17 research outputs found

    Throughput and Delay on the Packet Switched Internet

    Get PDF
    The Internet has become a vital and essential part of modern everyday life. Services delivered by the Internet are used by people across the planet every moment of every day of the year. The Internet has proven a positive force for good improving the lives of billions of people worldwide. The power of the Internet to deliver this positive good to humanity relies on its ability to deliver life improving services. In my doctorate work culminating in this dissertation I have striven to sustain and increase the Internet's ability to deliver these services and to have a positive good effect upon humanity.The overarching purpose of this dissertation is to improve the Internet's ability to deliver life improving services. I have further divided this purpose into two goals. To improve the ability of applications operating in challenging network conditions to gain their fair share of the bandwidth resources and to reduce the delay with which these services are delivered. Every service delivered by the Internet consists of Internet objects that are delivered through communication paths across the Internet. The delivery of these objects is defined by the two characteristics; Throughput and delay. Throughput determines how much of an object can be delivered over a period of time and delay determines how long it takes to deliver an object.These two characteristics determine the Internet's ability to deliver objects across communication paths. Improving these two characteristics (bandwidth and delay) increase the ability of the Internet to deliver objects and thus improve the Internet's capability to deliver life improving services. To accomplish this goal I present projects along three areas of effort. These three areas of effort are: (1) Increase the ability of applications operating in challenging conditions to achieve their fair share of bandwidth. (2) Synthesize knowledge required to address the effort to reduce delay. (3) Develop protocols that reduce delay encountered in the communications paths of the Internet.In this dissertation I present projects along these three areas of effort that accomplish the two goals (increase bandwidth and reduce delay) to achieve the purpose of improving the Internet's ability to deliver essential and life improving services. These projects and their organization into areas of effort, goals and purpose are my contributions to the networking sciences

    Reducing Internet Latency : A Survey of Techniques and their Merit

    Get PDF
    Bob Briscoe, Anna Brunstrom, Andreas Petlund, David Hayes, David Ros, Ing-Jyh Tsang, Stein Gjessing, Gorry Fairhurst, Carsten Griwodz, Michael WelzlPeer reviewedPreprin

    Cross-Layer Techniques for Efficient Medium Access in Wi-Fi Networks

    Get PDF
    IEEE 802.11 (Wi-Fi) wireless networks share the wireless medium using a Carrier Sense Multiple Access (CSMA) Medium Access Control (MAC) protocol. The MAC protocol is a central determiner of Wi-Fi networks’ efficiency–the fraction of the capacity available in the physical layer that Wi-Fi-equipped hosts can use in practice. The MAC protocol’s design is intended to allow senders to share the wireless medium fairly while still allowing high utilisation. This thesis develops techniques that allow Wi-Fi senders to send more data using fewer medium acquisitions, reducing the overhead of idle periods, and thus improving end-to-end goodput. Our techniques address the problems we identify with Wi-Fi’s status quo. Today’s commodity Linux Wi-Fi/IP software stack and Wi-Fi cards waste medium acquisitions as they fail to queue enough packets that would allow for effective sending of multiple frames per wireless medium acquisition. In addition, for bi-directional protocols such as TCP, TCP data and TCP ACKs contend for the wireless channel, wasting medium acquisitions (and thus capacity). Finally, the probing mechanism used for bit-rate adaptation in Wi-Fi networks increases channel acquisition overhead. We describe the design and implementation of Aggregate Aware Queueing (AAQ), a fair queueing discipline, that coordinates scheduling of frame transmission with the aggregation layer in the Wi-Fi stack, allowing more frames per channel acquisition. Furthermore, we describe Hierarchical Acknowledgments (HACK) and Transmission Control Protocol Acknowledgment Optimisation (TAO), techniques that reduce channel acquisitions for TCP flows, further improving goodput. Finally, we design and implement Aggregate Aware Rate Control (AARC), a bit-rate adaptation algorithm that reduces channel acquisition overheads incurred by the probing mechanism common in today’s commodity Wi-Fi systems. We implement our techniques on real Wi-Fi hardware to demonstrate their practicality, and measure their performance on real testbeds, using off-the-shelf commodity Wi-Fi hardware where possible, and software-defined radio hardware for those techniques that require modification of the Wi-Fi implementation unachievable on commodity hardware. The techniques described in this thesis offer up to 2x aggregate goodput improvement compared to the stock Linux Wi-Fi stack

    Buffer De-bloating in Wireless Access Networks

    Get PDF
    PhDExcessive buffering brings a new challenge into the networks which is known as Bufferbloat, which is harmful to delay sensitive applications. Wireless access networks consist of Wi-Fi and cellular networks. In the thesis, the performance of CoDel and RED are investigated in Wi-Fi networks with different types of traffic. Results show that CoDel and RED work well in Wi-Fi networks, due to the similarity of protocol structures of Wi-Fi and wired networks. It is difficult for RED to tune parameters in cellular networks because of the time-varying channel. CoDel needs modifications as it drops the first packet of queue and the head packet in cellular networks will be segmented. The major contribution of this thesis is that three new AQM algorithms tailored to cellular networks are proposed to alleviate large queuing delays. A channel quality aware AQM is proposed using the CQI. The proposed algorithm is tested with a single cell topology and simulation results show that the proposed algorithm reduces the average queuing delay for each user by 40% on average with TCP traffic compared to CoDel. A QoE aware AQM is proposed for VoIP traffic. Drops and delay are monitored and turned into QoE by mathematical models. The proposed algorithm is tested in NS3 and compared with CoDel, and it enhances the QoE of VoIP traffic and the average endto- end delay is reduced by more than 200 ms when multiple users with different CQI compete for the wireless channel. A random back-off AQM is proposed to alleviate the queuing delay created by video in cellular networks. The proposed algorithm monitors the play-out buffer and postpones the request of the next packet. The proposed algorithm is tested in various scenarios and it outperforms CoDel by 18% in controlling the average end-to-end delay when users have different channel conditions

    The HOP Protocol:Reliable Latency-Bounded End-to-End Multipath Communication

    Get PDF

    Collaborative Traffic Offloading for Mobile Systems

    Get PDF
    Due to the popularity of smartphones and mobile streaming services, the growth of traffic volume in mobile networks is phenomenal. This leads to huge investment pressure on mobile operators' wireless access and core infrastructure, while the profits do not necessarily grow at the same pace. As a result, it is urgent to find a cost-effective solution that can scale to the ever increasing traffic volume generated by mobile systems. Among many visions, mobile traffic offloading is regarded as a promising mechanism by using complementary wireless communication technologies, such as WiFi, to offload data traffic away from the overloaded mobile networks. The current trend to equip mobile devices with an additional WiFi interface also supports this vision. This dissertation presents a novel collaborative architecture for mobile traffic offloading that can efficiently utilize the context and resources from networks and end systems. The main contributions include a network-assisted offloading framework, a collaborative system design for energy-aware offloading, and a software-defined networking (SDN) based offloading platform. Our work is the first in this domain to integrate energy and context awareness into mobile traffic offloading from an architectural perspective. We have conducted extensive measurements on mobile systems to identify hidden issues of traffic offloading in the operational networks. We implement the offloading protocol in the Linux kernel and develop our energy-aware offloading framework in C++ and Java on commodity machines and smartphones. Our prototype systems for mobile traffic offloading have been tested in a live environment. The experimental results suggest that our collaborative architecture is feasible and provides reasonable improvement in terms of energy saving and offloading efficiency. We further adopt the programmable paradigm of SDN to enhance the extensibility and deployability of our proposals. We release the SDN-based platform under open-source licenses to encourage future collaboration with research community and standards developing organizations. As one of the pioneering work, our research stresses the importance of collaboration in mobile traffic offloading. The lessons learned from our protocol design, system development, and network experiments shed light on future research and development in this domain.Yksi mobiiliverkkojen suurimmista haasteista liittyy liikennemäärien eksponentiaaliseen kasvuun. Tämä verkkoliikenteen kasvu johtuu pitkälti suosituista videopalveluista, kuten YouTube ja Netflix, jotka lähettävät liikkuvaa kuvaa verkon yli. Verkon lisääntynyt kuormitus vaatii investointeja verkon laajentamiseksi. On tärkeää löytää kustannustehokkaita tapoja välittää suuressa mittakaavassa sisältöä ilman mittavia infrastruktuuri-investointeja. Erilaisia liikennekuormien ohjausmenetelmiä on ehdotettu ratkaisuksi sisällönvälityksen tehostamiseen mobiiliverkoissa. Näissä ratkaisuissa hyödynnetään toisiaan tukevia langattomia teknologioita tiedonvälityksen tehostamiseen, esimerkiksi LTE-verkosta voidaan delegoida tiedonvälitystä WiFi-verkoille. Useimmissa kannettavissa laitteissa on tuki useammalle langattomalle tekniikalle, joten on luonnollista hyödyntää näiden tarjoamia mahdollisuuksia tiedonvälityksen tehostamisessa. Tässä väitöskirjassa tutkitaan liikennekuormien ohjauksen toimintaa ja mahdollisuuksia mobiiliverkoissa. Työssä esitetään uusi yhteistyöpohjainen liikennekuormien ohjausjärjestelmä, joka hyödyntää päätelaitteiden ja verkon tilannetietoa liikennekuormien optimoinnissa. Esitetty järjestelmä ja arkkitehtuuri on ensimmäinen, joka yhdistää energiankulutuksen ja kontekstitiedon liikennekuormien ohjaukseen. Väitöskirjan keskeisiä tuloksia ovat verkon tukema liikennekuormien ohjauskehikko, yhteistyöpohjainen energiatietoinen optimointiratkaisu sekä avoimen lähdekoodin SoftOffload-ratkaisu, joka mahdollistaa ohjelmistopohjaisen liikennekuormien ohjauksen. Esitettyjä järjestelmiä arvioidaan kokeellisesti kaupunkiympäristöissä älypuhelimia käyttäen. Työn tulokset mahdollistavat entistä energiatehokkaammat liikennekuormien ohjausratkaisut ja tarjoavat ideoita ja lähtökohtia tulevaan 5G kehitystyöhön

    DiversiFi: Robust Multi-Link Interactive Streaming

    Get PDF
    ABSTRACT Real-time, interactive streaming for applications such as audio-video conferencing (e.g., Skype) and cloud-based gaming depends critically on the network providing low latency, jitter, and packet loss, much more so than on-demand streaming (e.g., YouTube) does. However, WiFi networks pose a challenge; our analysis of data from a large VoIP provider and from our own measurements shows that the WiFi access link is a significant cause of poor streaming experience. To improve streaming quality over WiFi, we present DiversiFi, which takes advantage of the diversity of WiFi links available in the vicinity, even when the individual links are poor. Leveraging such cross-link spatial and channel diversity outperforms both traditional link selection and the temporal diversity arising from retransmissions on the same link. It also provides significant gains over and above the PHY-layer spatial diversity provided by MIMO. Our experimental evaluation shows that, for a client with two NICs, enabling replication across two WiFi links helps cut down the poor call rate (PCR) for VoIP by 2.24x. Finally, we present the design and implementation of DiversiFi, which enables it to operate with single-NIC clients, and with either minimally modified APs or unmodified APs augmented with a middlebox. Over 61 runs, where the baseline average PCR is 4.9%, DiversiFi running with a single NIC, switching between two links, helps cut the PCR down to 0%, while duplicating wastefully only 0.62% of the packets and impacting competing TCP throughput by only 2.5%. Thus, DiversiFi provides the benefit of multi-link diversity for real-time interactive streaming in a manner that is deployable and imposes little overhead, thereby ensuring coexistence with other applications

    Toward Open and Programmable Wireless Network Edge

    Get PDF
    Increasingly, the last hop connecting users to their enterprise and home networks is wireless. Wireless is becoming ubiquitous not only in homes and enterprises but in public venues such as coffee shops, hospitals, and airports. However, most of the publicly and privately available wireless networks are proprietary and closed in operation. Also, there is little effort from industries to move forward on a path to greater openness for the requirement of innovation. Therefore, we believe it is the domain of university researchers to enable innovation through openness. In this thesis work, we introduce and defines the importance of open framework in addressing the complexity of the wireless network. The Software Defined Network (SDN) framework has emerged as a popular solution for the data center network. However, the promise of the SDN framework is to make the network open, flexible and programmable. In order to deliver on the promise, SDN must work for all users and across all networks, both wired and wireless. Therefore, we proposed to create new modules and APIs to extend the standard SDN framework all the way to the end-devices (i.e., mobile devices, APs). Thus, we want to provide an extensible and programmable abstraction of the wireless network as part of the current SDN-based solution. In this thesis work, we design and develop a framework, weSDN (wireless extension of SDN), that extends the SDN control capability all the way to the end devices to support client-network interaction capabilities and new services. weSDN enables the control-plane of wireless networks to be extended to mobile devices and allows for top-level decisions to be made from an SDN controller with knowledge of the network as a whole, rather than device centric configurations. In addition, weSDN easily obtains user application information, as well as the ability to monitor and control application flows dynamically. Based on the weSDN framework, we demonstrate new services such as application-aware traffic management, WLAN virtualization, and security management
    corecore