. Second, feature space dimension can be reduced by combining the

existing feature into fewer new features.

3.3.1 Logistic regression

While feature selection is an effective way to reduce the complexity for a feature based mod-

ulation classifier, the elimination of a feature can sometimes be destructive. That is without

mentioning that sometime the features are all useful to some degree and the elimination

of any feature can be destructive for the classification performance. In this case, a more

conservative approach is needed for dimension reduction. That is why feature combination

has been considered for not just the reduction of feature dimension but also for enhancing

the performance of these features.

To begin with, linear combination of the features is the simplest but often effect way of

the combining the features. Assuming we are combining number of existing features into a

single new feature, the linear combination is given by

fnew = w0 +
K∑
k=1

wkfk (3.9)

where wk is the weight of the kth feature , w0 is a constant, and K is the total number of

features available for combination. The process to optimize these weights is called logistic

regression which aims to maximize the difference of the new feature value between different

classes. It has been adopted by Zhu et al. in the dimension reduction for distribution based

features (Zhu et al., 2013c).

There are two common logistic regression tools in the family of generalized linear regres-

sion algorithms namely binomial logistic regression and multinomial logistic regression. The
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binominal logistic regression is designed to project the signal using a logistic function p(·) so

that p(·) equals to 1 when the signal is modulated usingM(i) and 0 if the signal modulation

using M(j).

p(F) =
1

1 + e−g(F)
(3.10)

where F is the collection of existing features and g(·) is the logit function, the inverse of the

logistic function p(·), given by

g(F) = B0 +
K∑
k=1

Bkfk (3.11)

The estimation of each of the parameter B0 and Bk is often achieved using iterative

processes such as Newton-Raphson method (Hosmer and Lemeshow, 2000). The resulting

estimation of B0 and Bk can be used to substitute the weights w0 and wk in (3.9). Logistic

regression provides a basic tool for feature selection and combination. However, multi-

class classification is not always suited for linear regression assisted feature selection and

combination. It is sometimes better to divide the classification into multiple steps.

In this research, we applied logistic regression on for the enhancement of distribution

based features. More details are given in Chapter 4.

3.3.2 Genetic algorithm

To overcome the issue of high dimensionality in the feature space, Wong and Nandi suggested

Genetic Algorithm (GA) as a tool for reducing the number of features (Wong and Nandi,

2004). They used binary strings to represent the selection of different features. If there are

5 existing feature, a binary string example could be 11000, which means that the first two

features are selected for classification and the last three features are neglected.

The training of such binary strings begins with a randomly generated string. According

to the initial binary string, features are selected for modulation classification with some

training data. The resulting classification performance achieved by these selected features is

then used as a criterion for evaluating the performance of the binary string. Based on their

performance, better binary strings are selected for the evolutionary process of producing new

binary strings are migrates toward the optimal solution or optimal selection of features. The
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two genetic operators used are crossover and mutation.

For crossover, we assume there are two parent binary strings 11011 and 01000. The

crossover would randomly choose equal number of bits in both parents and swap their values.

In the given case, if the first four digits are selected. The children of the crossover operation

would be 01001 and 11010 which represents two new sets of selected features.

Figure 3.2: Crossover operation in genetic algorithm.

Meanwhile, mutation utilizes only one parent e.g. 11011. The operation is the process

of selecting random digits in the parent string and generating a random value for that digit.

Using the example, if the mutation operation selects the first, third, and fourth digit of

the binary string, the resulting child string would become 01111. Since the new value is

randomly generated they could be same as the parent value as seen in the fourth digit or

different as seen in the first and third digit.

Figure 3.3: Mutation operation in genetic algorithm.

The processes of fitness evaluation, parent selection, and reproduction are repeated for
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a pre-defined number of generations, after which the GA is terminated. Termination can

also be triggered if the average or best fitness in the current generation reaches a pre-defined

threshold or the improvement over the last few generations becomes lower than a pre-defined

threshold. In the end, the binary strings in all generations are ranked by their fitness. The

string with the highest fitness is selected as the final product of the GA process. According

the binary string, the features can be selected subsequently. It is worth mentioning that

the GA process can be highly random because of the random initialization and mutation

operation. It is sometimes recommended to repeat the GA process several times and to

produce a few sets of different feature selections from which the best feature selection can a

determined by another test.

GA has been used in this research for the optimization of sampling locations in the

optimized distribution sampling classifier. More details on its implementation is given in

Chapter 4.

3.3.3 Genetic programming

Koza popularized the Genetic Programming (GP) as another evolutionary machine learning

algorithm (Koza, 1992). It has since been used for classification of many different types of

data and signal (Espejo et al., 2010). Zhu et al. first employed GP for modulation classi-

fication feature selection and combination (Zhu et al., 2010). Zhu et al. also extended the

application of GP in modulation classification by combine GP with other machine learning

algorithms to achieve improved classification performance (Zhu et al., 2011; Aslam et al.,

2012).

GP belongs to the class of evolutionary algorithms which attempt to emulate Darwinian

model of natural evolution. It is a machine learning methodology which is used to optimize

a population of individuals (computer programs) with the help of tness values. GP develops

the solution of a problem in the form of a mathematical formula. Each solution is a computer

program and can be represented in the form of tree. Each tree has terminal nodes (data

nodes) and internal nodes (function nodes). Each individual is given a tness value which

quanties its ability to solve the given problem. The tness value is computed using a user-
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dened tness function. This tness function used depends upon the nature of the problem.

The advantages GP have on other machine learning methods are listed below. (a) No prior

knowledge about the statistical distribution of data is needed. (b) Pre-processing of data

is not required and data can be used directly by GP in its original form. (c) GP returns

mathematical function as output which can be used directly in application environment.

(d) GP has the inherent capability to select useful features and ignore others. Typically

GP implementation follows the following steps: (a) GP starts with a randomly generated

population of user dened size. (b) Each individual is assigned a tness value which represents

the strength of the individual to solve the given problem. (c) A genetic operator is applied

on current generation to give birth to individuals of next generation. Genetic operators

are explained in the next section. (d) All the individuals are given tness values and those

individuals having better tness values get transferred to the next generation. (e) Step (c)

and (d) are repeated till a desired solution is achieved. Otherwise GP is terminated after a

certain number of generations set by the user.

There are different ways to represent the individuals (computer programs) in GP. One of

the common representations is a tree representation and the same representation has been

used here as well. A tree has terminal nodes, internal nodes and output node. Terminal nodes

represent the inputs, and internal nodes represent the functions operating on inputs while

the output node gives the output of the tree. An example of a tree structures mathematical

formula (A+B)× C is given in Figure 3.4. In the case of modulation classification feature

selection and combination, the input nodes are the selected raw feature. The output node

represents the desired new feature combination.

Figure 3.4: Genetic programming individuals in the form of a tree structure.

Genetic operators are used for reproducing new individuals from older individuals. The
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operation mimics the genetic processes observed in genetic science. The tradition operators

included in a standard GP are crossover and mutation. Semantically, crossover is intended

for the sharing of fitter parts of two different individuals in order to create a new individual

which is fitter than both parents. Meanwhile, mutation generates new individual by replacing

a random branch of a parent with a randomly generated new branch in hope of the child to

have better fitness than the parent. Practically, the sematic motive of crossover and mutation

is implemented with random symbolic process. We shall use a simple example to illustrated

how crossover and mutation is achieved in standard GP.

Let us assume that there are two parent trees each representing a mathematical formula

as shown in Figure 3.5. The first step of crossover randomly selects a branch in each parent

Figure 3.5: Parents selected for crossover operation in genetic programming.

three. The selected branch is highlighted in Figure 3.5 with dash lines. In the second step,

the selected branches are swapped between the two parents creating two new individuals as

shown in Figure 3.6.

Figure 3.6: Children produced by the crossover operation in genetic programming.

For mutation, we use select only one tree as shown in Figure 3.7. The first step of the

mutation selects a random branch from the parent tree. In the second step, a new branch is

randomly generated. Finally, the mutation is completed by attaching the randomly generated

46



Machine Learning for Modulation Classification Feature selection and combination

Figure 3.7: Parent selected for mutation operation and a randomly generated branch.

new branch to the same position where the old branch is removed from. The resulting tree

is the child three of a mutation operation.

Fitness evaluation is the most important design component because it is directly linked

to the evaluation of how well an individual in the evolution solves the given problem. If a

miss fitting fitness criterion is used, regardless of how efficient the GP is, the end solution

will deviated from the goal of the entire system.

For modulation classification, as we dedicated GP as a feature selector and generator,

the goal is to generate a combination of selected features which provides fast and accurate

modulation classification. Because of the nature of the task, there has been two different

approaches to define the fitness function. The first approach is to evaluate the quality of

the new feature by measuring the inter-class tightness and intra-class separation given some

training signals. To achieve such evaluation, Aslam et al. proposed to use Fisher’s criterion

as the fitness function for GP (Aslam et al., 2011). Assuming there are number of signal

realizations from two different modulations A and B, a new feature acquired through GP

can be calculated for each signal realization. Therefore, we have two sets of feature values

fA(1), fA(2)...fA(L) and fB(1), fB(2)...fB(L). To calculate the fitness of this new feature, the

following fitness function is employed base on Fisher’s criterion,

F(f) =
|µA − µB|√
σ2
A + σ2

B

(3.12)

where µA and µB are the means of the two set of the feature values and σ2
A and σ2

B are the

corresponding variances.

µA =
1

L

L∑
l=1

fA(l) and µB =
1

L

L∑
l=1

fB(l) (3.13)
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σ2
A =

1

L

L∑
l=1

[fA(l)− µA]2 and σ2
B =

1

L

L∑
l=1

[fB(l)− µB]2 (3.14)

It is obvious that the nominator measures the separation of the features from different mod-

ulation signal and the denominator measure the tightness of the features from the same

modulation signals. Therefore, the fitness function matches the desired property of an effec-

tive feature for modulation classification. However, there are two drawbacks of the Fisher’s

criterion for fitness evaluation. First, the criterion is developed with the assumption of the

statistic being normally distributed. In the case of GP generated features, it is very difficult

to establish the distribution of a new feature because the features can be a very complicated

combination of many existing features. That is without mentioning the normality need to

be met for each new feature which various dramatically because of the random nature of

GP. The genetic operators constantly maintain the diversity in the populations resulting in

new features of diverse distributions. Secondly, in practice, there are cases where the trained

new feature may converge to have minimum amount of difference in their mean difference

while having very small variance. In other cases, the new feature can have very big mean

difference while the variance also being infinitely big.

Meanwhile, there is another approach which does not share the flaws of the Fisher’s

criterion based fitness evaluation. As the ultimate goal for the new feature is to enhance

the classification performance, we used a small set of training signals in the GP evaluation

and incorporated a computational efficient classifier in the fitness evaluation (Zhu et al.,

2010). The fitness, in this case, is evaluated by directly classifying the training signals with

a classifier from which the average classification accuracy is used as the fitness value.

In the first case, we employed the KNN classifier for the fitness evaluation. Different from

conventional fitness evaluation, the tree output from each individual is not directly utilized

for fitness calculation having employed the target value from the training input. Instead,

the output is used as a new feature for the KNN classifier with some of the training data

used as reference samples and the remaining training data used for evaluating trees. The

classification results from KNN classifier are obtained as described in earlier in this section.

Once the classification is finished, the result is returned to the fitness calculation function
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to be checked with the correct class information. The number of correct classifications and

incorrect classifications are calculated for the fitness calculation. The fitness F is given by

F(f) =
I∑
i=1

wiP icc (3.15)

where I is the number of candidate modulations, and P icc is the number of classification

errors for class i. Because this is a multi-class classification, errors from different classes

are recorded separately and can be assigned with different penalty weight wi. By setting

different wi, the program can adjust its classification performance for different classes. The

larger penalty given to a class, the evolution will be more biased to correctly classify this

class. Ultimately, the individuals with high fitness values, which indicate better classification

performance and better fitness, will have an increased chance of joining the evolution of the

next generation via different operations.

Initially GP was used to classify all modulations in a single stage but as the classification

of BPSK and QPSK are easier compared to other two modulations, a drift was seen in GP to

the classification of BPSK and QPSK and the improvement in classification of M-QAM(M>4)

was minimal. Therefore, in order to achieve the better performance for all classes, a two-

stage genetic programming has been used here to counter this problem. At the first stage,

classification of BPSK, QPSK and M-QAM(M>4) is performed. At the second stage, GP

is used again to do the classification of remaining two classes. So at the second stage GP

creates a new tree for the classication of remaining classes. As this tree is independent from

the first tree and it is solely devoted for the classification of M-QAM(M>4) modulations, the

accuracy would be better. The two stages are shown in Figure 3.8. The performance of GP

for these two stages for classification of different classes is shown in Figure 3.9 and Figure

3.10.

To evaluate the combination of GP and KNN, the following simulation is set up in

MATLAB environment. The GP programs are developed based on Silva’s GPLAB toolbox

(Silva, 2007). The parameters used for the experiments are given in detail in Table 3.2.

The number of generations used for all the experiments were 100. It is determined by 10

trail runs with 500 number of generation in which convergence was observed in the first 100
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Figure 3.8: Two stage classification of BPSK, QPSK, 16-QAM and 64-QAM signals.

Figure 3.9: New GP feature space for stage 1 of the GP-KNN classifier.
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Figure 3.10: New GP feature space for stage 2 of the GP-KNN classifier.

Parameters Values

Number of generations 100

Population size 25

Function pool plus, minus, times, reciprocal, negator, abs,

sqrt, sin, cos, tan, asin, acos, tanh, mylog

Terminal pool HOS features

Genetic operators crossover and mutation

Operator probabilities 90% and 10%

Tree generation ramped half-and-half

Initial maximum depth 28

Selection operator lexictour

Elitism replace

Table 3.2: Parameters used in genetic programming and KNN classifier.
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generations. The number of individuals in each of the experiments were 25. Total number of

training experiments done is also 25. So the total number of individuals or solutions created

were 625. The best tree out of these 625 trees was tested with test data and results are

analysed here. The number of samples used are 512, 1024, 2048 and 4096 respectively, and

the SNRs used are 5 dB, 10 dB, 15 dB and 20 dB. For each value of SNR and number of

samples, 10,000 signal realizations are produced. These 10,000 realizations are tested with

the best tree and results are summarized.

Number of Samples

SNR 512 1024 2048 4096

5 dB 84±4 % 88±3 % 93±3 % 97±2 %

10 dB 94±2 % 98±0 % 100±0 % 100±0 %

15 dB 97±2 % 99±0 % 100±0 % 100±0 %

20 dB 98±1 % 100±0 % 100±0 % 100±0 %

Table 3.3: Classification performance of a GP-KNN classifier in AWGN channels

Table 3.3 shows the results obtained for particular combination of SNRs and number of

samples. The results for simple KNN in the same setting can be found in Table 3.1. It

is clear from these results that GP-KNN produces better results compared to the simple

KNN classifier. Meanwhile, the performance of GP for different SNRs and at 1024 number

of samples is given in Table 3.4 in the form of confusion matrix. It is clear from this Table

that classication of BPSK and QPSK is easier as compared to other two modulations. The

classification performance for BPSK and QPSK is 100% in all the cases as shown in matrix.

Figure 3.11 shows the performance against SNR for different values of number of samples.

It is clear from the Figure that performance reaches to 100% at an SNR of 8 dB and 4096

number of samples. One can see from the Figure that the greater the number of samples the

better is the performance. In all the curves shown in Figure 3.11 there is a dip in performance

at 3 dB. Table 3.5 explains the reason behind this dip. Table 3.5 gives the range of values

of new feature created by GP at 2, 3, 4 and 5 dB for BPSK, QPSK, 16-QAM and 64-QAM

respectively. At 2 dB the values of 16-QAM and 64-QAM are in between the values of BPSK

52



Machine Learning for Modulation Classification Feature selection and combination

SNR Modulation

Candidates

BPSK QPSK 16-QAM 64-QAM

5 dB BPSK

QPSK

16-QAM

64-QAM

10000

0

0

0

0

10000

0

0

0

0

8091

1909

0

0

3404

6596

10 dB BPSK

QPSK

16-QAM

64-QAM

10000

0

0

0

0

10000

0

0

0

0

9557

443

0

0

423

9577

15 dB BPSK

QPSK

16-QAM

64-QAM

10000

0

0

0

0

10000

0

0

0

0

9870

130

0

0

145

9855

20 dB BPSK

QPSK

16-QAM

64-QAM

10000

0

0

0

0

10000

0

0

0

0

9924

76

0

0

104

9896

Table 3.4: Classification confusion matrix of a GP-KNN classifier in AWGN channels

Number of Samples

SNR BPSK QPSK 16-QAM 64-QAM

2 dB 3.2-5.5 0.6-1.3 1.2-1.5 1.3-1.5

3 dB 4.5-6.6 0.6-1.3 1.2-1.5 1.3-1.5

4 dB 5.8-7.7 1.3-1.9 0.7-1.4 0.9-1.5

5 dB 7.2-8.8 1.6-2.2 0.6-1.3 0.7-1.4

Table 3.5: Range of new GP generated feature values for different modulations between 2 dB and 5 dB.
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Figure 3.11: Parent selected for mutation operation and a randomly generated branch.

and QPSK. As the SNR increases the feature values of BPSK and QPSK increase while the

values of 16-QAM and 64-QAM decrease a little. At the 3 dB SNR, QPSK crosses both

16-QAM and 64-QAM, and that is the reason why the performance is low at this particular

SNR. As the SNR goes above 3 dB, QPSK feature value starts going above the feature values

of both 16-QAM and 64-QAM. This new feature value of QPSK continues to increase with

increase in SNR. At 5 dB the feature value of QPSK is greater than the values of 16-QAM

and 64-QAM so the performance always increases after this SNR. It is to be mentioned that

these feature values are taken from the first stage where 16-QAM and 64-QAM are treated

as one class. That is why their values are completely overlapping with each other in this

Table.

As concluded previously, the classification of 16-QAM and 64-QAM is more difficult and

the performance curves for these two modulations are presented separately. Figure 3.12

shows the performance of 16-QAM and 64-QAM for different SNRs. It is clear from this

figure that the performance reaches 100% at an SNR of 8 dB at 4096 number of samples. As

the dip at 3 dB in Figure 3.11 was due to the overlap of QPSK with M-QAM(M>4), that dip

is not present in this Figure which considers only 16-QAM and 64-QAM. Figure 3.13 shows
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Figure 3.12: Classification accuracy of 16-QAM and 64-QAM using GP-KNN in AWGN channels.

the standard deviation of performance for different SNRs. It is clear from the Figure that

standard deviation of performance is very low which proves the robustness of the classier.

To better understand the performance of GP-KNN classifier, the simulations results

are compared with existing methods including the maximum likelihood classifier (Wei and

Mendel, 2000), the SVM classifier (Wong et al., 2008), and the Navie-Bayes classifier (Wong

et al., 2008). The same experiments are conducted for the maximum likelihood classifier in

the same test environment. For the SVM classifier and the Navie-Bayse classifier, since the

experiments in (Wong et al., 2008) is very similar to this research, results reported in (Wong

et al., 2008) are directed used in our comparison. The results are listed in Figure 3.14.

In (Wong et al., 2008), Wong, Ting and Nandi presented results for the same modulations

that we have used in this research. At an SNR of 10 dB they achieved performance of 90.2%,

94.4% and 97.9% at 512, 1024 and 2048 respectively using Naive Bayes classifier. For the

same SNR and number of samples the performance achieved through SVM was 91.2%, 94.8%

and 97.9% respectively. They also used SVM and ML for classification. We have produced

ML results ourselves as the results reported in their research do not look correct. Figure

3.14 shows the comparison of our results with other methods. ML gives the upper bound
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Figure 3.13: Standard deviations of classification accuracy for 16-QAM and 64-QAM using GP-KNN in

AWGN channels.

Figure 3.14: Performance comparison of GP-KNN and other methods in AWGN channels.
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performance but have more computational complexity. It is clear from the figure that our

method gives better results compared to SVM and Naive Bayes method. Up to 4 dB SNR, the

performance of our method is same as the other two methods but after 4 dB, the performance

of our method improves compared to the other two. The maximum likelihood classifier (Wei

and Mendel, 2000), known to be optimum with perfect channel knowledge, is superior to all

other methods. However, its computational complexity also known to be high compared to

feature based classifiers.

Although many think that GP classifier will take a long time for classification as the

time for evolution could be very long. However, the computational complexity of the final

classifier is not to be confused with the training time of the classifier. Once we get the final

solution from training a GP, that final solution is used for classification and the computational

complexity of training a GP does not come into account while using the final solution.

The final solution produced by GP has inputs as cumulants and some functions from the

function pool. So the complexity of this particular solution really depends on the particular

cumulants and functions used by final GP solution. We have used sixth order cumulants and

the complexity of calculating these cumulants is lower than higher-order cumulants. The

function pool used has been presented in Table 3.2. Also the output used by this solution

is tested through KNN classifier which has complexity of O(nd) where n is the number of

reference samples and d represents dimensions of reference data. Here we have used two

dimensional data in the form of complex numbers but the function pool contains an abs

function which returns the magnitude of complex number as the output when the input is

a complex number. If the final solution is using the abs function in the last stage the final

output could be a real value. In a nutshell the complexity of our final classifier is O(nd)+

complexity of final solution.

3.4 Summary

In this chapter, we suggested different machine learning techniques for modulation classifi-

cation. The KNN classifier and SVM classifier are developed for feature based modulation
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classifier with supervised threshold optimization and decision making. Both classifiers can be

further enhanced using logistic regression, genetic algorithm, and genetic programming for

feature selection and combination. The simulation results show that the combination of GP

and KNN classifier is able to improve the classification accuracy of digital modulations over

existing classifier using the same features. While, the training stage is relatively complex,

the actual testing is much simpler and faster.
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Chapter 4

Distribution Test Based Classifiers

4.1 Introduction

For the purpose of reducing the computational complexity, algorithms based on distribution

tests have been developed and presented in some recent publications. F. Wang and X.

Wang (Wang and Wang, 2010) used Kolmogorov-Smirnov test (Massey, 1951) to formulate a

solution by comparing the testing signal cumulative distribution functions with the reference

modulation’s CDFs. This method successfully achieved an improved performance especially

when limited signal length was available. It was pointed out in (Urriza et al., 2011) that

the K-S test approach requires the complete construction of signal CDFs which is relatively

complex and has the potential to be simplified. In the same paper, an optimized approach

was presented which reduced the complexity of KS classifier by analysing the CDFs between

two modulations at a single given location. When more than two modulations are considered,

multiple sets of sampling locations, each responsible for the classification of two modulations,

have been used. The classification accuracy is comparable to the KS classifier and the

complexity of the algorithm is reduced significantly. However, it is clear that the embedded

information in CDFs is underutilized and the robustness of this approach can be improved.

To overcome these limitations, we have developed the Optimized Distribution Sampling

Test (ODST) classifier which conducts simplified distribution tests at multiple optimized

sampling locations to achieve the balance between simplicity and performance. In addition,
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the signal distributions are extended to signal phase and magnitude where sampled statistics

are treated as features.

4.2 Optimized distribution sampling test

The classification procedure starts with the selection of the optimum sampling locations.

Once the optimum sampling locations are established, distribution parameters can be col-

lected at different locations and used for decision making. The exact procedure in each step

will be discussed in the following subsections. It is worth mentioning that we only considered

four modulation types namely: BPSK, QPSK, 16-QAM and 64-QAM. The multi-class clas-

sification problem is handled by dividing it into two 2-class classification steps. The actual

decision procedure is demonstrated in Figure 4.1. As the proposed method exploits the dif-

ferent CDFs between different M-QAM signal modulations and it is the nature of M-QAM

signals to exhibit different distribution on their real and imaginary components, the extension

of the proposed method for other M-QAM modulations can be easily implemented follow-

ing the sampling location optimization principle explained in Section 4.2.2 and the decision

value calculation explained in Section 4.2.3. However, with different modulation candidates,

the performance may vary depending on the specific M-QAM modulation being considered.

Lower level M-QAM modulations are normally easier to classify. Modulations with similar

constellation shape and similar number of symbols are more difficult to distinguish.

4.2.1 Phase offset compensation

In a fading channel, phase and frequency offsets are added along with some attenuation and

additive noise. The received signal after matched filtering and sampling is given by

r(n) = αej(2πfon+θo)s(n) + ω(n) (4.1)

where the residual intersymbol interference is omitted and treated as noise. We first consider

the phase offset. It is assumed here that fading is slow, thus the phase offset is consistent

for all signal samples. Instead of constructing a signal model with phase offset in mind,
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4-QAM, 16-QAM OR 64-QAM

D416
D464

4-QAM 16-QAM OR 64-QAM

D1664

16-QAM 64-QAM

Figure 4.1: Two stage classification strategy in the ODST classifier.

it is easier to recover the received data from the transmitted form. As the rotation of the

constellation mapping would cause a significant amount of mismatching with the established

reference signal model, the Extended Maximum Likelihood (EML) estimator in (Zarzoso

and Nandi, 1999) is used for pre-processing the signal to recover the phase offset. The phase

estimation starts with the calculation of fourth-order complex statistics.

ξ̂ =
1

N

N∑
n=1

ρ4
ne
j4φn =

1

N

N∑
n=1

(R{r(n)}+ jI{r(n)})4 (4.2)

ρn and φn come from the polar expression of the nth signal sample r(n) = ρne
jφn among the

total number of N signal samples. The source kurtosis sum γ̂ is also needed in the phase

estimation.

γ̂ =
1

N

N∑
n=1

ρ4
n − 8 =

1

N

N∑
n=1

(R{r2(n)}+ I{r2(n)})2 − 8 (4.3)
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The phase offset θ̂EML is then estimated using the fourth-order complex statistics and source

kurtosis sum calculated previously.

θ̂EML =
1

4
angle(ξ̂ · sign(γ̂)) (4.4)

Once the phase offset is estimated, it can be easily recovered by conducting the following

procedure

r̂(n) = r(n)/ejθ̂EML (4.5)

and the PDF could be treated in the same way as in AWGN channel

fi(x) =
1

σ̂
√

2π
e−

(x−Âi)
2

2σ̂2 (4.6)

Frequency offset is added to the signal separately from the phase offset. Any frequency offset

is treated as noise in the investigation.

4.2.2 Sampling location optimization

In Kolmogorov-Smirnov Test, the similarity of two distributions is tested by finding the

maximum distance between the two distributions. However, it is limited by the fact that

outliers and other irregularities in the test signal distribution can cause the maximum dis-

tance to occur at a location which does not exhibit the best characteristic difference between

them. The effect becomes more significant when the signal length is reduced or the amount

of noise added is increased. Ultimately, the classification accuracy from different tests could

vary dramatically. To overcome this limitation, the ODST uses multiple sampling locations

estimated with theoretical analysis to achieve a more robust performance.

As the later distribution test will be based on CDFs from different signal modulations,

the main purpose of the sampling location optimization is to find locations where the two

CDFs from different modulations exhibit the biggest difference. In this research, we propose

to use the local optima on the CDFs’ differences as sampling locations.

There are two parameters to consider when searching for sampling locations: the number

of sampling points and their locations. Though more information from the distribution could

always help to improve the understanding of the signal, some contribute significantly more
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than the others. A simple example would be two adjacent sampling locations which are very

close to each other. Though using both of them would better translate the nature of the signal

as compared to using only one of them, any minor advantage using both is often difficult

to justify the added complexity. Figure 4.2 gives some examples of signal constellations and

differences between these cumulative distributions. With the proposed location optimization

scheme, it can be seen in Figure 4.2d that there are eight local optima that can be used for

distribution sampling test. These locations are evenly spread over the signal range and each

of them presents distinct differences between two modulations. Both of these characteristics

are desirable qualities when looking for sampling locations.
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Figure 4.2: (A) 500 signal samples from 16-QAM at 15 dB, (B) 500 signal samples from 64-QAM at 15 dB,

(C) The CDFs from 16-QAM and 64-QAM, and (D) The difference between the two CDFs. The dashed

lines indicate the shared optimized sampling locations.
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We define l as a collection of sampling locations with lk being the individual points.

l = {lk, for k = 1, ..,K} (4.7)

Through extended observations of various type of signals and their distributions, we define

the optimum sampling locations to occur when the difference between CDFs from two classes

is locally optimum, for modulation A-QAM and B-QAM, this can be easily transformed into

the calculation of first derivative of their CDFs’ (FA and FB) difference

d

dx
(FA(l)− FB(l)) = 0 (4.8)

The derivative of CDFs’ difference can also be replaced by probability distribution for both

modulations (fA and fB)

fA(l)− fB(l) =

IA∑
i=1

(fAi(l))−
IB∑
i=1

(fBi(l)) = 0 (4.9)

where the PDF for each signal centroids (fAi and fBi) are defined previously in (2.6). IA and

IB correspond to the total number of centroids for each modulation on one signal dimension.

After the optimization of the sampling locations, the theoretical CDF values at sampling

locations for different modulations are collected for classification task as the reference data.

The reference data for A-QAM while considering the classification between A-QAM and

B-QAM is given as

TA,B = [TA,B,1, ..., TA,B,k] (4.10)

where

TA,B,k = FA(lk) (4.11)

FA is the CDF of modulation A-QAM. These values will be stored for later distribution tests.

Once the sampling locations are established, the distribution sampling could be converted

to simple counting tasks. The counted distribution parameter tk can be written as

tk =
1

2N
[
N∑
n=1

I(rX(n) < lk) +
N∑
n=1

I(rY (n) < lk)] (4.12)

where I(·) is an conditional function which returns 1 if the input is true and 0 if input is

false. The counting tasks at different locations are also illustrated in Figure 4.2a.
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4.2.3 Test statistics and decision making

The counting results are put into the classification context by finding the difference ∆t

between the counted value and the theoretical value from candidate modulations.

∆tA,B,k = |tk − TA,B,k| (4.13)

where ∆tA,B,k give the difference between testing signal distribution parameter and reference

value TA,B,k from candidate A. Likewise the difference between testing signal and candidate

B can be found as

∆tB,A,k = |tk − TB,A,k| (4.14)

In the standard uniformly weighted distance metric, the decision is made using all sampled

results with the same weight. The decision values for different 2-class classification situations

are defined as

DA,B =

K∑
k=1

∆tA,B,k −
K∑
k=1

∆tB,A,k (4.15)

where DA,B compares the distance between testing signal and candidate A and the distance

between testing signal and candidate B. If DA,B ≥ 0, it means the tested signal is close to

candidate A and thus have a higher probability of being classified as candidate A. However

as there are more than two candidate modulations involved. The final decision can be made

according to a set of decision values.

M̂ =


4QAM, D4,16 ≤ 0 & D4,64 < 0

16QAM, D4,16 > 0 & D16,64 ≤ 0

64QAM, D4,64 ≥ 0 & D16,64 > 0

(4.16)

The resulting M̂ gives the estimated M value for the tested M-QAM signals. D4,16, D4,64

and D16,64 are decision values gathered from the previous stage.

Given the distance definition in (4.15), it is worth questioning the actual contribution of

each sampling locations. Though the optimization process attempts to find the best locations

with maximum amount of separation while conveying the full characteristic of the CDFs,

it is still possible for the local optima to be inefficient. For example, two local optimums
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can be very close to each other and represent the same signal attribute. As can be seen

in Figure 4.3, the four locations in the middle get closer when the SNR is less than 9 dB

and become effectively same locations at around 7 dB. Then all four locations are no longer

selected as optimum sampling locations. Based on the behaviour of these four optimized

locations, it is easy to doubt their contribution to the classification task for SNRs between

7 dB to 9 dB. It is also verified in the simulation results that these locations are normally

abandoned or given a lower weight.
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Figure 4.3: Two stage classification strategy in the ODST classifier.

To justify the use of specific sampling locations, GA has been used to find the best

selection of these locations to enhance the decision making procedure. Here the distance

metric is redefined with the addition of weights on each sampled distribution parameters.

DA,B =
K∑
k=1

WA,B,k∆tA,B,k −
K∑
k=1

WA,B,k∆tB,A,k (4.17)

There are two types of constraint considered while training the weights. The first limits the

weights to binary values (GA-Bin), when WA,B,k = 0 the distribution test result at location

66



Distribution Test Based Classifiers Optimized distribution sampling test

k will not be included and when WA,B,k = 1 the result would be considered. As the training

phase evolves for a long time, the trained weights can be an indication of the best selection of

sampling locations. The second type was experimented with the linear combinational weights

limited to values between 0 and 1 (GA-Lin), so that the trained results could provide a more

versatile combination of the decision values. Both cases share the same fitness evaluation

approach. The fitness value is obtained through a small classification task using a small set

of testing signals. The accuracy of the small classification is used directly as the fitness value.

Therefore, fitter individuals always have higher fitness values. Other GA parameters can be

found in Table 4.1.

Table 4.1: Parameters for the Genetic Algorithm

Parameters Case 1 Case 2

Constraint Binary 0≤W ≤1

Generation 100 100

Population 20 20

Elite Count 2 2

Crossover Fraction 60% 80%

Mutation Type Uniform Uniform

Mutation Raete 60% 40%

4.2.4 Simulations and numerical results

All experiments are simulated in computer based environment and signals were first created

as symbols, randomly drawn from specific modulation mapping in a uniform manner. If phase

or frequency offset is to be considered, the native MATLAB function is used to implement

the channel effects. Additive white Gaussian noise is also included under these channel

conditions. Before classification, sampling locations and theoretical reference distribution

test values for SNR range from 0 dB to 25 dB with 1 dB step are collected and stored. In

the given SNR range, it is discovered that twelve sampling locations are found in each SNR
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scenario between 0 dB and 7 dB, and sixteen sampling locations are found when SNR is

between 8 dB and 25 dB. As two reference CDF values are needed at each sampling location

to complete the decision value calculation, there are a total number of 768 reference values

prepared for each given signal length.

During GA optimization, the fitness function is defined in the same way as in classifi-

cation problems where the classification accuracy is used as the fitness value. To reduce

the complexity of the training stage, only 1000 realizations from each modulation with a

signal length of N = 512 samples are used in the fitness evaluation process. The training

is repeated five times for each SNR value ranging from 0 dB to 10 dB. All signal data is

generated randomly at every fitness evaluation, which avoids weights being over-trained for a

specific set of signal data. In addition, with the two elites always being passed on to the next

generation, the possibly best solutions are always protected to some degree. The training

was repeated for five runs under each signal condition. The collections of weights which give

the best performance were selected for performance assessment with larger statistics at a

later stage.

When testing the performance of the proposed solution, maximum likelihood classifier,

the KS test, culumant based Genetic programming and k-nearest neighbour classifiers were

used for benchmarking purpose.

For the performance test in AWGN channel, two sets of experiments were conducted.

The first set of experiments focused on the classification accuracy under different noise levels.

Here, the signal length is fixed at 512 samples with the SNR ranging from 0 dB to 25 dB. Then

classifications of 100,000 signal realizations from each modulation were tested using ML, KS

test, GP-KNN and the proposed ODST classifier. The successful classification percentage

was calculated based on the number of successful classifications and the total number of

signal realizations. The results are presented in Figure 4.4. In the second set of experiments,

we tried to understand how the signal length influences the classification performance. In

this case, similar settings were used, except for SNR being fixed at 10 dB and sample size to

vary from 100 to 1000. The results are presented in Figure 4.5.

The classification performance under different amount of additive noise has always been
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Figure 4.4: Classification accuracy of 4-QAM, 16-QAM and 64-QAM using ODST in AWGN channel.
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Figure 4.5: Classification accuracy of 4-QAM, 16-QAM and 64-QAM using ODST in AWGN channel with

different signal length.
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the prime criteria for an AMC solution. In Figure 4.4, four different types of AMC classifiers

are included. It is clear that ML provides the most accurate classification throughout the

SNR range. Excluding the ML classifier, the results show that the proposed ODST classifier

has a clear advantage in mid to high SNRs. At 10 dB, the proposed method achieves almost

the same accuracy of 98.9% as the ML classifier and the 100% classification is achieved at

11 dB. At the same SNR settings, KS test provides a successful classification of 95.3% and

the perfect classification performance is achieved at 12 dB.

For the cumulant based GP-KNN classifier, it can be seen that its performance is limited

by the signal length that is available for analysis. In the mid and lower range of SNRs,

the proposed ODST classifier maintains the advantage over KS test. The biggest difference

is exhibited at 9 dB where ODST offers an accuracy of 93.9% and KS test offers 88.6%.

However, the accuracy advantage is gradually reduced along with the decreasing SNR until

the performance become equivalent below 3 dB. On the other hand, this cumulant based

GP-KNN classifier shows a robust performance in low SNRs, offering better classification

performance from 3 dB to 8 dB against ODST and from 3 dB to 9 dB than KS test. The

performance at SNR below 3 dB is generally very similar among all classifiers with only ML

classifier having a more than 5% higher accuracy. Complementary results from ODST for

different modulations are listed in Table 4.2. Performance means and standard deviations are

collected from 100 sets of tests, each includes 30,000 signal realizations (three modulations

times 10,000 signal realizations from each modulation).

Table 4.2: Classification accuracy with standard deviation of 4-QAM, 16-QAM, and 64-QAM using ODST

in AWGN channel.

Modulations 5 dB 10 dB 15 dB 20 dB

4-QAM 100.0±0.0 100.0±0.0 100.0±0.0 100.0±0.0

16-QAM 68.2±0.4 98.5±0.1 100.0±0.0 100.0±0.0

64-QAM 65.9±0.5 98.1±0.1 100.0±0.0 100.0±0.0

In addition to the benchmarking classifiers, several existing classifiers from other liter-

ature have been listed in Table 4.3 for performance comparison with ODST. Results for
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ODST come from experiments conducted under the same specific condition as each existing

classifiers. It is clear that the proposed classifier outperforms the KS classifier (Wang and

Wang, 2010), the reduced complexity version of KS classifier (rcKS) (Urriza et al., 2011),

phase based ML classifier (Shi and Karasawa, 2012), as well as cumulant based classifiers

(Swami and Sadler, 2000), (Wong et al., 2008). The Minimum Distance (MD) (Wong and

Nandi, 2008) classifier, which is a low-complexity version of the ML classifier, presents sim-

ilar level of performance at or above 14 dB as compared to the proposed ODST classifier.

However, with the SNR at or lower than 10 dB, its classification accuracy is significantly

degraded. The comparison between MD classifier and ODST classifier at SNR of 10 dB

clearly demonstrates the performance advantage of the proposed method.

Having analyzed the performance of ODST against other existing AMC classifier, let us

have a look at the effect of GA optimized weighted decision making on the classification

performance. The same experimental setup is used only with SNR limited between 0 dB

and 10 dB to investigate the effect of GA optimization on low SNR performance. According

to the classification performance in Figure 4.6, both GA optimized classifiers follow the

performance degradation pattern of the original ODST with an increase in classification

accuracy of 1% to 3% sustained over the SNR range. The biggest performance improvement

is shown between SNR of 7 dB to 10 dB. At 8 dB, GA optimized ODST with analogue weight

achieves a classification accuracy of 90.5% providing the largest performance improvement

of 4% as compared to the 86.5% classification accuracy of the original ODST classifier.

The reason for such improvement can be explained with the analysis of sampling location

quality in Section 3. In Figure 4.3, it is clear that some of the sampling locations start to

merge and disappear between 7 dB and 10 dB. The performance improvement provided by

GA optimized weights verified these sampling locations need to be given lower weights to

achieve better classification performance. Between the binary weights and analogue weights,

analogue weights provide better performance at 8 dB, 9 dB and 10 dB while being almost

equal to the binary weights from 0 dB to 7 dB. Overall, both types of optimized weights

help to improve the classification by a fair amount.

The robustness against a limited signal length is another important quality for a good
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Table 4.3: Performance comparison between ODST and existing methods.

Classifier Modulation Channel Setting Accuracy ODST

KS 2-D 4-QAM

16-QAM

64-QAM

AWGN N = 100

10 dB

78.0% 85.2%

KS magnitude 4-QAM

16-QAM

64-QAM

AWGN N = 100

14 dB

87.0% 99.6%

rcKS 4-QAM

16-QAM

64-QAM

AWGN N = 50

10 dB

72.5% 77.3%

Phase Based ML 4-QAM, AWGN N = 1000

0 dB

73.5% 82.3%

16-QAM

MD 4-QAM, AWGN N = 100

10 dB

50.0% 86.5%

16-QAM

MD 4-QAM, AWGN N = 100

14 dB

91.5% 97.3%

16-QAM

Cumulants 16-QAM, Noise Free N = 10, 512 90.0% 100.0%

64-QAM

Cumulants Naive

Bayes

4-QAM

16-QAM

64-QAM

AWGN N = 512

10 dB

87.3% 98.5%
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Figure 4.6: Classification accuracy of 4-QAM, 16-QAM and 64-QAM using GA and ODST in AWGN

channel.

AMC classification. In the experiments, same four classifiers are tested and compared in

Figure 4.5. Again, ML excels in all signal length from N = 100 to N = 1000. Excluding

ML classifier, ODST is the best among the remaining classifiers. The largest performance

difference of ODST against ML is about 5% at N = 100. As the signal length increases

the difference starts to reduce and at N = 600 ODST achieves performance similar to ML

classifier. When compared with KS test, OSDT shows a superior robustness especially when

the signal length is in the range from N = 150 to N = 500. The biggest advantage of

ODST is observed at N = 250, where KS test returns a classification accuracy of 93.0%,

which is 1.7% below ODST’s 94.7%. Unfortunately, culumant based GP-KNN classifier

suffers severely with the reduced signal length. However, as its performance is improving

consistently with the increasing signal length, it is clear that, with large enough signal length,

GP-KNN classifier is still able to achieve equal level of performance.

In fading channel, the signal length was fixed at N = 512 samples and the SNR at 10 dB.

Again 100,000 signal realizations from each modulation were tested under separate conditions
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of phase and frequency offset. In the experiment for phase offset, the range of offset is limited

within 10 degrees. This is purely for testing the performance of classifiers when handling

conditions with inaccurately estimated phase offset. Also, the combination of the proposed

method, EML phase estimation and recovery is tested to evaluate its performance. Results

are presented in Figure 4.7. When considering frequency offset, the amount of frequency

offset ratio is limited in the range of 1× 10−4 and 2× 10−4.
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Figure 4.7: Classification accuracy of 4-QAM, 16-QAM and 64-QAM using ODST in fading channels with

phase offsets.

In a fading channel with unknown phase offset, we have included the original ODST

classifier, the original KS test and ODST classifier with EML phase estimation and recovery.
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The results are presented in Figure 4.7. All signals are simulated with a signal length of

N = 512 and SNR of 10 dB. With no phase error, the classification accuracy difference

between the original ODST and KS test coincide the results in pure AWGN channel. The

original ODST starts with an advantage of 3.4%. As more phase offset is introduced, both

classifiers’ performance starts to degrade. Nevertheless, ODST sees less degradation before

the phase offset reaches θo = 6◦. Once again, this illustrates the robustness of ODST when

compared with KS test. The degradation of ODST performance accelerates after 6 dB. At

θo = 8.3◦, KS test surpass ODST to have a better performance with more phase offset. It is

an understandable phenomenon, as the ODST relies on an accurate signal model more than

the KS test, when the signal model mismatching exceeds a certain level, the distribution tests

at different locations become barely capable of providing positive contribution towards an

accurate classification. Nevertheless, when ODST is teamed up with an accurate phase offset

estimation and recovery scheme, this should not be a concern since the mismatching could

be limited within a reasonable amount. It is demonstrated with the results from ODST-

EML. Regardless of the amount of phase offset experimented with, the classifier delivers a

consistent classification accuracy of 98.8%. Under similar conditions, ML classifier and GP-

KNN classifier have both exhibited a strong robustness seeing less than 10% degradation in

classification accuracy.

As can be seen in Figure 4.8, both ODST and KS test perform poorly when frequency

offset is considered. With a frequency offset of 1× 10−4 to 2× 10−4, classification accuracy

from both classifier drops significantly. For ODST, its classification accuracy is reduced to

95.5% with a frequency offset of 1 × 10−4. As the amount of frequency offset increases to

2× 10−4, the classification performance decreases almost linearly to 77%. The KS test sees

similar performance degradation. However, it starts with lower classification accuracy of 92%

with frequency offset at 1× 10−4 and reduces to 77% with frequency offset of 2× 10−4. The

ODST classifier provides about 3.5% better classification accuracy between 1×10−4 to 1.3×
10−4. The performance advantage is gradually reduced beyond 1.3×10−4. One of the causes

of this reduced performance comes from the modulations being used, especially 16-QAM and

64-QAM. With their dense signal constellations, there is little room for any frequency offset.
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Figure 4.8: Classification accuracy of 4-QAM, 16-QAM and 64-QAM using ODST in fading channels with

frequency offsets.
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The other reason is to do with the nature of distribution test based classifiers, which rely on

a solid signal distribution with little frequency shifting. Even though ODST performs better

than KS test, it is difficult to claim its robustness under channels with frequency offsets.

Although the frequency offset condition is optimistic, some effective blind frequency offset

estimation and compensation approaches for QAM modulated signals have been developed

(e.g.(Serpedin et al., 2000)) which would help to achieve the required level of frequency offset.

The numbers of different operations required by different classifiers are listed in Table 4.4.

It is obvious that the implementation of ML classifier requires exponential and logarithm

operation while others do not. The MD classifier significantly reduced the complexity of ML

classifier since no exponential or logarithm operation is needed. However, a considerable

amount of multiplication and addition are still needed which is similar to the process of

cumulant calculation. When comparing KS test and ODST, given the signal length used

and number of different modulation candidates, it is clear that the number of additions used

is similar while the memory usage is much lower for ODST. If longer signal length is to

be analyzed or more modulations are included, the complexity advantage of ODST will be

more evident. Although there is considerable amount of complex computation involved in

the training of weights in GA optimized ODST, it is worth clarifying that it is done offline

beforehand and will not be repeated for every classification task. Thus only the sampling

and decision making should be considered when evaluating the complexity of ODST. With

compromised classification performance robustness, the reduced complexity version of KS

classifier, which compares the CDFs at single point, requires fewer additions as well as less

memory.
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Table 4.4: Complexity comparison between ODST and existing methods.

Classifiers Multiplier Addition Exponential Logarithm Memory

ML 5NM ·∑M
m=1 Im 6NM ·∑M

m=1 Im NM ·∑M
m=1 Im NM M

MD 2NM ·∑M
m=1 Im NM · (∑M

m=1 3Im + 1) 0 0 M

Cumulants 6N 6N 0 0 M

KS test 0 2N(2M + log2N) 0 0 MN

rcKS/rcK 0 4N ·
(
M
2

)
0 0 4M ·

(
M
2

)
ODST 0 4N ·

(
M
2

)
·K 0 0 4M ·

(
M
2

)
·K
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4.3 Distribution based features

The distribution based features are inspired by the ODST classifier. By treating the test

statistics sampled from different signal distributions as features, many advanced machine

learning techniques could be implemented to improve the feature enhancement and decision

making. An illustration of the overall process involved in the proposed AMC solution is

given in Figure 4.9. Different from cumulants, the proposed features are expected to be

simple to collect (low complexity), to require fewer signal samples, and to provide robustness

in different channel conditions. The proposed features are optimized for the binary classi-

fication of two modulations. To establish a low complexity classifier with reduced feature

dimension, we proposed to combine original features into new features each representing a

unique binary modulation combination for maximum separation between two modulations

using linear binomial logistic regression. The resulting class oriented features are then used

to construct a multi-dimensional feature space enabling fast classification using K-nearest

neighbour classifier. The extraction of the proposed distribution based binary discrimina-

tive features consist of two steps: optimizing sampling locations on signal distributions and

extracting the features. The extracted features are subject a further round of enhancement

using logistic regression.

In this research, we used the cumulative distribution of signals on I-Q segments (FXYM ),

amplitude (FAM ) and phase (FPM ) for analysis. Given a set of M-QAM signal r(·) of N

samples, its distributions on different signal segments can be collected using the following

equations.

FXYM (x) =
1

2N

N∑
n=1

{I(r′X(n) < x) + I(r′Y (n) < x)} (4.18)

FAM (x) =
1

N

N∑
n=1

I(| r′(n) |< x) (4.19)

FPM (x) =
1

N

N∑
n=1

I(arg(r′(n)) < x) (4.20)

where I(·) is a logic function which returns 1 if the input is ture and 0 if the input is false,

and arg(·) gives the phase of the complex input. An illustration of these CDFs of different
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Figure 4.9: Using distribution based features for AMC in two stages.
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signal segments are given in Figure 4.10.

4.3.1 Optimization of sampling locations

The optimization of sampling location follows the same procedure as described in Section

4.2.2. However, we extend the distribution considered to signal phase and magnitude. The

sampling location on signal distributions for feature extraction is a crucial part of the pro-

posed AMC solution. The optimization of locations should follow these criteria.

Criterion 1: The sampling locations should provide clear discrimination between two

modulations.

Criterion 2: The sampling locations should utilize a wider distribution range to provide

more comprehensive information of the modulation distribution.

Criterion 3: The locations should be at sufficient distance to avoid collecting repetitive

and redundant information.

To satisfy the above criteria, we propose to use the local maximums of the distance

between two modulations’ cumulative distributions as sampling locations. We denote D∗M1M2

to be the distance between distributions from modulations M1 and M2. “∗” is used as a

uniform representation of different signal segments including I-Q segments, amplitude and

phase.

D∗M1M2
=| F ∗M1

− F ∗M2
| (4.21)

The optimized sampling locations should meet the condition that the distance at location

l∗M1M2
should be the maximum

D∗M1M2
(l∗M1M2

) = max(D∗M1M2
(x)) (4.22)

within the range of

l∗M1M2
−R∗ ≤ x ≤ l∗M1M2

+R∗ (4.23)

where R∗ is a range parameter. The manually optimized values of R∗ in our simulation can

be found in Table 4.5.
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Figure 4.10: Cumulative Distributions of different signal segments from 4-QAM and 16-QAM at SNR of 15

dB.
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Table 4.5: Parameters used in the distribution based features classifier.

Parameters Training Testing

Modulations 4-QAM, 16-QAM

64-QAM

4-QAM, 16-QAM

64-QAM

# Realization 100x3 10,000x3

Signal Length (N) 512 512

SNR 0-20 dB 0-20 dB

Phase Offset 0-30◦ 0-30◦

RXY 0.2 N/A

RA 0.15 N/A

RP π/10 N/A

4.3.2 Feature extraction

With the optimized feature sampling locations, the actual extraction process is very simple.

In the case where the underlining modulation is known to the training signals, the reference

features can be collected directly using the established cumulative distributions F ∗M .

f∗M1M2
(i) = F ∗M (l∗M1M2

(i)) (4.24)

In the case where the signal being treated has unknown modulation, the features can be

extracted using a simple counting measure with the sampling locations as thresholds.

f∗M1M2
(i) =

1

N

N∑
n=1

I(r∗(n) < l∗M1M2
(i)) (4.25)

Equation (4.25) can be associated with Equation (4.18)-(4.20) to help understand its imple-

mentation on different signal segments.

4.3.3 Feature combination

Feature combination is a good way to reduce feature dimension and to better utilize all the

available features. The combination processing requires extra computation while the trained
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feature combination can vastly reduce the complexity of the classifier. In AMC, feature

combination is a frequently used technique to enable fast processing at the classification

stage with low computation cost.

In this research, considering the nature of the distribution based features, we employ

linear feature combinations for dimension reduction and enhancement. Binomial logistic

regression is used to create a linear combination of feature which provides separation between

two classes. The implementation of binomial logistic regression is mostly standard. The

logistic function is given as

p(fXYM1M2
,fAM1M2

, fPM1M2
) (4.26)

=
1

1 + e
−g(fXYM1M2

,fAM1M2
,fPM1M2

)

where p(·) = 0 for modulation M1 and p(·) = 1 for modulation M2. The logit function is

linked with the original features in the following format

g(fXYM1M2
, fAM1M2

, fPM1M2
) = B(0) +

LXYM1M2∑
i=1

B(i)fXYM1M2
(i)

+

LAM1M2∑
i=1

B(LXYM1M2
+ i)fAM1M2

(i)

+

LPM1M2∑
i=1

B(LXYM1M2
+ LAM1M2

+ i)fPM1M2
(i) (4.27)

where LXYM1M2
, LAM1M2

and LPM1M2
are total number of original features collected from each

signal segments.

The maximum likelihood estimates of coefficients B(·) are found using Newton-Raphson

method after 50 iterations. The coefficients are updated using the following update equation,

Bt+1(·) = Bt(·) + J −1(Bt(·))u(Bt(·)) (4.28)

where J −1(Bt(·)) is the observed information matrix and u(Bt(·)) is the score function.

The resulting coefficients and original features from I-Q segment fXYM1M2
(·), amplitude

fAM1M2
(·) and phase fPM1M2

(·) are combined to create a new feature FM1M2 specified for the

85



Distribution Test Based Classifiers Distribution based features

discrimination of modulation M1 and M2.

FM1M2 = B(0) +

LXYM1M2∑
i=1

B(i)fXYM1M2
(i)

+

LAM1M2∑
i=1

B(LXYM1M2
+ i)fAM1M2

(i)

+

LPM1M2∑
i=1

B(LXYM1M2
+ LAM1M2

+ i)fPM1M2
(i) (4.29)

For the case where there are more than two modulation candidates, the enhanced fea-

tures need normalization to create a properly scaled multi-dimensional feature space for

classification. The normalization is implemented by updating the trained coefficients B(·)
using training signals. With a number of training signal realizations from each modulation,

the enhanced features FM1M2(·) for each signal realization can be calculated using Equation

(4.29). The coefficients are then updated using following equations.

B′(0) = B(0)− FM1M2(·) (4.30)

where FM1M2(·) is the mean of the training features,

B′(i) =
B(i)

std(FM1M2(·)) , i > 0 (4.31)

where std(FM1M2(·)) gives the standard deviation of the training features.

4.3.4 Classification decision making

Once the feature extraction and feature combination are completed, training data is used

to establish a reference feature space for the expected testing stage. In this research 100

realizations of training signals from each modulation candidate are used as reference samples

for the K-nearest neighbour classifier. Given an unknown testing signal with extracted

features F416, F464 and F1664 and a reference point in the feature space with F ′416, F ′464 and

F ′1664, the following equation is used for distance calculation between the two,

d =
√

(F416 − F ′416)2 + (F464 − F ′464)2 + (F1664 − F ′1664)2 (4.32)
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Figure 4.11: Enhanced distribution based features and their distribution projection on each separate

dimension.

87



Distribution Test Based Classifiers Distribution based features

−2

−1

0

1 −2

−1

0

1

−2

−1

0

1

2

3

 

F
464F

416
 

F
1
6
6
4

4−QAM

16−QAM

64−QAM

Figure 4.12: Reference samples in new distribution based feature space.
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Figure 4.12 gives an example of such feature space. When an incoming signal is to be

classified, the 17 nearest signal realizations are found. The signal modulation which has

the most instances of appearance in the 17 nearest signal realizations is returned as the

classification results.

4.3.5 Simulations and numerical results

To test the performance of the proposed AMC solution, two sets of experiments were con-

ducted in the MATLAB environment. In both experiments, 4-QAM, 16-QAM and 64-QAM

signals are generated according to Equation (2.12). For each channel configuration, a total

100 realizations of signals each consisting 512 signal samples from each modulation are gen-

erated for training purpose. During testing, the number of realizations is increased to 10,000

for each signal modulation. In sampling location optimization, the 100 signal realizations

from the same signal modulation are combined to create a long signal realization of 51,200

samples. The increased number of samples helps to provide a smoother representation of

signal distribution for analysis. The classification accuracy is calculated through the correct

classification in all signal realizations. The parameters used can be found in Table 4.5.

In the AWGN channel, no phase or frequency offset is considered. SNR from 0 dB to

20 dB are simulated. The signal length N is set to 512. Figure 4.13 shows that 4-QAM is

easier to classify and the proposed method is able to achieve 100% accuracy with SNR above

4 dB. For 16-QAM and 64-QAM the classification accuracy is similar throughout the SNR

range. Perfect classification is achievable with SNR above 11 dB. The classification results

coincide with the resulting feature space through the feature enhancement process. Figure

4.11 also shows that the feature separation between 4-QAM and 16-QAM as well as 4-QAM

and 64-QAM are much clearer than the separation between 16-QAM and 64-QAM.

In Figure 4.14, the performance comparison with two existing methods is given. The

ML classifier (Wei and Mendel, 2000) gives the best performance at all SNR levels. This

is no surprise as the channel condition is ideal and all signal parameters are assumed to

have been estimated. However, the proposed method provides a very similar classification

accuracy which only shows slight disadvantage at low SNR between 0 and 10 dB. Meanwhile,
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Figure 4.13: Classification accuracy using distribution based features in AWGN channel.
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the cumulant based Genetic Programming classifier (Aslam et al., 2012) suffers from the low

signal length (N = 512) used and gives much low accuracy even with high SNR levels.
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Figure 4.14: Averaged classification accuracy using different classifiers in AWGN channel.

Another common channel condition is carrier phase offset. In this experiment, we simu-

lated the carrier phase offset of 0◦ to 30◦. Other channel conditions are set to the same as

the previous experiments with SNR of 10 dB and signal length of 512. Figure 4.15 shows the

resulting classification accuracy for three classifiers with different degrees of carrier phase

offset. ML classifier achieves the best accuracy with no or little phase offset. Meanwhile,

the Kolmogorov Smirnov test classifier (Wang and Wang, 2010) is severely affected by the

increasing amount of phase offset. Having similar classification accuracy with little carrier
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phase offset, the proposed method is able to maintain an equal level of performance through-

out the tested phase offset range. Consequently, it is able to outperform ML with phase

offset over 15◦, and KS classifier under all conditions.
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Figure 4.15: Averaged classification accuracy using different classifier in fading channel carrier phase offset .

4.4 Summary

In this chapter, we presented two different approaches to utilize signal distributions for

modulation classification. The ODST classifier improves the KS test classifier by optimizing

multiple sampling locations for distribution sampling. The ODST goodness of fit is defined

by a standard distance metric system and a weight metric system. It is shown that the ODST
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classifier is superior to cumulant based classifier who is subject to sever degradation with

limited signal length. In addition, the optimization of weights using GA is able to further

improve the classification accuracy by a small margin. In another approach, the sampled

signal distribution values are treated as features. By extending the signal distributions into

phase and magnitude, more features are available for analysis. The dimension reduction

problem is solved by a logistic regression process where features combined into smaller new

feature sets. The resulting classifier show superior performance in complex channel with

phase offset.
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Chapter 5

Modulation Classification with

Unknown Noise

5.1 Introduction

As discussed in Chapter 2, most of the existing modulation classifiers require the knowledge

of noise model and noise power to achieve modulation classifications. Likelihood based

classifiers promise optimal classification accuracy (Wei and Mendel, 2000; Gao et al., 2008;

Hameed et al., 2009; Xu et al., 2011; Shi and Karasawa, 2011, 2012). Unfortunately, such

method requires a matching channel model as well as perfect knowledge of channel parameters

to achieve optimality. Efforts have been made to relax some of the rules serving an optimal

LB classifier. Wong and Nandi (Wong and Nandi, 2008) suggested a semi-blind LB classifier

with carrier phase and noise power estimation in a non-coherent environment. Panagiotou

et al. (Panagiotou et al., 2000) employ GLRT and Hybrid likelihood ratio test HLRT to

achieve classification with carrier phase as unknown parameters. Huang and Polydoros

(Huang and Polydoros, 1995) presented the quasi-Log-Likelihood Ratio Test (qLLRT) with

carrier phase as unknown parameter. All these likelihood based semi-blind classifiers mitigate

the dependence on one or two channel parameters. None offers the ability of classification in

a completely blind environment. Another new branch of decision theoretic methods employs
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distribution test for low complexity modulation classification (Wang and Wang, 2010; Urriza

et al., 2011; Zhu et al., 2013a). Yet, all channel parameters are assumed to be available.

Feature based methods often provide near-optimal performance with lower complexity.

The extraction of most features do not require channel parameters such a channel gain, car-

rier phase offset, or noise variance. However, they are often acquired for the optimization

of decision thresholds and reference values. Nandi and Azzouz (Nandi and Azzouz, 1998)

used spectral-based feature sets for effective classification of digital modulations. Cumu-

lant features suggested by Swami and Saddler (Swami and Sadler, 2000) became popular

for the classification of digital modulations with different orders (Wu et al., 2008). Cyclic

features are another set of features for modulation classification which exploits the cyclo-

stationarity of the signals (Gardner and Spooner, 1992; Punchihewa et al., 2010). Lately,

machine learning techniques have become a new trend for feature based methods. Wong and

Nandi suggested artificial neural network and genetic algorithm for feature combination and

dimension reduction (Wong and Nandi, 2004). Genetic Programming is another advanced

machine learning algorithm to provide improved performance (Aslam et al., 2012). Despite

their robust performance, all feature based methods require channel parameters to achieve

high classification accuracy.

For the purpose of complete blind classification, we propose two centroid estimator for

the joint estimation of channel gain and carrier phase. A new non-parametric likelihood

function is proposed as a low complexity alternative which aims to serve a wider variety of

channel conditions. Figure 5.1 provides an overview of the implementation of the proposed

blind modulation classier for M-ary PSK and QAM.
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Figure 5.1: Implementation of blind modulation classification with minimum distance centroid estimator and non-parametric likelihood function.
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5.2 Classification strategy

Given a set of candidate modulations M, the classification decision M̂ is drawn from the

hypothesis models HM of modulation M∈M with a maximum likelihood L(r|HM)

M̂ = argmax
M∈M

L(r|HM) (5.1)

Most classifiers require the prior knowledge of the channel gain α, carrier phase θ, mod-

ulation symbols sM, and noise σ variance before the test could be conducted. In addition,

in many cases, the parameters are considered identical among different hypothesis models

with the exception of modulation symbols.

L(r|HM) = L(r|α, θ, sM, σ) (5.2)

In the case of blind modulation classification, parameters have to be estimated. The

estimation is likely to differ among different hypothesis models, as it is natural to estimate

the parameters with the assumption of modulation type to achieve more accurate likelihood

evaluation.

L(r|HM) = L(r|α̂M, θ̂M, sM, σ̂M) (5.3)

To reduced complexity of estimating multiple interlinked parameters, we suggest treating

noise variance as unknown parameters and employ alternative likelihood functions to mitigate

its necessity.

L(r|HM) = L(r|α̂M, θ̂M, sM) (5.4)

The estimations of channel gain and carrier phase are combined as the estimation of received

signal centroids ÂM
ÂM = αMe

jθMsM (5.5)

reducing the estimation task to a single parameter and the likelihood function to be related

to only the signal centroids.

L(r|HM) = L(r|ÂM) (5.6)

We will start the discussion with the estimation of signal centroids AM and then progress

to the likelihood functions in later sections.
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5.3 Centroid estimation

Signal centroids are useful tools for analysis in many signal processing problems, although

not often fully utilized in modulation classification problems. In the modulation classification

context, a signal centroid represents the cluster centre of noisy signal samples that originate

from the same transmitted symbol. It carries information of the signal parameters like

channel gain and carrier phase, which provides the possibility of joint estimation of such

parameters. Though separate blind estimation of channel gain and carrier phase is achievable

(Tomasoni and Bellini, 2012; Zarzoso and Nandi, 1999), its high computational complexity

makes the joint estimation through centroid estimation an attractive alternative.

Maximum likelihood estimator is an accurate way of estimating signal centroids (Fisher,

1922). However, ML estimation requires a matching distribution and known parameters.

It is not achievable in the context of BMC with unknown channel parameters and noise

distributions. Blind symbol estimation provides symbol estimation for every signal samples

(Liu and Xu, 1995). It is related to the centroid estimation and the results can be directly

utilized for the centroid estimation. Considering that the designed classification approach

does not require the estimation of each transmitted samples, the extra amount of computation

for blind symbol estimation seems wasteful. Mobasseri used fuzzy c-means clustering to

created signal partitions on the constellation plot (Mobasseri, 2000). The subsequent means

of the signal clusters can be taken as estimated centroids. Unfortunately, it was not designed

with centroid estimation in mind and the resulting cluster means are normally not accurate

enough to be used in a decision theoretic classifier.

5.3.1 Constellation segmentation estimator

Assuming that the signal modulation is square M-QAM with M centroids and I =
√
M

components on each dimension, we can obtain the cumulative probability of a segment from

the signal constellation between x = 0 and x = 2A

P (0 ≤ x ≤ 2A) =
I

M

I/2∑
i=−I/2

Fi(2A)− Fi(0) (5.7)
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where Fi(x) is the cumulative distribution from centroid i

Fi(x) =

∫ x

−∞

1

σ
√

2π
e−

(x−A′i)
2

2σ2 dx (5.8)

Equation (5.7) can be rewritten as

P (0 ≤ x ≤ 2A) =
I

M

I/2∑
i=−I/2

∫ 2A

0

1

σ
√

2π
e−

(x−A′i)
2

2σ2 dx (5.9)

Because the centroids are assigned as

Ai = (2i+ 1)A (5.10)

By replacing the Ai in Equation (5.9), the cumulative probability can be obtained as

P (0 ≤ x ≤ 2A) =
I

M

∫ (I+1)A

(−I+1)A

1

σ
√

2π
e−

x2

2σ2 dx (5.11)

Assuming the modulation order M ≥ 16 and SNR ≥ 5dB, (I + 1)A > 5σ and (−I + 1)A <

−3σ. The cumulative probability is very close to I/M .

P (0 ≤ x ≤ 2A) ≈ I

M
(5.12)

As the signal distribution is symmetrical for square M-QAM modulations, the distribution

in the following segments should also exhibit the same property: −2A ≤ x ≤ 0, 0 ≤ y ≤ 2A,

−2A ≤ y ≤ 0. The resulting joint distribution probability in the 2-D segment 0 ≤ x, y ≤ 2A

can be derived to be

P (0 ≤ x, y ≤ 2A) ≈ 1

M
(5.13)

Thus the number of samples K falling into the 0 ≤ x, y ≤ 2A range should equal to N/M ,

which is the total number of samples from each signal symbol when the total number of

samples is N . The conclusion can be easily converted as a method for the estimation of A.

By finding the a segment of the signal constellation from 0 ≤ x, y ≤ 2A which contains a

number of samples equal to the sample number from a single centroid.

K =
N∑
n=1

I{0 < rX(n), rY (n) < 2A} = N/M (5.14)
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Figure 5.2: Theoretical values of centroid factors A for 16-QAM and 64-QAM with different noise levels and

their analytical estimation using proposed blind centroid estimator.
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Figure 5.2 shows the exact centroid location and the analytical centroid estimation using the

above theory. It is clear that the assumption is practical for the considered blind centroid

estimation scenario. Having established the approximate blind centroid estimation theory,

we propose the Automatic Constellation Grid Segmentation (ACGS) for the estimation of

signal centroids and provide partitioning of samples for future analysis. The process of ACGS

is illustrated in Figure 5.3. Details of each step will be given in the following subsections.

Figure 5.3: Automatic Segmentation for carrier phase offset compensation.

The grid used in ACGS is formed by parallel segmentations with equal distance on

two perpendicular directions. The resulting gird consists of a number of identical square

compartments, whose total number is equal to the total symbol number of the assumed M-

QAM modulation. An example of the grid can be found in Figure 5.4. Grid G16 in dashed

lines is the initial grid with ID g0. And the one in solid line is the grid after one iteration of
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update with 4g and identified by g1. Crosses indicate the location of actual centroids.

g0=(x0,y0)

g1=(x1,y1)

∆g

x x

x x

x x

x x

x

x

x

x

Figure 5.4: Automatic Constellation Grid Segmentation for centroid estimation.

Due to its rigid structure, the whole grid can be defined by the single identification point

in the first quadrant which is nearest to the coordinate origin (the grid centre). The initial

definition of the grid is given by assigning an initial value for the identification point (grid

ID) g0.

g0 = x0 + y0j (5.15)

where x0 and y0 are the real and imaginary part of g0 on I-Q constellation plane. The initial
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values of x0 and y0 are set to the same. A mathematical expression of grid junctions GM

can be found in Equation (5.16).

GM =



− I
2y + I

2xj · · · −y + I
2xj x+ I

2yj · · · I
2x+ I

2yj
...

...
...

...

− I
2y + xj · · · −y + x0j x+ yj · · · I

2x+ yj

− I
2x− yj · · · −x− yj y − xj · · · I

2y − xj
...

...
...

...

− I
2x− I

2yj · · · −x− I
2yj y − I

2xj · · · I
2y − I

2xj


(5.16)

By updating the grid, the end results of ACGS should produce a grid which fits the

pattern of the centroid distribution. The centre of each partition (square compartment)

on the grid should be aligned to the corresponding centroid from the modulated signal. A

definition of the grid partition centres SM for M-QAM modulation is given in Equation

(5.17).

SM =



(1+I/2)(−y+xj)
2 · · · −y

2 + (1+I/2)x
2 j x

2 + (1+I/2)y
2 j · · · (1+I/2)(x+yj)

2
...

...
...

...

− (1+I/2)y
2 + x

2 j · · · −y
2 + x

2 j
x
2 + y

2j · · · (1+I/2)x
2 + y

2j

− (1+I/2)x
2 − y

2j · · · −x
2 −

y
2j

y
2 − x

2 j · · · (1+I/2)y
2 − x

2 j
...

...
...

...

(1+I/2)(−x−yj)
2 · · · −x

2 −
(1+I/2)y

2 j y
2 −

(1+I/2)x
2 j · · · (1+I/2)(y−xj)

2


(5.17)

Having calculated the error, the grid is updated using the following equation.

gn+1 = (xn −4g) + (yn −4g)j (5.18)

The grid update process is repeated for 50 iterations. After the last iteration, the final

grid and signal partitioning are returned for use in the actual modulation classification. The

returned grid ID point g′ = x′+ y′j will be used to form the complete grid matrix as well as

centroid matrix.

In the case where there is carrier phase offset θ0, the grid is first trained to compensate

the phase error. It is accomplished with a phase error function and a grid update function.

4θ = θg − θl (5.19)
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where θg is the phase of the grid defined by the grid ID gn

θg = arg(gn) (5.20)

and θl is the average phase of all samples in partition 1 in the 1st quadrant.

θl = arg{r′(ln = 1)} (5.21)

The grid will then be updated using the following equation

gn+1 =| gn | ej(θg−4θ) (5.22)

The training will be repeated for 50 iterations and the the final θg will be returned as the

estimated carrier phase offset θ′. To compensate the phase offset, Equation (5.15) and (5.18)

used in ACGS should be modified to the following two equations

g0 =| x0 + y0j | ejθ
′

(5.23)

gn+1 = {xn − cos(θ′)4 g}+ {yn − sin(θ′)4 g}j (5.24)

5.3.2 Minimum distance estimator

Through ACGS, signal centroids can be estimated for square M-QAM modulation signals.

However, it is not able to perform centroid estimation for other digital modulations and to

assist the classification of these modulations. For this reason, we have developed a different

estimation approach named Minimum Distance Centroid Estimator (MDCE). The notion is

to define a set of signal centroids that are intended to indicate the modulation symbol after

communication channel without the additive noises.

We assume that the estimated centroids AM to possess the original rigid structure after

transmission and pre-processing. The mean of centroids µ(AM) should remain at 0, the

magnitude of two different centroid elements ApM and AqM should follow the original pro-

portion
∥∥ApM∥∥ /∥∥AqM∥∥ =

∥∥spM∥∥ / ∥∥sqM∥∥, and the phase difference between centroids should

remain the same φ(ApM) − φ(AqM) = φ(spM) − φ(sqM). The resulting expression for sets of
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Figure 5.5: Carrier phase offset estimation and compensation for constellation grid segmentation.
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centroids for BPSK, QPSK/4-QAM and 8-PSK can be expressed in a simplified form with

a single centroid parameter A = aeiφs0
M.

ABPSK =
[
−A A

]
(5.25)

AQPSK = A4−QAM =

 jA A

−A −jA

 (5.26)

A8−PSK =


−jA jA∗

−A∗ A

A A∗

−jA∗ jA

 (5.27)

Therefore the estimation of AM can be reduced to the estimation of the centroid param-

eter A. The reference symbol s0
M is defined as the one which is nearest to the signal mean.

The expressions of signal centroid for 16-QAM and 64-QAM modulations are not given here

due to their large size and relative ease to derive with the given rules.

To measure the mismatch between the observed signal and the potential centroids esti-

mation, a signal-to-centroid distance is designed to accomplish the task. With no assumption

of the noise variance and distribution, we propose the overall distance DM(r,AM) to be the

sum of the Euclidean distance between each signal sample and its nearest centroid

DM(r ,AM) =
N∑
n=1

min
m∈[1,..,M ]

(‖r(n)−AmM‖) (5.28)

where M is the total number of centroids in the centroid collection AM.

Such distance metric was first proposed by Wong and Nandi in (Wong and Nandi, 2008),

where it is used as a model mismatch evaluation for a minimum distance classifier. As a

classifier, the distance metric always produce shorter distance for higher order modulations

which leads to a bias in classification for higher order modulations. However, such problem

does not existence in centroid estimation, as it is conducted within a modulation hypothesis

and the mismatch is only caused by the estimated centroids of the same order.
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The signal centroids AM are estimated by finding the minimum of the distance metrics

DM(r ,AM).

ÂM = arg min
AM

DM(r ,AM) (5.29)

For the estimator to be valid, the expectation of the estimated centroids E[ÂM] should

equal to αejθsM with the channel gain α, the carrier phase θ, and the transmitted symbols

sM. The estimation of the centroids is a solutions of the derivative of the signal-to-centroid

distance expectation ∂
∂AME[DM(r,AM)] = 0. Replace the centroids with the single centroid

parameter A = aeiφs0
M. The analysis can be divided into a = α when ∂

∂aE[DM(r, a)] = 0,

and φ = θ when ∂
∂φE[DM(r, φ)] = 0. The detailed proof is given in Appendix A.

The implementation of MDCE is realized by an iterative sub-gradient optimization pro-

cess. The details are given in Appendix B.

The estimator is tested in the simulated AWGN channel at different SNR levels from 0

dB to 20 dB. At each noise level, 1,000 signal realizations are tested with each consisting

N=1,024 samples. In Figure 5.6, it is clear that the centroid estimator provides a very

accurate estimation of the channel gain with a very small amount of deviation at SNR over

10 dB. The accuracy degrades with increased level of noise and a quick acceleration is seen

at SNR below 5 dB. Since the estimator of centroid magnitude relies on the approximation

of the Rice distribution to a normal distribution as described in Appendix A, the estimation

of the 8-PSK centroid magnitude receives a more significant impact than 16-QAM despite

having a lower order. I believe the multiple layers of centroids with different magnitudes in

16-QAM help to compensate the biased estimation error caused by the approximation. It is

worth noting that the The phase error in Figure 5.7 tells a similar story. The influence of

the estimation error in the classification performance will be discussed in Section 5.5.

5.4 Non-parametric likelihood function

To enable likelihood evaluation without known noise model and power, we propose a new

low complexity non-parametric likelihood function. Firstly, we relax the assumption of noise

distribution to be any symmetrical distribution with higher density at signal mean. Secondly,
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Figure 5.6: Error of channel gain estimation for different modulations using minimum distance centroid

estimation.
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Figure 5.7: Error of carrier phase estimation for different modulations using minimum distance centroid

estimation.
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we replace the noise variance by an expression of the estimated channel gain and estimated

centroids numbers. Thirdly, we reduce logarithm operation of likelihood calculation to simple

counting operation. The resulting likelihood function can be found as

LNP (r|HM) =

N∑
n=1

M∑
m=1

I{
∥∥∥r(n)− Â(m)

M

∥∥∥ < RM} (5.30)

where I(.) is a conditional function which returns 1 if the input is true and 0 if input is false,

and the radius parameter RM is given by

RM = R0/
√
M. (5.31)

The selection of the reference radius R0 will be discussed in later part of this section.

The non-parametric likelihood function is effectively an estimation of the cumulative

probability of the given signal in a set of defined local regions. The expectation of the

likelihood can be expressed in the following manner.

E[LNPLF (r|HM)] =

∫
SM

f(x, y)dS (5.32)

where SM is a limit associated with estimated centroids ÂM and the test radius RM, and

f(x, y) is the PDF of the testing signal.

f(x, y) =
1

M

M∑
m=1

1

σ
√

2π
e−

(x−<(αejθsmM))
2
+(y−=(αejθsmM))

2

2σ2 (5.33)

It is easy to see that, with the given testing radius, the area of SM = M ·πR2
0/M = πR2

0

is designed to given each hypothesis equal area for the cumulative probability calculation.

The decision is based on the assumption that matching model should provide maximum

cumulative probability in defined regions of the same total area.

M̂ = argmax
M∈M

∫
SM

f(x, y)dS (5.34)

Without examining the centroid estimation for false hypothesis modulations, we evaluate

the maximum non-parametric likelihood of different hypothesis in the scenario where each set

of estimated centroids have the maximum number of overlaps with the true signal centroids.

Such a scenario has been previously examined for the GLRT classifier with unknown channel
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gain and carrier phase which results in equal likelihood for nested modulations at high SNR

(Panagiotou et al., 2000). Approximating the signal distribution at each transmitted signal

symbol to a Rayleigh distribution,

f(R) =
R
σ2
e−R

2/2σ2
(5.35)

the likelihood function estimation become a function of the testing radius.

E[LNPLF (r|HM)] = NM

RM∫
0

x

σ2
e−x

2/2σ2
dx (5.36)

where NM is the maximum number of matching centroids for the hypothesisM. For example,

given a piece of QPSK signal, the value of NM for different hypothesises would be: NBPSK =

2, NQPSK = 4 and N8−PSK = 4. To simplify the analysis, we generalize the analysis to

three general scenarios: hypothesis of lower order M−, hypothesis of matching model and

order M0, and hypothesis of higher order M+. In order to satisfy E[LNPLF (r|HM0)] >

E[LNPLF (r|HM−)], and E[LNPLF (r|HM0)] > E[LNPLF (r|HM+)]. The radius factor αR

should satisfy the restriction of

R0 = αRmax(αM),M∈M (5.37)

where αR > 2.07 is the radius factor and αM is the channel gain estimated under hypothesis

M. The derivation of the above condition is given in Appendix C. The final value of the

radius factor αR is optimized empirically and the value used in simulation is given in Table

5.1.

5.5 Simulations and numerical results

To validate the proposed method further, experiments are set up in the MATLAB environ-

ment to simulate classification problems under various channel conditions. The modulations

considered in this research include popular PSK modulations MPSK = {BPSK,QPSK, 8−
PSK} and QAM modulations MQAM = {4 − QAM, 16 − QAM, 64 − QAM}. Under each

channel condition, 1,000 signal realizations are generated for each signal modulation. Clas-

sification decision is drawn for each signal realization from the modulation candidate pool of
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Table 5.1: Experiment settings used to validate MDCE and NPLF classifier.

Parameters Notation Values

Modulation Pool M∈M {BPSK, QPSK, 8-PSK},
{4-QAM, 16-QAM, 64-QAM}

Centroid Number M {2, 4, 8}, {4, 16, 64}
Signal length N 1024 & 50, 100...1000

SNR SNR 0dB, 1dB...20dB

Phase offset (slow) θo 0◦, 1◦...20◦

Phase offset (fast) σθ 0◦, 1◦...20◦

Frequency offset (ratio) foT 1E−5, 2E−5...2E−4

NPLF radius αR 2.5

Non-Gaussian noise ε 0.9

mixture proportion

Non-Gaussian noise κ 100

variance ratio
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the same type. The resulting classification accuracy is averaged over all 6,000 realizations.

Other parameters used in the experiments are given in Talbe 5.1.

The proposed combination of MDCE and NPLF is benchmarked against some of the

state-of-the-art non-blind MC classifiers. Without the limitation of blind classification, the

Maximum Likelihood classifier is assumed to have perfect knowledge of the channel gain and

noise variance (Wei and Mendel, 2000). The cumulant features are combined with K-nearest

neighbour classifier which utilizes reference signal samples generated in the same channel

condition which known to the classifier (Aslam et al., 2012). A semi-blind alternative of the

cumulants based classifier is also used which has noise variance as unknown parameters and

the classification is based on theoretical values of the cumulant in noise free channels. Phase

offset and frequency offset, however, are not compensated for the aforementioned classifiers.

Also utilizing the MDCE, a classifier with the GRLT likelihood function as described in

section 5.4 is tested as another blind classifier.

5.5.1 AWGN channel

In channel with additive white Gaussian noise (AWGN) where the noise distribution ω(.) ∼
N (0, σ2

ω), two sets of experiments are conducted.

In the first set of experiments, different noise levels are tested to understand how the

classifier performs with AWGN noise. Signals are tested at SNR level between 0 dB and

20 dB. For each modulation and each noise level, 1,000 signal realizations are generated each

consists ofN = 1, 024 samples. As demonstrated in Figure 5.8, classifiers with perfect channel

knowledge outperform semi-blind and blind classifiers with the ML classifier achieving the

highest accuracy at all SNR levels. Despite the lack of knowledge of channel gain and carrier

phase, both MDCE assisted blind classifiers have good classification accuracy especially at

SNR > 12 dB. The semi-blind cumulant based classifier has the worst performance among

all the classifiers.

It is worth noting that the GLRT classifier has a much lower accuracy than an ideal ML

classifier at SNR below 10 dB. The GLRT classifier is considered as a ML classifier with

only the noise variance being an unknown parameter. The likelihood function in GLRT
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provides a rough estimation of noise variance by maximizing the resulting likelihood. In a

way, the GLRT approach can be seen as a combination of a ML noise variance estimator and

a ML classifier. One may question the significant performance difference between the GLRT

classifier and the ML classifier. Part of the difference is caused by the inaccurate estimation

of signal centroid as suggested in Figure 5.6 and 5.7. The other part of the difference is

caused by the noise variance used in GLRT likelihood function being different for different

hypothesis models. The maximization of the likelihood reduces the mismatch between the

testing signal and a false hypothesis model. Meanwhile, due to the identical variance used in

a ML classifier, the mismatch is exaggerated. Therefore, it appears that the results achieved

by the GLRT method is a more realistic reflection of the performance of a likelihood based

method in a blind classification scenario.

At the same time, the proposed NPLF classifier actually has very similar accuracy com-

pared with the GLRT classifier, despite having much lower complexity. A confusion matrix

of the classification results from a NPLF classifier is given in Table 5.2. It is clear that the

modulation of higher order is more difficult to be classified. The false classification often

comes from the modulation of same type and of similar constellation shape.

Table 5.2: Classification confusion matrix using the NPLF classifier in AWGN channel with SNR=10 dB.

BPSK QPSK/4-QAM 8-PSK 16-QAM 64-QAM

BPSK 1000 0 0 0 0

QPSK/4-QAM 0 1000/1000 0 0 0

8-PSK 0 0 1000 0 0

16-QAM 0 0 0 991 9

64-QAM 0 7 0 277 716

In the second set of experiments, the classification accuracy against limited number of

observation samples is tested. Keeping majority of the settings in the previous experiment

and fixing the SNR at 10 dB, different signal lengths N between 50 and 1000 are used.

According to the results shown in Figure 5.9, the proposed method is much limited when

the number of samples available for analysis is below 200. However, it is able to achieve a
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Figure 5.8: Classification accuracy using differen classifiers in AWGN channel.
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Figure 5.9: Classification accuracy using different classifiers in AWGN channel with different signal length.
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Table 5.3: Classification accuracy over 100 runs at every combination of SNR and Signal Length using the

NPLF classifiers.

SNR

Signal Length 5 dB 10 dB 15 dB 20 dB

N=100 52.2±1.8 66.3±1.6 67.5±1.4 68.9±1.2

N=200 75.9±1.5 90.6±0.9 96.9±0.5 98.8±0.4

N=500 80.2±1.0 92.9±0.7 99.7±0.2 99.9±0.1

N=1000 82.5±0.4 93.7±0.2 100.0±0.0 100.0±0.0

consistent level of accuracy when there is more than 400 samples available for analysis.

Combining the two experiments, the classification task for the proposed MDCE-NPLF

classifier is repeated 100 times for the settings of SNR=[5 dB, 10 dB, 15 dB, 20 dB] and

sample length N=[100, 200, 500, 1000]. The averaged classification accuracy as well as the

standard deviation over the 100 runs are listed in Table 5.3.

5.5.2 Fading channel

In order to understand the effect of different channel conditions, we test phase offset and

frequency offset separately but both with certain level of AWGN noise. Phase offset is

simulated in two different fading scenarios: slow fading and fast fading. In slow fading, the

phase offset θ0 is assumed to be consistent throughout the signal realization. While in fast

fading, we assume the phase offset to have a normal distribution with variance of σθ. Using

the same set up as in AWGN channel, the SNR is fixed at 10 dB with the signal length N

set to 1,024.

In channel with slow phase offset, it is obvious from Figure 5.10 that the proposed method

is able to mitigate its effect and provide a consistent classification accuracy of 92% to 94%.

It is mostly due to the capability of the proposed MDCE to compensate the slow fading as

demonstrated in the analysis given in Appendix A. On the contrary, the ML classifier and

cumulant based classifier are rather sensitive to the slow phase offset. From Figure 5.10, it

can been seen that, despite being more accurate without phase offset, the ML classifier and
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cumulant classifier become less accurate when more than 5◦ of phase offset is introduced.

When there is more than 7◦ of phase offset, the proposed MDCE-NPLF become the best

option among the benchmarked methods.
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Figure 5.10: Classification accuracy of using different classifiers in fading channel with slow phase offset.

In the fast fading channel with phase offset θo ∼ N (0, σ2
θ), Figure 5.11 demonstrates

that all likelihood based methods show more robust performance as compared to cumulant

based methods. While ML classifier outperforms both likelihood based blind classifiers, the

difference between ML and NPLF classifier remains marginal for σθ < 14◦. With an increased

amount of phase offset, the NPLF classifier is able to achieve superior accuracy at σθ > 14◦.

Meanwhile, the cumulant based classifier suffers with the increased amount of fast phase

offset. Thus, the proposed classifier is able to surpass the performance of cumulants based
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Figure 5.11: Classification accuracy using different classifiers fading channel with fast phase offset.

classifier at σθ > 8◦.

When frequency offset is considered, it can be observed from Figure 5.12 the proposed

NPLF classifier excels all other classifiers benchmarked in the tests. The performances of

ML and cumulant classifier are significantly affected by the frequency offset due to the sever

mismatching between received signals and ideal models. The only classifier, which is able

to sustain a consistent level of performance is the proposed NPLF classifier, which sees very

little degradation in the given frequency offset range and achieves a classification accuracy

of 90% to 94%.
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Figure 5.12: Classification accuracy using different classifiers in fading channel with frequency offset.
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5.5.3 Non-Gaussian channel

Recent developments in MC pay attention to the understanding of MC with impulsive

noise(Chavali and da Silva, 2011, 2013). Here we consider the impulsive noise in the form of

a two-term Gaussian mixture. The formation of the non-Gaussian noise is given in section

2.4 with mixture parameters in Table 5.1.

The results shown in Figure 5.13 indicate obvious performance degradation of most meth-

ods in their classification accuracies in the AWGN channel with same noise level. It is

not difficult to understand the cause of the performance degradation that comes from the

mismatching noise model. The only exception in the group is the proposed NPLF which

maintains the same level of classification accuracy despite the different noise model used.
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Figure 5.13: Classification accuracy using different classifiers in non-Gaussian channels.
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Table 5.4: Number of operators needed for different classifiers.

Classifier Exponential Logarithm Multiplication Addition Memory

ML NI
I∑
i=1

Mi NI 5NI
I∑
i=1

Mi 6NI
I∑
i=1

Mi I

Cumulant 0 0 6KN 6KN KI

GLRT V NI
I∑
i=1

Mi V NI 5V NI
I∑
i=1

Mi 6V NI
I∑
i=1

Mi 2I

NPLF

(This research)

0 0 0 4NI
I∑
i=1

Mi I

5.5.4 Complexity

To evaluate the complexity of different classifiers, numbers of operations needed are calcu-

lated for each classifier and listed in Table 5.4. The calculation is based on a signal with N

number of samples being classified among I potential modulations. Mi denotes the alphabet

size of the ith modulation candidate. The number of testing point for noise variance used

in GLRT is defined by V . And number of training sample in the cumulant based method is

defined by K.

Among all the tested methods, the ML classifier is known to have a very high computa-

tional complexity due to the large number of exponential and logarithmic operations needed.

For a GLRT classifier, the complexity is dramatically increased because the log-likelihood

evaluation is effectively repeated V times. Cumulants based classifiers have lower complexity

compared ML and GLRT classifier. However, the reference values needed for KNN classifier

impose a high demand for memory. The classifier with lowest complexity is the proposed

NPLF classifier which uses only additions and does not require extra memory allocation for

reference values.

5.6 Summary

In this chapter, the combination of centroid estimation and non-parametric likelihood func-

tion for modulation classification is studied. Two different approach to the centroid estima-
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tion are discussed. The constellation segmentation estimator is developed for fast centroid

estimation for square M-QAM modulations with the assumption of symbol assignment at

the transmitter end being equal probable. The minimum distance centroid estimator, on

the other hand, is much more versatile, which is able to both M-PSK and M-QAM mod-

ulations. The non-parametric likelihood function is proposed to realize likelihood function

without knowing either the noise model or the noise power. The numerical results show that

the combination of MDCE and NPLF is able to achieve good classification accuracy in the

AWGN channel. Moreover, the classifier shows stronger robustness in fading channel and

non-Gaussian channels. Last but not least, the computational complexity of the NPLF is

much lower compared with some of the existing methods.
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Chapter 6

Blind Modulation Classification for

MIMO systems

6.1 Introduction

While majority of modulation classification algorithms have been dedicated to Single-input

Single-output (SISO) systems (Azzouz and Nandi, 1996b; Nandi and Azzouz, 1998; Azzouz

and Nandi, 1996a; Swami and Sadler, 2000; Dobre et al., 2007; Punchihewa et al., 2010;

Amuru and da Silva, 2012; Zhu et al., 2013b), blind modulation classification for multiple-

input multiple-output systems has become an attractive novelty. MIMO systems with asso-

ciated techniques such as Spatial Multiplexing (SM) and Space-time Coding (STC) provides

benefits including array gain and spatial gain for improved spectrum efficiency and link relia-

bility. Some recent publications address the issue of BMC for MIMO systems. Choqueuse et

al. developed the average likelihood ratio test classifier for MC with perfect channel knowl-

edge (Choqueuse et al., 2009). In the same paper, they proposed to use ICA with phase

correction for channel matrix estimation in order to achieve BMC. The ICA estimator is

endorsed by the following publications but accompanied with different classifiers (Mühlhaus

et al., 2013; Kanterakis and Su, 2013). Mhlhaus et al. proposed high order cumulants based

likelihood ratio test classifier for low complexity BMC (Mühlhaus et al., 2013). Kanterakis
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and Su suggest complexity reduction to the ALRT classifier by treating ICA recovered sig-

nal components at different transmitting antennas as individual processes (Kanterakis and

Su, 2013). Most ICA estimation aided classifier achieves very high classification accuracy.

However, the aforementioned methods require the perfect knowledge of noise variance. In

addition, the ICA estimation imposes the requirement that the number of receiving antennas

must exceed the number of transmitting antennas. Hassan et al. proposed a combination of

high order statistic and Artificial Neural Network (ANN) for MC. The method is successful in

addressing the issue of spatial correlation in MIMO systems (Hassan et al., 2012). However,

supervised training required by ANN makes it rather demanding as a blind classifier.

In this research, we propose a more practical BMC solution with both unknown channel

matrix and unknown noise variance. There is no existing BMC algorithms for such scenario

to our knowledge. Most state-of-the art channel estimation for MIMO systems depend on pi-

lot symbols for data aided estimation which is not suitable for BMC. Therefore, expectation

maximization is adopted for non-data aided blind channel estimation. The EM algorithm

approaches the channel estimate through an iterative process of maximizing the expected

likelihood. Compared to the ICA estimator, the EM estimator provides the additional esti-

mation of noise variance while not needing the phase correction for the channel matrix. The

resulting estimate is used for the maximum likelihood classifier for decision making.

6.2 Signal model in MIMO systems

Have defined signal models in different channels, we extend the definition to MIMO sys-

tems where multiple transmitters and receivers are considered to formulate multiple prop-

agation paths. The MIMO system is composed of Nt transmitting antennas and Nr re-

ceiving antennas. A Rayleigh fading channel with time invariant path gains is considered.

The resulting channel matrix H is given by a Nr × Nt complex matrix with the element

hj,i representing the path gain between ith transmitting antenna and jth receiving an-

tenna. Assuming perfect synchronization, the nth received MIMO-SM signal sample vector
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rn = [rn(1), rn(2), ..., rn(Nr)]
T in a total observation of N samples is expressed as

rn = Hsn + ωn (6.1)

where sn = [sn(1), sn(2), ..., sn(Nt)]
T is the nth transmitted signal symbol vector and ωn =

[ωn(1), ωn(2), ..., ωn(Nr)]
T is the additive noise observed at the nth signal sample. The

transmitted symbol vector is assumed to be independent and identically distributed with each

symbol assigned from the modulation alphabet with equal probability. The additive noise is

assumed to be white Gaussian with zero mean and variance σ2 which gives ωn ∈ N (0, σ2INr),

where INr is the identity matrix of size Nr ×Nr.

6.3 EM channel estimation

To evaluate likelihood for the ML classifier, the complex channel matrix H and noise vari-

ance σ2 must be estimated beforehand. Since the modulation is unknown to the receiver,

many data-aided approaches using pilot symbols are not suitable. Expectation maximiza-

tion has been employed for joint channel estimation through an iterative implementation of

maximum likelihood estimation(Wautelet et al., 2007; Das and Rao, 2012). In MIMO sys-

tems, we consider the received signal R = [r1, r2...rN ] as the observed data. Meanwhile, the

membership Z of the observed samples is considered as the latent variables. Z is a M ×N
matrix with the (m,n)th element being the membership of the nth signal sample rn, given

the transmitted symbol vector Sm. The possible transmitted symbol set S = [S1, S2...SM ]

gathers all the combinations of transmitted symbols from Nt number of antennas. Given a

modulation with L number of states, there exist M = LNt number of transmitted symbol

vectors and a transmitted symbol set of size Nt × LNt . With Θ = {H,σ2} representing the

channel parameters, the complete likelihood is given by

q(R,S|Θ) =

∫
S

p(S|R,Θ) log(p(R|S,Θ)p(S|Θ))dS (6.2)

where p(R|S,Θ) is the probability of the received signal been observed given transmitted

symbols vector S and channel parameter Θ. Since the additive noise is assume to have a
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complex Gaussian distribution. p(R|S,Θ) can be calculated as

p(R|S,Θ) =

N∏
n=1

1

(πσ2)Nr
exp(−‖rn −Hsn‖

2
F

2σ2
). (6.3)

Meanwhile, p(S|R,Θ) represents the probability of S being transmitted given the ob-

served signal R and the channel parameter Θ, also know as the posteriori probability of S.

In (Wautelet et al., 2007), this probability is acquired by a posteriori probability calculator

which is not presented. In this research, we replace the a posteriori probability with a soft

membership znm representing the likelihood of nth transmitted symbol vector being Sm with∑M
m=1 zmn = 1. Since the assignment of transmitted symbol is independent of the channel

parameter, p(S|Θ) is a constant 1/M when equal probability is assumed. The estimation of

Θ is achieved by iterative steps of expectation evaluation and maximization.

6.3.1 Evaluation step

The evaluation step (E-step) provides the expected log-likelihood under the current estimate

of Θt at tth iteration. The expectation is then subsequently maximized for the updated

estimation of Θ. From Equation (6.2) the expected value of the complete log-likelihood is

derived as

Q(R,S|Θt) = log

N∏
n=1

M∏
m=1

p(rn, Sm|Ht, σ
2
t )
zmn

= −
N∑
n=1

M∑
m=1

zmn

[
Nr log(πσ2

t ) +
‖rn −HtSm‖2F

σ2

]
(6.4)

where p(rn, Sm|Ht, σt) is the probability of the nth received signal vector being observed

given the current estimation of channel matrixHt and noise variance σ2
t . ‖·‖2F is the Frobenius

norm. The soft membership zmn is evaluated using the following equation

zmn =
p(rn|Sm,Θt)
M∑
m=1

p(rn|Sm,Θt)

=
exp(−‖rn−HSm‖

2
F

σ2 )

M∑
m=1

exp(−‖rn−HSm‖
2
F

σ2 )

. (6.5)
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6.3.2 Maximization step

The update of the parameter estimation is achieved through the maximization of the current

expected log-likelihood (M-step). To derive the close form update function for the channel

matrix and noise variance, we first find the derivatives of Q(R,S|Θt) with respect to H and

σ2 separately. Given that

‖rn −HSm‖2F =

Nr∑
j=1

∣∣∣∣∣rn(j)−
Nt∑
i=1

hj,iSm(i)

∣∣∣∣∣
2

(6.6)

the derivative of Q(R,S|Θt) with respect to the individual element h(j, i) of the channel

matrix is given by

∂Q(R,S|Θt)

∂hj,i

= −
N∑
n=1

M∑
m=1

zmn

Nt∑
i=1

hj,i
∗|Sm(i)|2 − rn(j)∗Sm(i)

σ2
(6.7)

In the same way, the derivative of Q(R,S|Θt) with respect to the noise variance σ2 is found

as

∂Q(R,S|Θt)

∂σ2
= −

N∑
n=1

M∑
m=1

zmn

(
−Nr

σ2
+
‖rn −HSm‖2F

σ4

)
(6.8)

When the derivatives are set to zero, the update functions of hj,i and σ2 can be derived

from Equation (6.7) and (6.8). However, it is obvious that different channel parameters

are coupled. To simplify the maximization process, the coupled channel parameters are

estimated in turns. The path gain hj,i is estimated with the rest of the channel matrix

known and represented with the lasted estimate for each path gain. The path gains are

updated in ascending order with respect to j and i. The resulting update function for hj,i is

given by

ht+1
j,i

=

N∑
n=1

M∑
m=1

zmn

[
rn(j)Sm(i)∗ − Sm(i)∗

Nt∑
k=1,k 6=i

h′k,iSm(k)

]
N∑
n=1

M∑
m=1

zmn|Sm(i)|2
(6.9)
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where h′k,i is the lasted estimate of path gain hk,i. At tth iteration, h′k,i = htk,i if it has not

been updated or h′k,i = ht+1
k,i if it has been updated. After the channel matrix is completely

updated, Ht+1 is used to acquire the noise variance estimation.

σ2
t+1 =

N∑
n=1

M∑
m=1

zmn
Nr∑
j=1

∣∣∣∣rn(j)−
Nt∑
i=1

ht+1
j,i Sm(i)

∣∣∣∣2
Nr

N∑
n=1

M∑
m=1

zmn

(6.10)

The EM algorithm with such maximization process is known as expectation conditional

maximization. ECM shares the convergence property of EM (Meng and Rubin, 1993) and

can be constructed to converge at similar rate as the EM algorithm (Sexton, 2000). The

ECM joint estimation of channel parameters has previously been successfully applied in BMC

for SISO systems (Chavali and da Silva, 2011; Soltanmohammadi and Naraghi-Pour, 2013;

Chavali and da Silva, 2013).

6.3.3 Termination

The final estimation of channel matrix H and noise variance σ2 is achieve when the iterative

process is terminated by one of two conditions. The first condition terminates the process

when the estimation reaches convergence. The condition is represented numerically with the

different between the expected likelihoods of the current iteration and the previous iteration

along with a predefined threshold. In the second condition, termination is triggered when

the predefined number of iterations has been reached.

6.4 Maximum likelihood classifier

For classification likelihood evaluation, the average likelihood ratio test approach is adopted

(Choqueuse et al., 2009). The average likelihood function is given by

L(R|Θ) =
N∏
n=1

1

M

M∑
m=1

1

(πσ2)Nr
exp(−‖rn −HSm‖

2
F

2σ2
) (6.11)
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with the corresponding log-likelihood function derived as

logL(R|Θ) =−NNt log(M)−NNrlog(πσ2)+

N∑
n=1

log

(
M∑
m=1

1

(πσ2)Nr
exp(−‖rn −HSm‖

2
F

2σ2
)

)
(6.12)

In the case of BMC, the channel matrix and noise variance estimated by EM is used to sub-

stitute the known values in the ALRT likelihood evaluation for each modulation hypothesis.

The likelihood evaluation of modulation candidate M is given by

logL(R|SMΘM) = −NNt log(M)−NNrlog(πσ2
M)

+

N∑
n=1

log

 M∑
m=1

1(
πσ2
M
)Nr exp(−

∥∥∥rn − ĤMSMm ∥∥∥2

F

2σ2
M

)

 (6.13)

where SM is the transmitted symbol set defined by modulation M and ΘM is the channel

estimation for the same modulation candidate.

The resulting classification decision M̂ is found by comparing the likelihood evaluated

from different modulation candidates. The modulation candidateM in the candidate pool M

which provides the highest likelihood with the observed data is assigned as the classification

decision.

M̂ = argmax
M∈M

(logL(R|SM,ΘM)) (6.14)

6.5 Simulation and numerical results

To validate the proposed BMC algorithm, MIMO systems in Rayleigh fading channel with

AWGN noise is simulated for BMC. Three popular digital modulations are included in the

modulation candidate pool M={BPSK,QPSK,16-QAM}. Other digital modulations can be

classified in the same procedure with very little modification. In the simulation, two sets of

experiments are set up to investigate the classifier performance under different noise levels

and with different observation length. The specifications of the simulations are summarized

in Table 6.1.
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Table 6.1: Experiment settings for validating the blind MIMO classifier.

Parameter Notation Value

Candidate Modulations M∈M {BPSK, QPSK, 16-QAM}

Number of Transmitting Antennas Nt 2

Number of Receiving Antennas Nr 4

AWGN Noise Level SNR -10 dB, -9 dB,..., 10 dB

Observed Signal Length N 1024; 50, 100,..., 1000

EM Estimation Iterations T 20

In the first set of experiments, 1,000 testing realizations of modulation signals are gener-

ated for each modulation candidate and each SNR varying from -10 dB to 10 dB. Each signal

realization consists of 512 observed signal samples at each receiving antenna. In the following

figures, classification results averages over 1,000 realizations are listed for each testing mod-

ulation at each noise level. The classification accuracy for BPSK signals are rather robust

until SNR drops below -5 dB, as shown in Figure 6.1. With high noise level, the classifica-

tion of BPSK signals has a tendency to be biased towards 16-QAM. The same phenomenon

can be observed from classification results of QPSK signals in Figure 6.2. The classification

accuracy of QPSK signals are almost perfect with SNR above 0 dB. However, the perfor-

mance degrades rapidly with increased noise level until majority of the signals being wrongly

classified as 16-QAM at SNR between -10 dB and -6 dB. The classification result of 16-QAM

in Figure 6.3 concurs the biased behaviour of the classifier. The classification accuracy sees

little degradation between -3 dB and 1 dB but returns to 100% accuracy below -3 dB.

Compared to ALRT classifier with known channel parameters, the classifier performance of

the prosed EM-ML classifier share very similar high classification accuracy at SNR above

0 dB. However, the performance degradation is much steeper with increased noised level.

There are two possible explanation to the steeper degradation of EM-ML. First, the mis-
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Figure 6.1: Classification accuracy of BPSK signals using the proposed blind MIMO classifier in Rayleigh

fading channels.
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Figure 6.2: Classification accuracy of QPSK signals using the proposed blind MIMO classifier in Rayleigh

fading channels.
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Figure 6.3: Classification accuracy of 16QAM signals using the proposed blind MIMO classifier in Rayleigh

fading channels.

match between the estimated channel status and the actual channel status introduced by EM

channel estimation may degrade the performance. Second, EM, being a ML estimator, not

only provides channel estimate for matching modulation candidate but also maximizes the

evaluated likelihood of those mismatched modulation candidates. Compared to the ALRT

classifier with known and uniform channel status for all modulation candidates, the EM-

ML approach marginalizes the difference between the likelihood evaluation of a matching

hypothesis and a mismatching hypothesis. This phenomenon is reported in (Soltanmoham-

madi and Naraghi-Pour, 2013) where likelihood evaluation with EM estimation some time

provides higher likelihood for the mismatched modulation candidate.

In the second set of experiments, the robustness of the proposed classifier against limited

number of observed signal samples is investigated. Now, 1,000 testing realizations of modu-

lation signals are generated for each modulation candidate, each signal length varying from

25 to 500. The SNR level is fixed at 0 dB in all experiments. The classification of BPSK is

almost independent of the signal length. With only 25 samples from each receiving antenna,
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the classification of BPSK signals is able to achieve a 99% accuracy as shown in Figure 6.4.

The robust performance for BPSK signal is mostly due to its lower modulation order as well

as unique constellation shape compare to QPSK and 16-QAM’s similar square constellation

shapes. For QPSK, a linear degradation can be observed with reduced signal length in Figure

6.5. Meanwhile, the degradation is rather moderate giving 77% classification accuracy with

25 sample at each receiving antenna compare to 94% accuracy with 500 samples. Due to

the similarity between QPSK and 16-QAM signals, up to 20% of QPSK signals are classified

as 16-QAM signals. The same behaviour is also observed for the 16-QAM where majority

of the false classification goes to QPSK. However, it is obvious that the limited number of

observed samples has a more significant impact on the classification performance of 16-QAM

signal. Figure 6.6 shows that rate of performance degradation accelerates with reduced sig-

nal length. Especially when N < 100, the classification accuracy sees a sharp drop where

more signals are classified as QPSK with 50 samples and the accuracy reduced to 20% when

only 25 samples are available for analysis. However, the performance with more than 200

observed samples is well over 80%.
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Figure 6.4: Classification accuracy of BPSK signals using the proposed blind MIMO classifier in Rayleigh

fading channels with varying signal length.
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Figure 6.5: Classification accuracy of QPSK signals using the proposed blind MIMO classifier in Rayleigh

fading channels with varying signal length.
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Figure 6.6: Classification accuracy of 16QAM signals using the proposed blind MIMO classifier in Rayleigh

fading channels with varying signal length.
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6.6 Summary

A blind modulation classifier is proposed for MIMO system with unknown channel state.

The assumption of both unknown channel matrix and unknown noise variance has not been

previous considered in other BMC classifiers for MIMO systems. The employment of ex-

pectation maximization provides estimation of noise variance which is not enjoyed by the

popular ICA estimator. The expectation conditional maximization strategy is adopted to

deal with coupling of the parameters in the maximization step. With the estimated channel

parameters, the maximum likelihood classifier is used for classification decision making. The

likelihood of each modulation candidate is evaluated with channel parameters estimated for

the specific candidate. The simulation results show robust performance with SNR above 0

dB for BPSK, QPSK, and 16-QAM modulations. Meanwhile, requirement of signal length

is rather modest with 200 observed samples being able to provide a reasonable classification

accuracy for all modulations.
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Chapter 7

Conclusions

In this chapter, we restate the purpose of the research and conclude what has been achieved

to further the field. In Chapter 1, it has been demonstrated that automatic modulation clas-

sification has an important role to play in both military and civilian applications. Although

a good modulation classification is expected to have high accuracy and robustness with low

computational complexity, the understanding we have developed through this research is

that there is no classifier that excels on all fronts. For example, maximum likelihood classifi-

cation provide optimal classification accuracy with the limitation of very high computational

complexity and high demand for channel knowledge. Moment and cumulant based classifiers

provide sub-optimal classification performance with lower complexity but suffers with signals

described by fewer samples. Distribution test based classifiers have improved robustness with

shorter signal but are more vulnerable against complex channels. With such an understand-

ing we set out to develop AMC algorithms that provide unique performance metrics that

excels in certain aspects or replaces certain existing methods with overall improvement.

The introduction of machine learning techniques in feature based AMC methods brings

four major benefits. First, the hierarchical decision making process is simplified with a sin-

gle step approach. Yet multi-stage classification strategy could still be accommodated for

performance optimization. Secondly, the determination of decision thresholds is automated

through training using a SVM classifier or become unnecessary in a KNN classifier. Thirdly,

the classification accuracy is improved over the traditional decision tree approach as demon-
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strated in the simulated experiments. Fourthly, the algorithm is simplified because of the

dimension reduction realized by feature selection and combination. However, the need for

training data is not often feasible. It is a major limitation of these supervised machine

learning techniques.

The optimized distribution sampling test classifier is an improvement over the KS test

classifier. While KS test is well established for measuring goodness of fit, in the case of

modulation classification, much information is underutilized to optimize the classification

performance. By establishing a set of optimized sampling location according to hypothesised

PDFs from modulation candidates, the ODST classifier is less vulnerable against outliers and

more efficient in using more information from the multiple locations on the spectrum. The

resulting benefit is higher classification accuracy as well as lower computational complex-

ity. The distribution based features inherent the same attributes from the ODST classifier

and extend to a wider set of signal distribution. The corresponding machine learning tech-

niques enables the consolidation of this big array of distribution based features to provide

more robust performance with the same level of efficiency. As non-blind classifiers, all of

the distribution test based classifiers are based on the assumption of perfection knowledge

of the transmission channel as well as the noise type and power. Predictably, these classi-

fiers are prone to performance degradation in the presence of channel estimation error and

mismatching channel mode.

The combination of centroid estimation and non-parametric likelihood function is an

unique approach to the modulation classification problem. It resembles the mechanism of

a likelihood based classifier. However it is not strictly likelihood that the NPLF is measur-

ing. In essence, it is estimating the cumulative probability of the received signal in a region

that is defined by the signal centroid and a normalized radius. Both factors jointly create a

total region of equal area for different candidate modulations. The resulting classifier does

not require a known noise model neither does it need the knowledge of noise power. The

performance is inferior compared to some of the non-blind classifiers with perfect channel

knowledge. However, when a GMM modelled impulsive noise is considered non-blind clas-

sifiers suffers greatly because of mismatching noise model. In the meantime, the NPLF
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classifier is able to sustain a consistent level of classification accuracy regardless of the type

of noise. That is without mentioning the significantly lower computational complexity. In

addition, the centroid estimation process is able to estimate the carrier phase offset and

achieves compensation in combination with the NPLF.

The extension of modulation classification to MIMO systems is very timely, considering

its wide application in 3G, 4G, and, predictably 5G cellular standards. In this research we

build on the likelihood based classifier for MIMO systems and reduce the amount of the

channel state information that is needed for the classifier. The EM process is developed for

the joint estimations of channel matrix and noise power. The resulting estimation enables the

likelihood evaluation based on a likelihood function that is adapted for the MIMO systems.

As the assumption of unknown noise power has yet been considered by other research, the

conclusion drawn from the simulated experiments is that the EM and ML combination

achieve good classification accuracy for BPSK, QPSK and 16-QAM modulations. Perfect

classification is observed when the SNR is above 0 dB in most cases. The demanded signal

length to achieve this performance is no more than for SISO systems. Due to the complexity

of MIMO systems, the likelihood evaluation is computationally much more expensive. In

fact, the complexity grows exponentially with the increasing modulation order as well as

number of transmitters.

In summary, our work has filled the void in the spectrum of existing methods with

low complexity classifiers of little compromise on classification accuracy. Novel classification

strategies have also been developed to solve modulation classification problems in more prac-

tical scenarios. As of now, much attention of modulation classifier development has shifted

towards MIMO systems. As stated above, computational complexity reduction is still a chal-

lenging task for MIMO systems, especially for higher order modulations and systems with

higher number of transmitter. It would be very interesting to adapt some of the SISO modu-

lation classifiers for the MIMO systems as only likelihood based classier has been considered

at the moment. While briefly touched upon in our experiments and discussions, the issues

of frequency offset is still not effectively solved by most of the current classifiers. To create

a classifier, especially a blind classifier, which is indeed practical in a real world situation,
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the ability to compensate frequency offset is extremely valuable and much desired.
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Appendix A: Minimum Distance

Centroid Estimation

The distance between a signal sample r(n) = αejθs(n) and an estimated centroid AmM =

aejφsmM can be written as

D(r(n),AmM) = ‖r(n)−AmM‖

=

√
α2 ‖r(n)‖2 + a2

∥∥smM∥∥2 − 2α ‖s(n)‖ a
∥∥smM∥∥ cos(θ − φ) (7.1)

Assuming a signal sample is assigned to its nearest centroid s(n) = smM, we replace the

expression for r(n) and AM with r(n) = αejθ and AmM = aejφ, where α = αs(n) and

a = asmM, for a more concise presentation.

Given that all signal symbol assignments are equiprobable, the expectation of signal-to-

centroid distance is given in equation (29).

E[DM(r, a, φ)] = (7.2)

N

M

∞∫
0

φ+π/M∫
φ−π/M

√
x2 + a2 − 2ax cos(y − φ)fmag(x|α, σ)

M∑
m=1

fphase(y|θ +mπ/M, σ)dydx

∂

∂φ
E[DM(r, φ)] = (7.3)

N

M

∞∫
0

π/M∫
−π/M

√
x2 + a2 − 2ax cos(y)fmag(x|α, σ)

M∑
m=1

∂

∂(y + φ)
fphase(y + φ|θ +mπ/M, σ)dydx
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∂

∂a
E[DM(r, a)] =

N

M

∞∫
0

π/M∫
−π/M

2a− 2x cos(y)

2
√
x2 + a2 − 2xa cos(y)

fmag(x|α, σ)
M∑
m=1

fphase(y + π/M |θ +mπ/M, σ)dydx

(7.4)

We take the derivative of E[DM(r, a, φ)] with respect of the centroid parameter phase φ

as in equation (30).

Given the signal phase distribution from a single symbol in AWGN channel (Bennett,

1956)

fphase(φ)

=
e−α

2/2σ2

2π
+
α cos(φ)

2σ
√

2π
· [1 + erf(

α cos(φ)√
2σ

)]e−
α2

2σ2 sin
2(θ), (7.5)

we simplify the distribution to its von Mises distribution approximation which converges to

equation (32) at high SNR (Leib and Pasupathy, 1988).

fphase(φ) =
e(α2/σ2)cos(φ−µ)

2πI0(α2/σ2)
. (7.6)

The derivative of the distribution with respect to φ can be found as

∂

∂φ
fphase(φ) = − α2 sin(φ− µ)

σ22πI0(α2/σ2)
e(α2/σ2) cos(φ−µ) (7.7)

which has the property that fphase
′(α + φ|α, σ) = −f ′(α − φ|α, σ) and fphase

′(α|α, σ) = 0.

The two possible solutions for ∂
∂φE[DM(r, a, φ)] can be found as φ = θ + mπ/M and

φ = θ+ (2m− 1)π/2M . It is not difficult to see that φ = θ+mπ/M provides the maximum

for E[DM(r, a, φ)] while φ = θ + (2m − 1)π/2M delivers the minimum. The term mπ/M

equals the phase difference between received signal centroids which introduces a relative shift

of carrier phase to the estimated carrier phase estimation. However, in modulation classifica-

tion, as long as the resulting centroids have a matching pattern with the true signal means,

the relative phase is of no concern. Therefore, the estimated centroid phase is accurate.
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Moreover, in a channel with phase offset, it is not difficult to see that the slow fading,

which adds a constant phase offset θo, results in a compensated of the shifted carrier phase

φ = θ + mπ/M + θo. In fast fading channel with θo ∼ N (0, σ2
θ), the single signal phase

distribution is modified to

fphase(φ) =

µ+π∫
µ−π

e(α2/σ2)cos(x−µ)

2πI0(α2/σ2)
· 1

σθ
√

2π
e
− (x−φ)2

2σ2
θ dx (7.8)

with the derivative of the distribution with respect to φ

∂

∂φ
fphase(φ)

=

µ+π∫
µ−π

(x− φ)

2
√

2σ3
θπ

3/2I0(α2/σ2)
· e
− (x−φ)

2σ2
θ

+(α2/σ2)cos(x−µ)
dx (7.9)

which leads to the same conclusion of φ = θ +mπ/M .

Now, let us consider the estimation of channel gain. The derivative of the distance

expectation with respect to centroid parameter magnitude is given in equation (31). The

magnitude PDF of a PSK modulated signal in AWGN channe is a Rice distribution

fmag(x) =
x

σ2
e(
−(x2+α2)

2σ2 )I0(
xα

σ2
) (7.10)

where I0(·) is the modified Bessel function of the first kind of order zero. This distribution

is often approximated as a normal distribution when α/σ is big enough.

fmag(x) =
1

σ
√

2π
e−

(x−α)2

2σ2 (7.11)

If the condition for the approximation can be met, a = α would be a solution of

∂
∂aE[DM(r, a)] = 0. A more accurate approximation would be

fmag(x) =
1

σ
√

2π
e−

(x−µ)2

2σ2 (7.12)

where µ = σ
√

2/πL1/2(−α2/2σ2) is the mean of the Rice distribution. The resulting error

of channel gain estimation can be found as σ
√

2/πL1/2(−α2/2σ2) − α, which converges to

zero when SNR→∞.

The analysis for QAM modulation is not given in this research. However, it can be easily

derived by considering it as a combination of components with the same magnitude which

can be treated similarly as PSK signals.
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Appendix B: Iterative Minimum

Distance Estimator

With A represented in a complex form x+ jy, the sub-gradient at A = x+ jy is obtained as

∇D(x, y) =
D(x+ ∆x, y)

∆x
+ j

D(x, y + ∆y)

∆y
. (7.13)

The update function for An = xn + jyn is expressed as

xn+1 + jyn+1 = xn + jyn − αM∇D(xn, yn) (7.14)

The iterative process starts with A0 = x0 + jy0 and should update the estimation for 20

iterations unless the termination condition is met that the sub-gradient is lower than the

defined threshold.

∇D(x, y) < ηD (7.15)

The values of parameter used in the centroid estimation is given in Table 7.1.
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Appendix B. Iterative Minimum Distance Estimator Summary

Table 7.1: Parameters used in the minimum distance estimator

Parameters Notation Simulation Values

Staring point A0 = x0 + jy0 0.1 + 0.1j,

Update step αM {2E − 4, 2E − 4, 5E − 5}
{2E − 4, 5E − 5, 1E − 5}

Sub-gradient step ∆x, ∆y 0.01

Update iterations 20

Termination threshold ηD 10
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Appendix C: Non-parametric

Likelihood Function

For both PSK and QAM modulation, it is not difficult to derive that NM− = MM− and

NM0 = NM+ = MM0 . In order to satisfy E[LNPLF (r|HM0)] > E[LNPLF (r|HM−)], the

following inequality needs to be satisfied.

MM0

RM0∫
0

x

σ2
e−x

2/2σ2
dx > MM−

RM−∫
0

x

σ2
e−x

2/2σ2
dx (7.16)

Simplify the above inequality with cumulative probability function of a Rayleigh distribution

F (x) = 1− e−x2/2σ2
.

MM0(1− e−R2
M0/2σ

2

) > MM−(1− e−R2
M−

/2σ2

) (7.17)

Replacing both test radius with equation (21) and considering all modulation cases, the

restriction for the reference radius can be written as

R0 > 2

√
2 log(

1

2−
√

2
)σ ≈ 2.07σ. (7.18)

Limiting the SNR in the range between 0 dB to 20 dB, taking the maximum of σ equals to

α when SNR is 0 dB. The limit for reference radius can be given by R0 > 2.07α.

In the case when false hypothesis is a modulation of higher order, the likelihood function

needs to satisfy E[LNPLF (r|HM0)] > E[LNPLF (r|HM+)] and

MM0(1− e−R2
M0/2σ

2

) > MM0(1− e−R2
M+/2σ

2

). (7.19)
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Appendix C. Non-parametric Likelihood Function Summary

It is not difficult to see that with RM0 > RM+ , according to equation (21), the condition is

always met and imposes no restriction on the test radius.
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