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Abstract

IEEE 802.11 (Wi-Fi) wireless networks share the wireless medium using a

Carrier Sense Multiple Access (CSMA) Medium Access Control (MAC) protocol.

The MAC protocol is a central determiner of Wi-Fi networks’ efficiency–the

fraction of the capacity available in the physical layer that Wi-Fi-equipped

hosts can use in practice. The MAC protocol’s design is intended to allow

senders to share the wireless medium fairly while still allowing high utilisation.

This thesis develops techniques that allow Wi-Fi senders to send more data

using fewer medium acquisitions, reducing the overhead of idle periods, and

thus improving end-to-end goodput. Our techniques address the problems we

identify with Wi-Fi’s status quo. Today’s commodity Linux Wi-Fi/IP software

stack and Wi-Fi cards waste medium acquisitions as they fail to queue enough

packets that would allow for effective sending of multiple frames per wireless

medium acquisition. In addition, for bi-directional protocols such as TCP,

TCP data and TCP ACKs contend for the wireless channel, wasting medium

acquisitions (and thus capacity). Finally, the probing mechanism used for

bit-rate adaptation in Wi-Fi networks increases channel acquisition overhead.

We describe the design and implementation of Aggregate Aware Queueing

(AAQ), a fair queueing discipline, that coordinates scheduling of frame trans-

mission with the aggregation layer in the Wi-Fi stack, allowing more frames per

channel acquisition. Furthermore, we describe Hierarchical Acknowledgments

(HACK) and Transmission Control Protocol Acknowledgment Optimisation

(TAO), techniques that reduce channel acquisitions for TCP flows, further

improving goodput. Finally, we design and implement Aggregate Aware Rate
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Control (AARC), a bit-rate adaptation algorithm that reduces channel ac-

quisition overheads incurred by the probing mechanism common in today’s

commodity Wi-Fi systems. We implement our techniques on real Wi-Fi hard-

ware to demonstrate their practicality, and measure their performance on real

testbeds, using off-the-shelf commodity Wi-Fi hardware where possible, and

software-defined radio hardware for those techniques that require modification

of the Wi-Fi implementation unachievable on commodity hardware. The tech-

niques described in this thesis offer up to 2x aggregate goodput improvement

compared to the stock Linux Wi-Fi stack.



Impact Statement

With the proliferation of mobile handheld devices, Wi-Fi has be-

come the de facto technology for providing network connectivity in

a large variety of environments ranging from small homes and offices

to large offices, often densely placed in cities. In a small home/office

environment, the algorithms described in this thesis make faster

browsing and downloading of content via the Wi-Fi network pos-

sible, while in larger-scale environments they allow more users to

share a Wi-Fi network more efficiently. We have implemented our

algorithms using off-the-shelf, commercially-available Wi-Fi devices

to demonstrate their practicality. Our evaluation results from an

indoor testbed help to extend our understanding of Wi-Fi systems’

performance.
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Chapter 1

Introduction

Wireless communication technologies have become essential to delivering our

daily communication needs. Given the surge in use of handheld devices such

as mobile phones, wireless networking has become a prevalent networking

technology. Today, the main wireless local area network technology is based

on the IEEE 802.11 standard family, commonly known as Wi-Fi. Lack of

wiring, ease of installation, and support for mobility are some of the reasons

why Wi-Fi is ubiquitously deployed in diverse environments such as homes,

offices, airports, shopping malls, and university campuses. To meet this ever-

growing demand, IEEE 802.11 has evolved significantly in successive standards,

offering improvements in performance and capabilities. For example, the early

generation of Wi-Fi devices based on IEEE 802.11b [6] supported physical layer

(PHY) rates up to 11 Mbps. The latest IEEE 802.11ax [23] promises PHY

rates up to 10Gbps. These advancements have been achieved by enhancing

the PHY layer and the medium access control (MAC) layer. In the PHY layer,

better spectral efficiency [5], faster modulation and coding schemes [50], wider

bandwidth [50], and the use of multiple antennas to transmit independent

streams of data [50] have been introduced. The MAC layer, too, has seen

several enhancements, such as quality of service [49], frame batching [49], and

frame aggregation [50]. However, the Wi-Fi MAC layer’s fixed idle periods

when accessing the wireless medium have remained relatively unchanged. These

fixed periods of idle time, while necessary, incur extra overhead. Reducing these
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overheads is important to achieve high wireless channel utilisation, and thus

high goodput. For example, 802.11n [50] introduced frame aggregation, which

allows senders to send multiple frames using a single channel acquisition, thus

amortising the Wi-Fi MAC layer’s idle time overheads. However, unless the

sending host manages to queue packets efficiently to allow for a large number

of frames to be aggregated, these frame aggregation benefits diminish. Another

example concerns the Transmission Control Protocol (TCP), the protocol

carrying the majority of today’s Internet traffic. For every two TCP data

packets received, the receiver transmits a TCP ACK back to the transmitter [4].

To transmit TCP ACKs, the receiver must acquire the wireless channel, directly

contending for the wireless medium with the sender, thus incurring extra

overhead.

In this thesis we take a cross-layer approach, where we look at all layers

involved in transmitting or receiving data and analyse their interactions, with

the aim of improving the MAC protocol’s efficiency. We analyse the end-to-end

goodput of commodity Wi-Fi systems and identify shortcomings in today’s

TCP/IP/Wi-Fi protocol stack that give rise to inefficient use of the wireless

medium. Armed with these insights, we design algorithms and techniques that

improve MAC protocol efficiency, resulting in significant end-to-end goodput

improvements. We evaluate our systems using real indoor experimental testbeds,

and show their practicality by implementing them on real hardware. As the

hardware platforms available to us for open-source development dictate which

IEEE 802.11 standards we can use, in this thesis we limit our scope to IEEE

802.11n, though the improvements we describe are applicable in later Wi-

Fi standards that use similar MAC mechanisms, such as the recent IEEE

802.11ac [10]. More generally, we expect our techniques should offer efficiency

benefits to other CSMA-based wireless systems.
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1.1 Problem Statement

In a multiuser wireless network, sharing the radio spectrum resources fairly

and efficiently is a perennially challenging problem. The main methods used to

divide the spectrum amongst wireless users include frequency division [45], time

division [45], code division [45] and a combination of these [45]. Some of the

main factors that determine which of the methods are most appropriate include

the number of wireless stations, traffic patterns, and power requirements. For

example, in frequency division multiple access (FDMA) the base station assigns

a frequency band used for transmission to each wireless station. While simple,

FDMA suffers from several disadvantages, such as spectral inefficiency and

frequency-selective fading [45]. To avoid interference from adjacent frequen-

cies, FDMA utilises a guard band between adjacent frequencies, which incurs

overhead, as such guard bands do not carry data. In addition, when wireless

stations are not transmitting, their assigned frequency is unused, effectively

wasting capacity that could be used by other stations.

Orthogonal frequency-division multiplexing [93] (OFDM) sees widespread

use. In OFDM, spectrum is divided into orthogonal frequencies called sub-

carriers. Unlike FDMA, OFDM does not require guard bands to guard

against interference, making it more spectrally efficient and robust to frequency-

selective fading. Prominent technologies that use OFDM include IEEE 802.11

a/g/n/ac [10], WiMAX [9], and DAB [69].

Also widely deployed is orthogonal frequency-division multiple access

(OFDMA), an extension of OFDM. OFDMA may further divide spectrum

into narrower sub-carriers and groups sub-carriers into resource units (RU).

Unlike OFDM, where all of a channel’s sub-carriers are used at once by a single

wireless station, in OFDMA the AP can transmit to multiple users during

a single channel acquisition by assigning different RUs to different wireless

stations. This makes OFDMA an ideal fit for scenarios such as the Internet of

things (IoT), where many low-bitrate wireless stations send traffic periodically.

OFDMA is used in wireless technologies such as LTE-M [25] and NB-IoT [26].
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More recently, IEEE 802.11ax [23] combines CSMA/CA with OFDMA for

channel access to support a large number of wireless stations.

To support high-throughput, bursty traffic, in 802.11 a/g/n/ac wireless

stations may transmit at different rates without centralised coordination. To

manage the wireless medium, the 802.11 MAC protocol uses the Distributed

Coordination Function (DCF) algorithm. In DCF, wireless stations coordinate

their transmissions in a distributed fashion. At the heart of DCF is Carrier

Sense Multiple Access with Collision Avoidance (CSMA/CA) [57, 32]. Like

their Ethernet [66] cousins, wireless stations must listen on the channel before

they can transmit. The wireless medium must be sensed free for some period

of time before transmissions can commence. If the wireless medium is sensed

busy, or it becomes busy while waiting, the transmission must be deferred.

Wireless stations continuously listen on the channel while waiting for the full

waiting period. Once the wireless medium has remained free, transmission

begins. After each transmission, the transmitter waits for a response from

the receiver to acknowledge the reception of the transmission. The receiver

must respond within a fixed period of time; absence of the confirmation from

the receiver is treated by the transmitter as transmission failure. Detecting

collisions in wireless channels is challenging, as the transmitter cannot listen

while it is transmitting. While some proposed systems can receive transmissions

while transmitting on the same channel [53], these techniques have not yet

found broad commodity use. As a result, failure to receive an acknowledgement

from the receiver is treated as a signal of congestion, and the transmitter

then increases the time during which it must sense the medium free before

retransmitting. These waiting times, while necessary, incur extra overhead.

And these idle times waste even more capacity as IEEE 802.11’s PHY rates

continue to increase. Figure 1.1 shows the overhead of the MAC protocol

relative to the time it takes to transmit a fixed-size data packet, using the

greatest supported PHY rate in each of the IEEE 802.11b,a/g,n standards.

802.11 supports multiple PHY rates and the greatest PHY rate supported
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Figure 1.1: The relation between data serialisation time and the fixed overheads
incurred by the wireless medium acquisition procedure for various IEEE
802.11 MAC protocols.

by IEEE 802.11b [6] is 11 Mbps. Transmitting a 1500-byte packet at this

rate takes about 1 ms. The MAC protocol incurs 32% overhead, where the

overhead includes the preamble prepended to each packet, the overhead to

send back the ACK, a CRC, and fixed waiting times. In IEEE 802.11a/g

[5][7] the maximum supported PHY rate increased to 54 Mbps, but the fixed

waiting times remained the same. As a result, the overhead increased to

about 54%. Finally, the greatest PHY rate supported by IEEE 802.11n [50]

is 600 Mbps. At this high rate, it takes a mere 20 µs to transmit a 1500-byte

packet. Sending single frames yields a prohibitively expensive 81% waiting time

overhead. Frame aggregation was introduced in IEEE 802.11n in an attempt

to amortise these overheads. Using frame aggregation, multiple packets are

sent back-to-back once the wireless channel is acquired. If we could arrange

for 42 packets to be sent in a single aggregated frame, frame aggregation

would improve utilisation and reduce overhead to approximately 21%. Despite

these enhancements, the IEEE 802.11 DCF’s overheads penalise higher level
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protocols such as TCP [4]. Like the IEEE 802.11 DCF, TCP uses its own

positive acknowledgments (TCP ACKs) to report successful receipt of TCP

segments. TCP ACKs are small in size, typically 40 bytes. The IEEE 802.11

DCF treats TCP ACKs as normal data and so sends them using the channel

acquisition procedures described above, incurring many medium acquisitions

just for TCP’s receiver feedback. Figure 1.2 shows the achievable goodput

for various PHY transmit rates (Mbps) as a function of the number of frames

aggregated after a single medium acquisition for a single TCP flow. Each

curve stops at the maximum allowed aggregate size for a given PHY rate. The
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Figure 1.2: IEEE 802.11 DCF’s channel utilisation for a single station sending a
single TCP flow on an error free wireless channel. Default channel
access parameters for IEEE 802.11b, curve labeled 11 Mbps, IEEE
802.11a, curve labeled 54 Mbps, and IEEE 802.11n rest of the curves.

two curves labeled 11 and 54 represent the highest rates supported by IEEE

802.11b and IEEE 802.11a/g, respectively. While IEEE 802.11b/a/g do not

support aggregation, aggregation would in principle improve their goodput.

The first observation from Figure 1.2 is that the waiting time overhead is even

greater than that shown in Figure 1.1. This extra overhead comes as a result of

medium acquisitions for TCP ACKs. For example, for IEEE 802.11b, overhead

increases to 45%. The second observation is that sending larger aggregates
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increases channel utilisation. In this thesis we will investigate why IEEE 802.11

fails to achieve good channel utilisation in practice, despite the potential for

frame aggregation to improve channel utilisation. We hypothesise that there

are five main causes:

H1 Frame aggregation achieves the greatest channel utilisation when large

aggregates are transmitted. To send large aggregates, enough packets

destined for a single receiver have to be queued at the layer where

aggregates are formed. Our hypothesis is that there are not enough

packets at the aggregation layer to form large aggregates.

H2 Traditionally rate adaptation algorithms in Wi-Fi networks use probing to

select among the available transmit rates. These probing frames interfere

with frame aggregation.

H3 The Wi-Fi MAC treats TCP ACKs as regular data frames that are subject

to the same channel contention procedures as other data frames. Con-

tention of TCP ACKs with the AP’s TCP data transmissions reduces

channel utilisation.

H4 The receiving host’s TCP stack generates TCP ACKs as it processes

incoming TCP data. As a result, TCP ACKs arrive sparsely at the Wi-Fi

stack and are immediately transmitted. This increases the number of

channel acquisitions, reducing channel utilisation.

H5 When the AP is forwarding TCP data to multiple Wi-Fi clients, TCP

ACKs from one TCP receiver contend with TCP ACKs from other TCP

receivers, in part because of problem (H4).

1.2 Scope
The IEEE 802.11 standards define protocols that describe the operation of the

physical (PHY) and link (MAC) layers. As such they incorporate a broad range

of electrical engineering and computer science topics. Our scope in this thesis
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is limited to the MAC layer as defined in these standards. One of the aims in

this thesis is to design systems that are practical and, where possible, run with

minimal or no hardware changes. As such, we strive to design systems that

can run out of the box using off-the-shelf, commercially available hardware.

To achieve this aim we limit our scope to the CSMA/CA MAC protocol as

defined in the IEEE 802.11 standards. During the work on this thesis, the

IEEE 802.11 committee introduced a new IEEE 802.11ax standard that departs

from CSMA/CA and introduces a more centralised MAC protocol to manage

wireless transmissions. It aims to provide connectivity to large numbers of

devices, such as in the Internet of Things scenario, sending at low bit-rates.

By contrast, CSMA/CA, as used in IEEE 802.11b,a/g,n,ac networks, aims to

provide high throughput to fewer devices. We will discuss the implications of

the IEEE 802.11ax MAC design in Chapter 6. In this thesis the evaluation is

limited to a typical scenario where users are downloading data from a remote

server where the bottleneck is the AP. As such, this thesis focuses on measuring

the throughput, which is the most relevant metric in such a scenario. Other

metrics, such as jitter and latency, which are relevant for real-time voice and

video workloads, are left as future work.
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1.3 Outline and Contribution
In this thesis we analyse cross-layer protocol interactions in TCP/IP over Wi-Fi

MAC networks and design and evaluate techniques that improve end-to-end

goodput. We evaluate the performance of the Wi-Fi MAC protocol using

real-world testbeds. In Chapter 2 we provide a generic background and prior

research context for this thesis. A more specific background context is provided

with each chapter. This thesis makes the following contributions, broken down

by chapter, where bold text in parentheses indicates which of the hypotheses

from Section 1.1 are addressed:

• In Chapter 3 we design and implement TCP/HACK, a scheme that

increases the efficiency of the Wi-Fi MAC by encapsulating TCP ACK

information in the Wi-Fi MAC’s link-layer ACKs (H3 and H5).

– We offer an analysis of the capacity of the Wi-Fi MAC protocol

for TCP traffic as a function of bit-rate, showing the theoretical

goodput gains achievable by avoiding medium acquisitions for TCP

ACKs.

– We evaluate TCP/HACK using a software-defined radio platform

and show that TCP/HACK offers up to 32% goodput improvement.

• In Chapter 4 we design and implement AAQ, a fair queueing algorithm

that aids in sending large aggregates of frames by exchanging information

between the IP and Wi-Fi device driver layers (H1).

– We provide empirical measurements from an indoor IEEE 802.11

network testbed and show that today’s IP stack and IEEE 802.11

NICs often fail to send large aggregates of frames. This results in

poor goodput.

– We evaluate AAQ using a real-world indoor testbed and show that

AAQ offers up to 27% goodput improvement.
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• In Chapter 4 we design and implement TAO, a TCP optimisation tech-

nique that allows a TCP receiver to send TCP ACKs in large aggregates

on IEEE 802.11 networks (H4 and H5).

– We evaluate TAO using a real-world indoor testbed and show that

TAO offers up to 30% goodput improvement.

• In Chapter 5 we design and implement AARC, a rate control algorithm

that chooses the best transmit rate while preserving large aggregates

(H2).

– In an evaluation on a real-world testbed, we show that the de-

fault rate control algorithm in Linux disrupts frame aggregation

significantly, thus reducing goodput.

– We evaluate AARC in an indoor IEEE 802.11 network testbed and

show that the goodput achieved is more then 2x the goodput of the

default Linux configuration.

Finally, Chapter 6 concludes this thesis with a discussion and suggestions

for future work.



Chapter 2

Background and Related Work

Wireless systems in general and those based on IEEE 802.11 in particular

have long been the subject of active research. A large body of research has

gone into analysing the behaviour of wireless networks and improving their

performance [58, 87, 33, 95, 54]. In this chapter we give an overview of the

background related to this thesis. We will provide a general overview here;

more detailed background information is provided in each subsequent chapter

according to that chapter’s focus. We also will summarize some related work

in this overview.

2.1 IEEE 802.11 Media Access Protocol
The IEEE 802.11 MAC protocol uses CSMA/CA, based on the Ethernet’s

CSMA/CD [66], which in turn is based on the ALOHA random access pro-

tocol [27]. Further, to combat the classic hidden terminal problem, IEEE

802.11 borrows from MACA [56]. Figure 2.1 shows the basic operation of IEEE

802.11’s CSMA/CA protocol, the Distributed Coordination Function (DCF).

Before transmitting, stations listen to the medium. If the medium is sensed

Time

Preamble+DataDIFS
Medium Busy

Backoff Preamble+ACKSIFS

Figure 2.1: 802.11 Distributed Coordination Function

busy then stations defer their transmission. Once the medium becomes idle,
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for the fixed duration of DIFS, stations enter the so called contention period.

Each station draws a uniformly distributed random number (backoff counter)

between 0 and CW . CW starts at some CWmin and is doubled every time a

transmission fails, up to some CWmax. For every timeslot of length Tslot that

the medium is idle, the backoff counter is decremented. Once the backoff counter

reaches zero, the station initiates transmission. If during the contention period

the medium is sensed busy, the backoff counter is paused. It is resumed once the

medium is sensed free for a DIFS period. Every data transmission is preceded

with a preamble that marks its beginning. The preamble is transmitted using a

predefined resilient bit-rate and contains information such as the bit-rate at

which the following data is transmitted. After successful reception of the data,

the recipient must acknowledge it after waiting for a SIFS period by sending

an ACK control packet. To determine if the transmission is successful, the

receiver computes the Frame Checksum Sequence (FCS), and compares it to

the FCS calculated by the transmitter and appended at the end of the data.

ACK packets do not contend for the medium as the time for their transmission

is reserved by the transmitter. Data packet headers contain a duration field,

which gives the period of time the transmission over the air lasts. Stations

overhearing the transmission defer their own transmission for the duration

period.1

As applications have demanded higher throughput, researchers have ex-

plored different ways to improve the existing 802.11 MAC protocol. Xiao and

Rosdahl [95] give a theoretical throughput upper limit and a theoretical delay

limit for the IEEE 802.11 MAC. They conclude that if one increases the PHY

bit-rate without reducing MAC overhead, the improvement in throughput is

bounded. Several efforts have enhanced the IEEE 802.11 DCF by adjusting

various protocol parameters [36, 92, 37]. Idle Sense [48] improves the IEEE

802.11 DCF by ensuring that all stations have the same contention window.

Stations converge to the same CW by tracking the number of consecutive idle

1This mechanism is known as Virtual Carrier Sensing
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slots. More recently, in Wi-Fi-Nano [64], Magistretti et al. note that most

of the channel acquisition overhead in the IEEE 802.11 DCF comes from its

contention period backoff. This contention period is divided into slots of 9

µs. In Wi-Fi-Nano, time slots are reduced to 800 ns. Most of the work in

Wi-Fi-Nano focuses on physical-layer techniques to allow proper operation of

IEEE 802.11 over 800 ns time slots. These techniques require major changes to

the current IEEE 802.11 hardware design.

Starting with IEEE 802.11a orthogonal frequency-division multiplexing

(OFDM) is used for transmission. Briefly, OFDM is a frequency division

multiplexing (FDM) scheme that divides a large bandwidth (i.e., 20, 40, or

80 MHz) into small overlapping narrowband channels that do not interfere

with each other. For example, a 20 MHz bandwidth is divided into 64 equal

sub-channels each 312.5 KHz in width. OFDM is more robust to multi-path

fading and is more efficient in using spectrum. A detailed explanation of OFDM

is out of scope for this overview and the reader is referred to an introduction

and history of OFDM [93].

In FICA [84], Tan et al. divide the wide IEEE 802.11 band into narrower

sub-bands. A new physical layer architecture is developed in which multi-

ple senders concurrently transmit on these different sub-bands. The narrow

sub-bands are then divided into subcarriers, over which OFDM is used for

transmission. A new MAC protocol is developed in which senders contend in

the frequency domain rather than in the time domain for medium acquisition.

By using narrow band transmission the physical data rate is lowered and the

channel acquisition overhead lessened relative to the time required for data

transmission. Furthermore, by allowing multiple senders to transmit at the

same time, acquisition overheads are spread across multiple frame transmissions,

further amortising the overhead. Chintalapudi et al. propose Wi-Fi-NC [38], a

different design for narrow-band channelisation of Wi-Fi. Apart from reducing

IEEE 802.11 MAC overhead at high physical layer data rates, Wi-Fi-NC also

targets improving the efficiency of Wi-Fi networks in scenarios where heteroge-
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neous physical layers must co-exist and available spectrum is fragmented, as

with white-space networks [28]. Like FICA, Wi-Fi-NC requires redesigns of

the physical and MAC layers.

To adapt to varying wireless channel conditions, IEEE 802.11 supports

multiple PHY transmission rates, each with a different degree of robustness

against bit errors. The original IEEE 802.11 DCF gives each station equal

transmit opportunities. Tan and Guttag noticed that in a multi-rate environ-

ment, the IEEE 802.11 DCF is unfair to stations with a fast sending rate,

because they get the same number of transmit opportunities as the stations

with the slow sending rate. This leads to less time on the channel for the fast

sending rates, and results in poor aggregate throughput. They propose time

based fairness [83], where each station gets equal time.

IEEE 802.11 does not mandate any means for how stations choose the bit-

rate at which to transmit at a particular time. Much research has investigated

various algorithms to best track channel quality and use the most appropriate

rate. There are a number of rate adaptation (RA) algorithms proposed. Many

use various statistics, such as packet error rate or signal-to-noise ratio, to

track channel quality and decide on the best bit-rate to use [55, 94, 34]. More

recently, with the introduction of IEEE 802.11n, a new wave of RA algorithms

has emerged. These algorithms incorporate new MIMO rates and features such

as frame aggregation [72, 40, 100].

2.2 Enhancements incorporated in the IEEE

802.11 standard
To meet the demand for high throughput, the IEEE 802.11 standard incorpo-

rates some major enhancements to the MAC protocol. The IEEE 802.11e [49]

amendment introduced transmit opportunity (TXOP), a form of time-based

fairness, mentioned earlier. Using TXOP, stations are free to send back-to-back

packets during a single channel acquisition up to the TXOP value. TXOP is

a fixed channel time during which a station may transmit. The TXOP is a
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value broadcast by the Access Point (AP), the central entity managing the

Wi-Fi network. In addition, IEEE 802.11e introduces a Block Ack protocol.

The Block Ack protocol is a session-oriented protocol in the MAC layer, and

is used to acknowledge multiple packets using a single Block Ack frame. To

use the Block Ack protocol, stations have to establish a session. A Block Ack

session is established by sending an Add Block Ack Request to the desired

destination; the receiver responds with an Add Block Ack Response. The

Block Ack protocol is a window-based protocol that can acknowledge up to

64 packets in IEEE 802.11n. A Block Ack session is identified by the 3-tuple

< source,destination,tid >. Traffic Identification (TID) represents the traffic

access category (AC). IEEE 802.11e [49] introduced four ACs in an effort to

provide Quality of Service (QoS). The four categories, in decreasing order of

priority, are Voice, Video, Best Effort, and Background. Priority is provided by

adjusting the DCF access parameters and the TXOP value. These values are

broadcast by the AP and stations must comply with them.

IEEE 802.11n [50] introduced frame aggregation, a major enhancement

to the IEEE 802.11 MAC protocol. Frame aggregation works in conjunction

with the Block Ack protocol and TXOPs. Two types of frame aggregation

are supported: Aggregate MAC Service Data Unit (A-MSDU), and Aggregate

MAC Protocol Data Unit (A-MPDU). A-MSDU aggregates multiple packets

into a single “jumbo frame” with a single MAC header and a single Frame

Checksum Sequence (FCS). A drawback of A-MSDU is the use of a single FCS

to protect all the packets in the aggregate. As a result, a single bit error renders

the whole A-MSDU unusable, wasting valuable channel time. In our experience

we have not encountered Wi-Fi NICs that support A-MSDU transmission. A

more robust form of aggregation is A-MPDU aggregation. In an A-MPDU each

packet has its own MAC headers and a FCS, and therefore only frames that

are in error are discarded provided that the preamble is decoded without error.

Each A-MPDU consists of a PHY preamble followed by variable number of

frames, separated by a well known pattern called a delimiter. The maximum
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number of frames that can be transmitted in a single A-MPDU is limited

by three factors. First is the Physical Layer Convergence Protocol (PLCP)

payload size, which is 64K in IEEE 802.11n. This limit includes MAC headers

and delimiters. Sending 1500-byte packets limits the number of frames in an

A-MPDU to 42. The second limit is set by the TXOP value for the given AC,

broadcast by the AP. This value specifies the amount of time in milliseconds

a station can transmit continuously with a single channel acquisition. Since

the limit is in time, the number of frames that can be aggregated depends on

the transmit rate used by the wireless station. The third and final limit is the

limit imposed by the Block Ack protocol. A Block Ack can only acknowledge

up to 64 frames. All the frames an in A-MPDU must belong to the same AC

and be addressed to the same destination. In addition, all frames are sent at

the same bit-rate.

In [70] Ozdemir et al. improve upon TXOP to further reduce channel

overhead by allowing the recipient of the frame to respond with data frames

during the same TXOP reserved by the transmitter, without performing channel

acquisition. This enhancement was included in the IEEE 802.11n standard.

2.3 TCP/IP and Wi-Fi

The Transmission Control Protocol (TCP) [4] carries the majority of the traffic

in the Internet. Originally it was designed for wired networks. The increased

popularity of Wi-Fi sparked interest in the wireless research community to

analyse and improve TCP’s performance over Wi-Fi links. At the heart of

TCP is the congestion control algorithm whose job is to find the optimal

sending rate. TCP treats losses as a signal of a congested network and reacts

to them by dropping its congestion window size, and thus its transmission

rate. However, losses on wireless links can occur as a result of bit errors

introduced by the wireless channel. Fu and Liew enhanced TCP’s congestion

control algorithm to work on wireless links [42]. Their protocol enacts changes

to the TCP stack at the sender that improve throughput over wireless links.
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Balakrishnan et al. [30] provide a comparison of mechanisms for improving

TCP performance over wireless links. They divide these techniques into three

broad categories: end-to-end, link-layer, and split-connection solutions. In

the end-to-end category, they conclude that TCP with New Reno congestion

control performs better then TCP Reno. For the link-layer category, they

highlight that link-layer retransmissions can cause TCP to timeout, resulting

in poor goodput. Split-connection protocols [98, 29] split TCP connections

between sender and receiver into two connections: one connection between

AP and sender and one between AP the receiver. These protocols incur extra

overhead as each packet goes through the TCP stack twice. In addition, the

state kept at the AP is increased significantly.

Pang et al. [71] propose a TCP ACK agent that sits at the AP and

generates TCP ACKs on behalf of the wireless client. They use link-layer ACKs

to signal to the AP that a TCP data packet has been received successfully. The

AP then generates the TCP ACK and forwards it upstream on behalf of the

TCP client. Their design is only capable of communicating to the AP when

the client observes a TCP ACK for the data just received and their system

does not mention if it is possible to generate TCP ACKs with a lower sequence

number. This information is needed in the case of loss and as such it prevents

delivery of duplicate ACKs, and prevents the use of fast retransmit, leaving

only inefficient TCP timeouts. Furthermore, they don’t mention how their

system handles cases when TCP options are present, such as TCP timestamp

options.



Chapter 3

Hierarchical ACKs for Efficient

Wireless Medium Utilisation

3.1 Introduction

As described in Chapter 1, in Wi-Fi wireless networks, each time a sender wishes

to transmit it must first sense the medium to be idle for a randomly chosen

interval. These random delays desynchronise would-be concurrent senders.

To use a concrete example, Distributed Channel Access (DCA) in 802.11g [7]

enforces an average idle period of 110.5 µs before a frame’s transmission, whereas

a 1500-byte payload itself lasts only 222 µs at 54 Mbps. Each frame’s link-layer

acknowledgment (LL ACK) consumes further channel capacity. As the physical-

layer bit-rate increases but the pre-transmission idle period remains the same,

this inefficiency only worsens. If a 600 Mbps 802.11n sender sent single frames

in this fashion, it would only achieve 9% of the theoretical channel capacity.

Moreover, Wi-Fi senders back off exponentially after a failed transmission,

and so incur even longer mean pre-transmission idle periods under contention,

further reducing medium efficiency. In an effort to amortise the significant

overhead of medium acquisition over multiple data frames, 802.11n’s MAC

protocol batches multiple data frames into a single aggregated frame (A-MPDU),

and incurs only a single medium acquisition for each such batch. IEEE 802.11n

further aggregates the LL ACKs for the data packets in a received A-MPDU
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into a single LL Block ACK. While batching helps one sender, TCP traffic is

inherently bidirectional: a TCP receiver typically transmits a single TCP ACK

packet for every pair of TCP data packets it receives. Not only do TCP ACKs

incur further expensive medium acquisitions by the TCP receiver—they run

the risk of colliding with the TCP data sender’s transmissions as well.

Wi-Fi’s data frames elicit LL ACKs that the receiver sends without con-

tending for the medium, as other would-be senders defer for an ACK frame’s

duration after hearing a data frame. We observe that this LL ACK is an

ideal vessel for carrying TCP ACK information on the reverse path with-

out incurring a costly medium acquisition. We name this overall cross-layer

approach—in which a single transmission of feedback by a lower-layer proto-

col additionally carries feedback from a higher-layer protocol—Hierarchical

ACKnowledgment (HACK). Though applying HACK to carry TCP ACKs in

LL ACKs is conceptually quite simple, a robust design to do so must address

several systems challenges. This chapter describes TCP/HACK over IEEE

802.11a as implemented on SoRa Software Defined Radio Platform (SDR).

For the implementation and evaluation of TCP HACK over IEEE 802.11n in

simulation, see [75].

3.2 Problem and Design Goals

There are two distinct facets to improving the efficiency of the Wi-Fi MAC layer

for TCP transfers at fast bit-rates. First, we must understand the overhead of

medium acquisition in Wi-Fi 802.11a networks. How inefficient is the status quo,

and what potential performance gains can one achieve by reducing the number

of medium acquisitions? Second, we must articulate goals for our design to

ensure that it meets the practical challenges of carrying feedback from a higher-

layer protocol in a lower-layer one, as we propose to do in TCP/HACK. Such

challenges arise because of the vagaries of wireless links (e.g., frequent packet

losses on links with poor signal-to-noise ratios), the potential for pathological

interactions between TCP and the Wi-Fi MAC protocol when optimising across
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Figure 3.1: Theoretical goodput for 802.11a.

layers, and the constraints of real-world protocol stacks, network device drivers,

and NICs. We now consider these two facets—medium acquisition overhead

and practical design goals—in turn.

3.2.1 Wi-Fi MAC Overhead

Consider a typical Wi-Fi use scenario, where a single 802.11a client downloads

a large file from a remote TCP sender. We assume throughout that the TCP

receiver uses delayed ACK, and thus generates one TCP ACK packet for every

two TCP data packets it receives. Note that this assumption is the best case

for the efficiency of the status quo Wi-Fi MAC—were delayed ACK not used,

a TCP receiver would generate twice as many ACK packets, and the Wi-Fi

MAC would incur significantly more medium acquisitions.

In Figure 3.1, the curve labeled “TCP 802.11a” shows analytical predictions

of the goodput a single TCP downloader achieves as a function of physical-layer

bit-rate on lossless 802.11a networks. These analytical predictions are based

on the parameters of the 802.11a MACs. Figure 3.1 also shows the improved

goodput achieved by HACK, our modified 802.11 MAC protocol that carries
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TCP ACKs in link-layer ACKs, which we describe in Section 3.3.

TCPutil = 2×TUdata

2×Tdata +3× (TDIF S +TSIF S +TBO +TDACK)+TT ACK +(6×TP LCP )︸ ︷︷ ︸
TOverhead

(3.1)

Equation 3.1 models IEEE 802.11 MAC utilisation when using TCP. TUdata

is the time it takes to transmit user data at a given bit-rate, and Tdata is the time

it takes to transmit user data including TCP and IP headers. Let TDIF S , TSIF S ,

TBO, and TDACK be DIFS, SIFS, average back-off, and link-layer ACK times,

respectively. TCP sends a TCP ACK for every two TCP segments. TCP ACKs

are treated as a regular data transmission by the 802.11a MAC. Transmitting

two TCP segments incurs three channel acquisitions as IEEE 802.11 MAC layer.

Also, transmitting bytes of the TCP ACK over the wireless medium takes some

time, represented by TACK . Finally, MAC protocol frames get a PHY layer

preamble prepended incurring further costs (TP LCP ). TCP/HACK eliminates

the need to acquire the channel for transmitting TCP ACKs, simplifying

Equation 3.1 to Equation 3.2.

HACKutil = TUdata

Tdata +(TDIF S +TSIF S +TBO +TDACKHACK
)+(2×TP LCP )︸ ︷︷ ︸

TOverhead

(3.2)

To calculate the goodput shown in Figure 3.1, the PHY rate is multiplied

with the utilisation from Equations 3.1 and 3.2. These models present the best-

case scenario in which the channel does not corrupt packets (lossless channel)

and there are no collisions. Table 3.1 shows the parameters used to generate

Figure 3.1.
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Parameter Value Description
Tdata 222µs−2ms Time to transmit 1500-byte packets for

802.11a bitrates
TSIF S 16 Short Interframe Spacing time in µs
Tslot 9 Timeslot in µs
TDIF S 34 DCF Interframe Spacing time in µs. TDIF S =

TSIF S +(2×Ttimeslot)
TBO 67.5 Expected backoff time in µs. TBO = 7.5×

Ttimeslot

TDACK 22.6 Time in µs to transmit Datalink ACK at
12Mbps

TDACKHACK
22.6-25.3 Time in µs to transmit Datalink ACK +

HACK at 12Mbps
TT ACK 11µs−101µs Time to transmit TCP ACK at 802.11a bi-

trates
TST F 8 Short Training Field in µs
TLT F 8 Long Training Field in µs
TSIGNAL 4 SIGNAL in µs
TP LCP 20 Physical Layer Convergence Procedure over-

head. TP LCP = TST F +TLT F +TSIGNAL

Table 3.1: 802.11a goodput calculation parameters

3.2.2 Design Goals

To work robustly in practice, TCP/HACK must meet several demands that

arise from the constraints of a modern wireless host’s networking software and

hardware, some of which are particularly unforgiving.

Hard real-time deadlines

A Wi-Fi receiver must reply to a data packet with an LL ACK within

SIFS, an interval defined in the 802.11a specification as 16 µs. That deadline

is of course far too short to meet in host software, so Wi-Fi NICs validate

received frames and generate LL ACKs in hardware. TCP/HACK must comply

with these same LL ACK deadlines imposed by today’s Wi-Fi MAC. But if

TCP/HACK is to enclose TCP ACK information in LL ACKs, the host TCP

implementation cannot possibly generate a TCP ACK for a newly received

TCP data packet within SIFS. To accommodate typical host protocol stack

processing delays, TCP/HACK must allow the TCP ACK for a newly received
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TCP data packet to be enclosed within the LL ACK for a different TCP packet

received later. Yet it mustn’t unduly delay the return of an ACK to the TCP

sender (see “cross-layer nuances” below).

Efficient encoding of general TCP ACK information

The Wi-Fi MAC reserves time on the wireless medium for a LL ACK to

return after a data packet, so that other senders’ transmissions do not collide

with the LL ACK. It is important that TCP/HACK encode TCP ACKs in

LL ACKs efficiently, to minimise the period of medium occupancy for these

lengthened LL ACKs. The encoding for TCP ACKs must be compact yet allow

the full generality of information that may potentially be found in a TCP ACK,

(e.g., TCP timestamp options, changes in receiver’s advertised window, &c.)

all of which is important to the correct and efficient operation of TCP.

Simplicity of NIC modifications

TCP/HACK should not require any in-NIC intelligence about TCP packet

headers or other TCP protocol details. Both at clients and APs, all TCP-aware

processing must occur in the host software. We set this goal to minimise the

complexity and thus the cost of the NIC, but also because we would like HACK

to generalise to other higher layers than TCP such as SCTP [82] or DCCP [59]:

if the NIC treats the feedback to be appended to an LL ACK as opaque bits

that it needn’t understand, then HACK should generalise in this way.

No changes to TCP

TCP changes are difficult to standardise and difficult to deploy, as

many widely used OSes ship with a single closed-source TCP implementa-

tion. TCP/HACK should preserve the end-to-end TCP funcionality, ensuring

the flow on receive and transmit paths remain unchanged. Both at clients and

APs, HACK-related functionality should be confined to the Wi-Fi NIC’s device

driver (which is bound to the NIC’s hardware design—i.e., NIC hardware that

supported HACK would routinely ship with a driver supporting HACK).

Avoid pathological cross-layer interactions

Finally, it is important to note that TCP relies on a stream of TCP ACKs
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reaching the sender to maintain steady packet transmissions by the sender (and

thus high goodput). TCP/HACK must not disrupt the timely return of correct

TCP ACKs to the sender.

3.3 HACK Design
We first offer an overview of TCP/HACK’s design and then we explore nuances

of the cross-layer interactions between TCP and IEEE 802.11a, which motivate

refinements to TCP/HACK that improve robustness and performance. Finally,

we consider the constraints of real-world systems software and NIC hardware,

as well as of lossy wireless links, and flesh out the design of TCP/HACK into

a fully practical system. In the interest of brevity, we describe the design of

TCP/HACK in the context of an 802.11 client acting as a TCP receiver while

downloading via an 802.11 AP. Throughout, we refer to this downloader as the

“client.”

3.3.1 HACK in Overview
When a regular TCP client receives a TCP data packet, its network stack

generates a TCP ACK and enqueues it for transmission by the Wi-Fi NIC.

Under TCP/HACK, a client does not immediately enqueue a TCP ACK for

transmission. Instead, the client compresses each TCP ACK and appends it

to a compressed frame that it builds. When the next data packet from the

AP arrives, the client encapsulates the compressed TCP ACK frame within

the returning LL ACK, effectively avoiding all medium acquisitions for the

corresponding TCP ACKs. The AP recognises an “augmented” LL ACK, which

it decompresses, reconstitutes the encoded TCP ACKs, and forwards them

upstream.

3.3.2 Cross-Layer Nuances
We now refine our design to handle the subtle cross-layer interactions that arise

between TCP and IEEE 802.11. In principle, we would like to encapsulate TCP

ACKs on the LL ACKs of the TCP packets they acknowledge. For example, if

a TCP segment arrives, the client would like to piggyback the TCP ACK for
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that TCP segment in the LL ACK for that TCP segment. However, the 16µs

SIFS interval between receiving data and sending the LL ACK is too short for

the host’s TCP stack to turn around the TCP ACK, compress it, and DMA it

to the NIC. For HACK to be practical, the compressed TCP ACKs will have

to wait until the next data arrives, and piggyback on its LL ACK. It turns out

that this significantly complicates the dynamics of TCP/HACK and we will

explore the consequences.

Figure 3.2 illustrates this process1. In response to a data frame containing

TCP packet 1, TCP ACK 1 arrives at the client’s transmit queue too late to

be carried on that frame’s LL ACK. Instead, the TCP ACK is compressed but

not yet sent. When the next data frame carrying TCP packets 2 arrives, its

LL ACK can now carry the compressed frame with TCP ACK 1. The AP then

reconstitutes the full TCP ACK and passes them up the network stack.

So long as TCP data packets continue to arrive, there is a steady stream

of LL ACKs on which to piggyback compressed TCP ACK frames: all TCP

ACKs are carried as TCP/HACK packets and no vanilla TCP ACK packets

need to be sent. But what happens if no further data packets arrive? The client

cannot retain the TCP ACKs for too long, or it will cause the TCP sender to

time out and retransmit. Thus, after some time period, the client must send

uncompressed vanilla TCP ACKs in the normal way. In Figure 3.2, TCP ACK

2 meets this fate, and is in turn LL ACKed.

Figure 3.1 summarizes the theoretical upper bound on TCP/HACK good-

put on IEEE 802.11na. The curves assume that TCP/HACK manages to

encapsulate all TCP ACKs in LL ACKs, and that the compression is performed

using the algorithm in Section 3.3.3.2. As the bit-rate increases, TCP/HACK

significantly improves capacity, with a 20% improvement seen at 54 Mbps.

In reality, the improvement can actually exceed that shown in the figure, as

TCP/HACK can get closer to its bound than vanilla TCP can. This is due to

collisions between TCP data packets and vanilla TCP ACK packets, a problem

1For simplicity it assumes that delayed TCP ACKs are disabled.
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Figure 3.2: Interaction between Data, LL ACKs and encapsulated HACK packets

TCP/HACK sidesteps.

3.3.2.1 To HACK or not to HACK?
To maximise the benefits, TCP/HACK packets should be used whenever

possible. But TCP ACKs must not be delayed when no more TCP data packets

will arrive. How long should the client retain these TCP ACKs before giving up

and sending them natively? We consider the following three different designs

to address these concerns:

• Explicit Timer

A naive approach would be to have TCP/HACK time out and fall back

to sending regular ACKs after a delay. In practice there is no good delay
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value that can be chosen, since the client cannot know the RTT and

congestion window at the TCP sender, how the sender’s packets will be

spaced throughout the RTT, nor if the AP will suddenly start sending to

another client.

• Opportunistic HACK

A more adaptive approach is not to explicitly delay TCP ACKs at all,

but rather be opportunistic. When the wireless link is the bottleneck,

the next downstream data batch will contend with the upstream TCP

ACK batch. If the downstream batch wins, TCP/HACK can be used,

but otherwise vanilla TCP ACKs will be sent. Such a design may often

squander the opportunity to use TCP/HACK, but it has the virtue of

seeming simple—until one considers the complexity of the NIC-network

driver interface needed to implement it.

• The More Data Bit

In Figure 3.2, initially there are two data packets queued at the AP.

When the AP sends the first data frame, it already knows more data

will be sent to that client, as it already has packet 2 in its queue. So

long as the AP has more packets queued, it knows that it is safe for the

client to save up compressed ACKs waiting for the next batch. The AP

simply tells the client that there is more data coming by setting the More

Data bit in the IEEE 802.11 header of the data frame. 2. When the

client sees this flag, it latches this state and will not transmit any more

non-encapsulated TCP ACKs until the next data packet arrives, when it

can use TCP/HACK to send them.

3.3.3 HACK in Practice
In the preceding section, we have presented a conceptual description of

TCP/HACK, but several questions concerning the practicality of this con-
2This bit exists in stock IEEE 802.11 to assist with power saving TCP/HACK uses this

bit irrespective of whether power saving is enabled.



3.3. HACK Design 45

ceptual design remain unanswered. First, how realisable is TCP/HACK given

current systems and hardware? In particular, how should TCP/HACK’s func-

tionality be divided between a station’s NIC hardware and NIC device driver?

Finally, what manner of compression should TCP/HACK employ to reliably

encode the TCP ACKs?

3.3.3.1 Driver and NIC Functionality
We envision to realise TCP/HACK (including the More Data mechanism)

with very few changes to a station’s IEEE 802.11 NIC. The main strategy is to

implement the bulk of TCP/HACK within the NIC’s driver, as we demonstrate

using the example shown in Figure 3.2. Our discussion is in the context of a

modern Linux wireless driver, such as the Atheros ath9k driver [12]

The AP (data transmission)

The only modification needed to the AP when transmitting data packets

is to set the More Data flag when there are more packets remaining in the

transmit queue for the same client.

The Client

The client’s driver needs to determine when it can use TCP/HACK and

when it must send TCP ACKs normally. In Figure 3.2, on receiving packet 1,

the client’s NIC also passes the More Data state to the driver. The client’s

TCP stack acknowledges the data, generating TCP ACK 1, and puts them in

the transmit queue at point 1 .

Figure 3.3 shows what happens at points 1 and 2 from Figure 3.2 in more

detail. If the driver is not in the More Data state, it simply enqueues these

TCP ACKs normally. However, if More Data is set, it compresses the arriving

TCP ACKs and creates corresponding buffer descriptors. A separate buffer

descriptor chain per MAC destination address is needed to match compressed

TCP ACKs with LL ACKs for that destination.

At point 2 the driver DMAs the buffer descriptor chain to the NIC. The

NIC maintains this table of compressed TCP ACK descriptors separately from

normal transmission descriptors. Finally, the driver sets a flag in the NIC to
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Figure 3.3: Client-side TCP/HACK compressing a TCP ACK, ready to be sent on
the link-layer acknowledgment of the next frame.

indicate that TCP/HACK is ready.

Figure 3.4 shows what happens when the next frame from the AP arrives

at the client. If the TCP/HACK flag indicates “ready,” the NIC uses the

corresponding descriptors to DMA the compressed TCP ACK frames to the

card. It grabs one of the frames, and appends it to the returning LL ACK

at point 3 . Recall that the NIC normally fires an interrupt when it receives

data packets. In this case, the interrupt must also indicate whether the NIC

succeeded in sending the compressed ACKs.

This design also copes with the race condition where the frame carrying
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Figure 3.4: Client-side TCP/HACK receiving a data frame from the air and in-
cluding compressed TCP ACK frames in the corresponding LL ACK.

packet 2 arrives with the More Data flag not set before the driver has

succeeded in conveying compressed TCP ACK 1 to the NIC. In this case, the

TCP/HACK “ready” check will fail. The NIC sends a normal LL ACK and

signals to the driver a TCP/HACK failure in the receive interrupt. The driver

now is free to re-enqueue the TCP ACKs on the transmit queue for normal

transmission.
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The AP (ACK reception)

Finally, the AP needs to recognise and decompress the “augmented” LL

ACKs. The task of recognition falls to the AP’s NIC, which extracts the

compressed TCP ACK frame from the received LL ACK, adds it to the

transmit complete report and interrupts to indicate transmit complete. The

driver extracts the compressed TCP ACK frame, decompresses and reconstitutes

the TCP ACKs, and forwards them upstream.

3.3.3.2 TCP ACK Compression
A critical component of the design is choosing a compression method for TCP

ACKs. As IEEE 802.11a transmits LL ACKs at one of the lower basic rates,

e.g., 6 Mbps, it is desirable to minimise the size of the TCP ACK information

appended to LL ACKs. Moreover, the IEEE 802.11a MAC protocols’ DIFS

interval protects “stock” LL ACKs from collisions. Ideally, the compressed

TCP ACK information that TCP/HACK appends to LL ACKs should be short

enough to fit within DIFS, to avoid risking a collision. We would like to leverage

the redundancy within TCP and IP headers across consecutive TCP ACKs.

Since most of the TCP/IP header fields remain static for a particular flow, they

can be cached at the compression and decompression endpoints. To encode TCP

and IP header fields reliably, TCP/HACK uses Robust Header Compression

(ROHC) [73] to efficiently condense TCP/IP segments. ROHC supports the

most popular TCP options like Timestamps and Selective Acknowledgments

(SACK), and defines the notion of contexts, each with a particular identifier

(CID). A context for TCP/HACK’s purposes maps nicely to a particular

TCP flow. In addition to caching static fields like the TCP/IP five-tuple at

the endpoints, ROHC losslessly compresses the dynamic fields like the TCP

Sequence and ACK numbers.

TCP/HACK-specific ROHC optimisations

Since TCP/HACK applies ROHC in a specific context, we make the

following simplifications:

1. We do not explicitly send Initialise-Refresh (IR) packets from the TCP
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client to the AP. To initialise a new context, the client can simply send

uncompressed TCP ACKs outside of the TCP/HACK mechanism. The AP

will consequently store the necessary state for the new context and assign it

the correct CID.

2. The client and AP need not exchange any messages to agree upon a new

CID for an emergent flow. Instead CIDs are computed independently at

each endpoint. The client’s driver on receiving a TCP ACK for a new flow

computes the MD5 [74] hash over the ACK’s 5-tuple and selects the lowest

byte as the CID.

3. Compressed TCP ACK packets encapsulated within LL ACKs require a new

mechanism to deal with losses outside of sending explicit ROHC feedback

packets. We describe how TCP/HACK handles losses in Section 3.3.4.

With ROHC, a driver can shrink a TCP ACK to about 4 bytes, or even 3

bytes if the associated flow transmits a constant payload size (e.g. for large file

downloads) [73].

3.3.4 Avoiding Cross-Layer Pathologies

The protocol we have described so far works well in a lossless environment. When

applying TCP/HACK in low signal-to-noise ratio (SNR) regimes, decoding

failures will cause packet drops. Any of the various packets sent by TCP/HACK

may be dropped: TCP data packets, TCP ACKs, LL HACKs that contain

LL ACKs and TCP ACK information, LL ACKs, &c. Under such losses,

several concerns arise. To decompress headers correctly, ROHC requires that

compression state at sender and receiver remain synchronised. Packet losses

may cause loss of synchronisation of this state, and in turn cause CRC failures

on decompressed TCP ACK packets. Such loss of synchronisation must not be

persistent.

Loss of LL ACK.

Consider the scenario in Figure 3.5, where a LL ACK carrying compressed

TCP ACK information cannot be decoded. In this scenario, to deliver com-

pressed TCP ACKs reliably, the client must retain them until it determines
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Figure 3.5: Coping with loss of LL ACKs by retaining TCP ACK state.

that its LL ACK has reached the AP. There is no such explicit indication from

the AP, however. The client must enclose the same compressed TCP ACKs in

all LL ACKs it sends to the AP until an implicit indication from the AP that

the AP received the client’s LL ACK. When the client has sent a LL ACK in

response to a frame, as in Figure 3.5, the client can be certain that the AP

has received its LL ACK upon receiving an frame with a greater MAC-layer

sequence number—if the AP has not done so, it must instead retransmit the

frame with the same MAC-layer sequence number. In both these cases, once

the client has implicitly determined that its LL ACK has been received by

the AP, it can safely discard any compressed TCP ACK information it has

previously sent to the AP within that LL ACK.

3.4 Evaluation

TCP/HACK works for IEEE 802.11a and IEEE 802.11n. We show here the

results from the evaluation of TCP/HACK using the SoRa software-defined

radio platform which only supports IEEE 802.11a. For completeness we briefly

present simulation results of TCP/HACK running over a IEEE 802.11n network.

For more details the reader is referred to HACK [75].
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3.4.1 SoRa Implementation
We implemented TCP/HACK including the More Data bit and ROHC com-

pression for the SoRa user-level physical layer on the Windows 7 operating

system. Hardware limitations of our SoRa radio boards require us to run IEEE

802.11a in the 2.4 GHz band, but this does not affect protocol behaviour. We

begin with an introduction to the SoRa SDR platform and some of the chal-

lenges we faced implementing TCP/HACK. Then we explain our TCP/HACK

implementation.

3.4.2 A Brief Introduction to SoRa
SoRa [85] is a software-defined radio platform on a commodity PC. It enables

the development of signal processing systems using high-level programming

languages such as C and C++. SoRa relies on the PCI Express bus for

high-speed data transfers between the radio front end and the host CPU. It

makes heavy use of multi-core CPUs in today’s commodity PCs for fast signal

processing. The SoRa platform consists of three main components:

1. Radio Control Board (RCB): driven by a Xilinx [97] Field-

Programmable Gate Array (FPGA) attached to the host PC using

the PCI Express interface. It is responsible for low-level signal processing,

such as transmitting and receiving signals over the wireless channel.

2. Device Driver: bridges the Windows operating system and the RCB.

3. Software Development Kit (SDK): a high-level API used by applica-

tions to control the RCB.

Out of the box SoRa includes user-level libraries/applications that implement

the IEEE 802.11b/a/g PHY and a partial MAC protocol. We implement

TCP/HACK in C++ on top of the provided user-level application. Implement-

ing TCP/HACK on the SoRa platform proved more challenging then we’d

anticipated. We next describe the difficulties that arose and how we addressed

them. Additionally we explain some of the API functions used when building

on SoRa.
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Contention and Latency

Before transmission, signals must be explicitly transferred from the host

PC’s memory to the RCB’s internal memory. To initiate such a transfer, the

function SoraURadioTransferEx() 3 must be called. Once signals have been

transferred and reside in the RCB’s memory, they are transmitted by calling

the SoraURadioTx() function. Therefore, each wireless transmission incurs

two function invocations to the SoRa API. While validating the correctness of

the IEEE 802.11a MAC implementation we noticed contention between these

two functions. We observed that once a call to SoraURadioTransferEx() has

occurred, subsequent calls to SoraURadioTx() must wait for the SoraURadio-

TransferEx() function to complete. The order of calls does not matter; the

latter function call must wait for the prior function call to finish before it is

executed. To validate our hypothesis we wrote a two-threaded application. We

instructed the first thread to continuously transfer a pre-defined signal (using

SoraURadioTransferEx) to the RCB’s memory while the second thread contin-

uously transmits (SoraURadioTx) the signal over the wireless channel. Using

timestamps we measured the time it took for each function to complete. In

addition, when the second thread transmits the signal, we measure the elapsed

time since the transfer (SoraURadioTransferEx) function was called. Figure 3.6

shows the time in microseconds for the transmit function to complete (y-axis)

as a function of elapsed time since the transfer function was called (x-axis).

These results suggest that SoRa serialises calls to RCB functions, causing each

function to wait to execute until prior functions complete their execution. This

causes the the transmit function to take longer to complete when there is an

ongoing transfer function call. In Figure 3.6, a value of zero on the x-axis

represents cases when the transmit function was invoked before the transfer

function. Even in this case, transmit time for a signal takes on a range of values,

suggesting that other function calls are in contention too. The closed-source

nature of the SoRa’s RCB firmware makes it hard to confirm if this behaviour

3This function assigns a unique ID to each transfer. The ID can be used later to manipulate
the signal, i.e. to transmit and/or delete it.
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Figure 3.6: SoRa contention between function calls

is by design or simply a bug. One consequence of the results in Figure 3.6 is

the potential delay in returning LL ACKs. We know that IEEE 802.11 LL

ACK must be returned shortly after a SIFS time. To find out the time it takes

for SoRa to return LL ACKs, we measure the time between the end of the

data frame transmission and the receipt of the corresponding LL ACK. The

distribution of the time it takes to receive a LL ACK is shown in Figure 3.7. For

comparison we also show measurements for three different commercial Wi-Fi

NICs. To measure LL ACK delay we transmit UDP data to Wi-Fi receivers

equipped with various Wi-Fi NICs and capture the wireless traffic on a third

monitoring station using tcpdump. We post-process the captured data offline

and calculate the time difference between LL ACK reception and the end of the

data transmission. This time difference is calculated using MAC timestamps

provided by the device driver. Each received frame is timestamped by the

NIC with a hardware clock running at microsecond granularity. The median

time to return LL ACKs for SoRa is 55 µs (mean 72 µs). This is greater then

the median 27−28 µs (mean 28−35 µs) time measured for commercial Wi-Fi

NICs. To accommodate this latency we must increase the IEEE 802.11 LL
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Figure 3.7: Empirical CDF of the time it takes to return LL ACKs.

ACK timeout.4.

SoRa LL ACK delay and TCP

When running TCP on SoRA the LL ACK delay problem explained above

is amplified. Occasionally, LL ACKs are delayed longer then the timeout value,

causing the MAC layer to retransmit the frame. These retransmissions (more

then two retransmissions) cause the receiver to send more LL ACKs, which are

delayed too, leading to a burst of LL ACK transmissions. When the first LL

ACK is received, the next frame (a new frame) is transmitted. This new frame

collides with delayed LL ACKs, causing the receiver to drop the frame. In the

meantime a delayed LL ACK, originally sent in response to a retransmission,

arrives at the transmitter. This delayed LL ACK is mistaken for a LL ACK

for the newly transmitted frame, causing the transmitter to move to the next

frame transmission. TCP only learns about the loss after it receives three

duplicate TCP ACKs. Upon receiving three duplicate ACKs, TCP enters

the fast-retransmit procedure: it reduces the congestion window, effectively

halving the goodput. This problem occurred frequently enough to cause a
4This timeout value is the amount of time the transmitter waits for LL ACKs from the

receiver before declaring the transmission has failed and retransmiting. We set the timeout
value to 192 µs to account for the tail of the distribution.
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non-negligible reduction in the goodput achieved when running TCP on the

SoRa platform. This is caused, presumably, by the increased congestion at the

RCB board created by the transmission of TCP ACKs by the receiver. To fix

this problem we add a one-bit5 sequence number to LL ACKs. On the transmit

side, the LL ACK sequence number is checked against the lowest bit of the

frame’s sequence number. If there is a match then the transmitter knows that

the LL ACK is indeed for that frame and can move on to the next data frame.

Otherwise, the transmitter assumes the frame was lost and retransmits the

frame.

Automatic Gain Control SoRa does not implement hardware automatic

gain control, which precludes the use of SoRa under rapidly varying channel

conditions.

3.4.3 Testbed

Our three wireless nodes each have four-core Intel Core i7 CPUs, with between

8–24 GB of RAM and a PCI Express SoRa radio control board. One acts as

the AP and the other two act as clients. Hardware availability limits us to a

testbed with only two clients. The SoRa interface operates in ad-hoc mode to

eliminate periodic beacon transmissions. We run experiments on IEEE 802.11

channel 14 (2.484 GHz) in an open-plan office environment. We use iperf to

generate TCP data streams with a 1500-byte MTU and send at 54 Mbps, the

highest IEEE 802.11a rate. While machines are located physically close to

each other (see Figure 3.8), the transmit power is set to low, so there is still

a possibility for other IEEE 802.11 sources to interfere. To ensure that there

is no outside interference in our masurements, we continuously monitor the

channel during the course of the experiments.

3.4.4 Results

Besides demonstrating a successful implementation as evidence of TCP/HACK’s

practicality, we wish to answer several questions experimentally:

5One bit proved to be sufficient in our experiments.
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Figure 3.8: Left: the TCP/HACK testbed consists of three antennas spaced at
close distances, each connected to a SoRa-equipped desktop computer
(right).

• Are TCP/HACK’s capacity benefits in line with theoretical predictions?

• When an AP sends TCP flows to two clients, does TCP over IEEE 802.11a

suffer collisions between clients’ TCP ACKs, and if so, does TCP/HACK

offer a performance benefit partly by eliminating such collisions?

• Do TCP/HACK’s benefits come only from eliminating channel acqui-

sitions and collisions, or are there other overheads that TCP/HACK

eliminates?

Baseline Comparison Figure 3.9 compares the application-level good-

put achieved by TCP/802.11a and TCP/HACK for bulk downloads, with

UDP/802.11a for comparison. Each bar shows a different experiment: sending

to one or both clients, using TCP over HACK, TCP over stock IEEE 802.11a

or, as a control experiment, unidirectional UDP, which gives an upper bound

on usable capacity. The data is the mean over five different 120-second runs;

error bars show standard deviation.

Client 1’s goodput is slightly less than Client 2’s because it suffers a greater

packet loss rate, even when only one flow is active. UDP’s unidirectional data

minimises medium acquisitions, and achieves the greatest goodput possible

on SoRa with LL ACKs enabled. In an ideal IEEE 802.11 MAC, UDP would

achieve 30.2 Mbps; on SoRa, UDP averages 26.5 Mbps across the three exper-

iments. SoRa’s LL ACK delays alone reduce the attainable goodput to 28.1

Mbps, and our UDP measurements approach that figure.

If TCP/HACK encapsulated all TCP ACKs in LL ACKs, it would achieve
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Figure 3.9: TCP goodput with stock 802.11a (T), TCP with HACK (H), and UDP
(U) with stock 802.11a, with 1 and 2 clients.

almost the same goodput as UDP (though UDP’s packet headers are smaller).

In practice, TCP/HACK’s single-client goodput of 25.0 Mbps (mean of C1

and C2) is very close to the UDP benchmark. TCP/802.11a only achieves

19.4 Mbps in this scenario. TCP/HACK improves performance by 29% and

32.2% in the one- and two-client cases, respectively. Both TCP/HACK and

TCP/802.11a are fair.

UDP/ TCP/ TCP/
802.11a HACK 802.11a

Client 1 no retries 99% 97% 87%
1 or more 1% 3% 13%

Client 2 no retries 99% 98% 88%
1 or more 1% 2% 12%

Both no retries 99% 98% 86%
1 or more 1% 2% 14%

Table 3.2: Percentage of frames successfully sent on the first attempt (no retries)
and after one or more retries, when the AP is sending to Client 1 and
Client 2 alone, and both clients at the same time, using UDP/802.11a,
TCP/HACK, and TCP/802.11a.

Where do TCP/HACK’s savings come from?
We note with interest that TCP/HACK improves goodput more than predicted

analytically in Section 3.2.1. That prediction focused solely on saving medium
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acquisitions for TCP ACKs. In Table 3.2 we show the percentage of frames

received after the first transmission, and the percentage that required one

or more retransmissions. We see that TCP/802.11a experiences far more LL

retransmissions than TCP/HACK or UDP/802.11a. These retransmissions

occur because of collisions between TCP ACKs sent by clients and TCP data

packets sent by the AP. TCP/HACK obviates most (but not all) of these

TCP ACKs, and so significantly reduces the number of retransmissions needed.

TCP/HACK not only eliminates costly channel acquisition overheads, but by

encapsulating TCP ACKs in LL ACKs, also incurs fewer collisions.

ACK ACK ACKC ACKC Comp.
count bytes count bytes ratio

TCP/802.11a 9060 471120 0 0 (1)
TCP/HACK 10 520 9050 39478 12

Table 3.3: Conventional and compressed ACK counts, and compression rates of
ROHC-compressed ACKs.

To understand other contributing factors in more detail, we ran an experi-

ment where the AP transmits 25 Mbytes of data to a client using TCP/802.11

and TCP/HACK. By fixing the amount of work we can compare both protocols

in time. The first two columns of Table 3.3 show the number of TCP ACKs

sent as well as how many bytes were in those ACKs. The next two columns

show the same figures for compressed ACKs, and the last column shows the

compression rates ROHC achieves. Reducing the number of transferred bytes

is beneficial, but TCP ACKs are treated as regular data when sending over

IEEE 802.11a wireless links and are sent at 54 Mbit/s in our experiments. LL

ACKs, however, use the more robust 24 Mbit/s rate. To factor this in, we

investigate how saved bytes translate into saved transmission time, together

with TCP/HACK’s impact on channel acquisition time and retransmission

time.

Table 3.4 shows time taken to send TCP ACKs (TCP ACK), time to

send compressed TCP ACKs (ROHC), time spent waiting for channel before

transmitting TCP ACKs (Channel) and extra time waiting for LL ACKs (LL
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TCP Acquire LL ACK
ACK ROHC Channel overhead

TCP/802.11a 70 ms 0 1093 ms 456 ms
TCP/HACK 0.08 ms 13.1 ms 1.17 ms 0.46 ms

Table 3.4: TCP ACK time overhead breakdown for TCP/802.11 and TCP/HACK.

ACK overhead). From the table, we see that most savings come from channel

acquisition and LL ACK overhead.

Ideally LL ACKs are returned immediately after a SIFS time, but this

is not always the case in the real IEEE 802.11a implementations. On SoRa

we observe 37 µs on average of additional LL ACK overhead, while on two

different commercially-available wireless NICs (the Atheros AR9300 and the

Intel 5300) we measure 10.4-13.4 µs of LL ACK overhead, on average. While

TCP/HACK benefits more from saving ACK overhead on SoRa than on the

commercial cards, the benefit on commercial wireless hardware is still large.

TCP/HACK not only eliminates channel overheads, it also reduces collisions

and any additional LL ACK overheads incurred by the device.

SoRa and ns-3 Cross-Validation
To cross-validate our SoRa implementation we simulated IEEE 802.11a in

ns-3 with the same packet loss rate as observed on SoRa (12% and 2%

for TCP/802.11a and TCP/HACK, respectively). Since ns-3 returns LL

ACKs immediately after SIFS, whereas SoRa incurs additional delay, ns-3

running TCP/802.11a achieves 22.4 Mbit/s vs. SoRa’s 19.6 Mbit/s. After

post-processing to eliminate SoRa’s added LL ACK delay, we observe SoRa

goodput of 22 Mbit/s, which matches the simulation. Similarly, when simu-

lating TCP/HACK in ns-3, we get 28 Mbit/s vs. SoRa’s 25.5 Mbit/s. After

accounting for SoRa’s extra LL ACK delay, SoRa achieves 27.7 Mbit/s, which

matches the simulation.

TCP/HACK and IEEE 802.11n Frame Aggregation

We presented TCP/HACK as implemented on the SoRa platform for the

IEEE 802.11a MAC protocol. In the interest of completeness we present ns-3
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simulation results for TCP/HACK running using frame aggregation and the

IEEE 802.11n MAC protocol.6

TCP/HACK vs. TCP/802.11n To determine the benefit of TCP/HACK

and its constituent parts, we compute the aggregate goodput for TCP flows

sending 1500-byte packets, averaged across five simulated runs per experiment.

To mitigate phase effects with multiple clients, we stagger the starts of clients’

downloads. As such, we compute the aggregate goodput over the steady-state

portion of the runs, once all the clients have more or less exited slow start.

Figure 3.10 shows that UDP maintains a roughly constant goodput as the

number of downloading clients varies, as expected. As a unidirectional protocol,

UDP’s performance is minimally affected by the number of clients competing

for the link. In contrast, the goodput of TCP/802.11n decreases slightly as the

number of downloading clients increases. Although the AP elicits TCP ACK

packets from clients in turn, there is still a chance that two or more clients’

TCP ACKs can collide, or that a TCP ACK can collide with a data packet from

the AP. Two variants of TCP/HACK are shown: Opportunistic TCP/HACK

and TCP/HACK More Data. We note with surprise that Opportunistic

TCP/HACK does not significantly outperform TCP/802.11n: this most näıve

implementation of HACK sends few compressed TCP ACKs in LL ACKs, and

mostly regular TCP ACKs. It therefore does not achieve a TCP goodput closer

to the physical rate.

Role of More Data Bits The TCP/HACK More Data variant achieves the

most pronounced goodput gain over unmodified IEEE 802.11n. While simple,

the More Data mechanism is crucial to TCP/HACK’s success in reducing

medium acquisitions, and gives rise to goodput improvements between 15% for

one client and 22% for ten clients at a physical rate of 150 Mbps.

3.5 Personal Contribution
TCP/HACK was joint work with Lynne Salameh, a co-author on our joint

6These results, which are from experiments concluded by a cooauthor on our conference
publication [75], are presented with my coaugthors’ permission.
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Figure 3.10: TCP goodput for different transmission schemes with 1–10 clients,
and UDP for comparison.

paper [75]. Core components of the design, like the More Data bit and

delaying the TCP ACK until the next data packet arrives, were developed in

collaboration. My personal contributions to the project are as follows: Working

on the implementation of HACK in the SoRa platform put me in a unique

position to observe TCP/HACK’s interactions with real-world wireless channel.

As such, I noted that packet losses caused by the wireless channel led to ROHC

desynchronisation. This desynchronisation led to TCP connection failures as a

result of reconstructing incorrect TCP ACKs. I proposed the base-case solution

for IEEE 802.11a which retains the compressed TCP ACK at the receiver

until receiver knows that the LL ACK has been correctly received. Lynne

further extended this approach to cover all the cases that arise when running

TCP/HACK in IEEE 802.11n. Implementing and analysing TCP/HACK on

the SoRa platform were entirely my contributions. This includes discovering

and fixing the various SoRa limitations described in Section 3.4.1.

3.6 Discussion
TCP/HACK helps reduce the time, otherwise wasted, on unnecessary Wi-Fi

medium acquisitions. TCP/HACK relies on the More Data bit to know when

it is safe to compress TCP ACKs and wait for another packet on whose LL
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ACK to piggyback. With sufficient buffering at the AP and a large window,

TCP/HACK works well. In such cases the wireless medium is busy, and MAC

efficiency is important. TCP/HACK can significantly reduce collisions when

there are multiple senders by turning bidirectional TCP flows into unidirectional

ones, reducing the number of contending hosts. However, if the traffic patterns

are such that queues do not build in the AP or clients, there won’t be enough

packets in the queue to allow the More Data bit to be set. In this case

TCP/HACK will not work well. Similarly, if an AP has very many clients, it

may not buffer enough packets for each client for TCP/HACK to work well.

In this chapter, we described the design and implementation of TCP/HACK

for TCP flows and the IEEE 802.11 MAC TCP/HACK eliminates most of

the expensive medium acquisitions that TCP ACK packets require, increasing

TCP flow’s wireless goodput. The design of TCP/HACK allows it to be

transport protocol-agnostic; it could work with other transport protocols such as

QUIC [60]. TCP/HACK as presented in this chapter has been implemented for

the IEEE 802.11a MAC which does not support frame aggregation. TCP/HACK

also works with IEEE 802.11n frame aggregation. TCP/HACK improves

goodput even further when used with IEEE 802.11n frame aggregation. Frame

aggregation and other previous approaches reduce the cost of individual medium

acquisitions [38, 64, 84], TCP/HACK eschews many medium acquisitions

entirely. It is thus complementary to these prior approaches. Our evaluation in a

real-world implementation demonstrates TCP/HACK’s goodput improvements.

Our joint work offers a full description of a TCP/HACK implementation for

IEEE 802.11n with aggregation refer to [75]. We have released our TCP/HACK

implementation as open source and can be downloaded from http://www0.cs.

ucl.ac.uk/staff/A.Zhushi/hack/.

http://www0.cs.ucl.ac.uk/staff/A.Zhushi/hack/
http://www0.cs.ucl.ac.uk/staff/A.Zhushi/hack/


Chapter 4

Keeping Wi-Fi Fast with

Aggregation Aware Queueing

4.1 Introduction

In the previous chapter we presented TCP/HACK, a system that reduces IEEE

802.11 MAC protocol channel access overheads for TCP flows. We showed

that TCP/HACK eliminates most wireless channel acquisitions when a TCP

receiver transmits TCP ACKs, resulting in goodput improvements. In addition,

using simulations we showed the goodput performance of TCP/HACK when

using frame aggregation. However, these evaluations assume that the AP

and Wi-Fi clients always send maximum sized-aggregates. The focus of this

chapter is the behaviour of frame aggregation, introduced in IEEE 802.11n. As

Wi-Fi PHY bit-rates increased, applications’ transfer rates become increasingly

hostage to Wi-Fi’s inefficient Medium Access Control (MAC) layer, which

incurs a fixed-duration overhead for each medium acquisition. IEEE 802.11n,

-ac, and the latest IEEE 802.11ax use frame aggregation, which amortises

a single medium acquisition’s overhead across the transmission of multiple

frames, to achieve transfer rates that can begin to approach the hardware’s

greatest PHY bit-rates. Unless senders on a modern Wi-Fi network manage

to transmit aggregates of maximum size (ranging from 42 to 64 packets in

IEEE 802.11n), their throughputs in practice will not approach the top bit-
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rates achievable by the PHY. Unfortunately, the layered design of modern

network protocol stacks (and network interface drivers) is oblivious to the

groupings of packets presented to a network interface for transmission. In this

chapter, we demonstrate that under heavy TCP load on the Wi-Fi downlink,

today’s mainstream Linux, a commercial Wi-Fi AP, and client implementations

typically send Wi-Fi aggregates short enough to keep transfer rates significantly

below those supported by the modern Wi-Fi PHY. Using an evaluation testbed

we identify and characterise the problems that lead to small aggregate sizes

and from the insights gathered, we design and implement Aggregation-Aware

Queuing (AAQ) and TCP ACK Optimisation (TAO), lightweight approaches

that coordinate packet processing decisions in the TCP, IP queuing, end-host

MAC, and Wi-Fi driver layers to ensure that a sender transmits full-sized

aggregates. AAQ allows open-source and commercial Wi-Fi APs under heavy

downlink TCP load to reclaim the vast majority of the PHY capacity left on the

table in the status quo. Before describing details, we first provide an overview

of how the frame aggregation mechanism operates in IEEE 802.11n. We

describe frame aggregation in the context of IEEE 802.11n [50], as our testbed

consists of hardware that supports only IEEE 802.11n. Frame aggregation is

also supported in IEEE 802.11ac [10] and IEEE 802.11ax [23], with the only

difference the support of even larger aggregates in the later standards.

4.2 Frame Aggregation

Frame aggregation is one of the key enhancements introduced in the IEEE

802.11n standard. It improves channel utilisation by sending multiple frames,

back-to-back, in one channel acquisition. IEEE 802.11n supports two frame

aggregation schemes: Aggregated MAC Service Data Unit (A-MSDU) and

Aggregated MAC Protocol Data Unit (A-MPDU). MSDU represents a data unit

that the IEEE 802.11 MAC layer receives from the layer sitting above it (i.e,

IP). When using A-MSDU, multiple data units from the upper layer are “glued”

into one “big” IEEE 802.11 MAC frame. Each MSDU in the aggregate retains
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headers from the layer above, however they all share a single IEEE 802.11 MAC

layer header and are protected by a single FCS (Frame Checksum Sequence).

By “wrapping” all upper layer frames into a single IEEE 802.11 MAC frame

significant space is saved (saving up to 36 bytes per frame in a A-MSDU1).

However, single-FCS protection can seriously impact performance in the face

of error-prone wireless channels. A single bit-error (after error correction) will

cause all frames in the aggregate to be dropped and retransmitted, incurring

significant overhead. The IEEE 802.11n standard mandates that all IEEE

802.11n receivers must be able to receive A-MSDU frames. Our experience

with various IEEE 802.11n hardware, A-MSDU is not used for transmission.

However, research has shown that A-MSDU performance suffers under lossy

wireless channel and that the A-MPDU scheme is superior [44, 81].

When aggregating frames in an A-MPDU, by contrast, each frame (MPDU)

is encapsulated with IEEE 802.11 MAC headers, and is protected by an

individual FCS. Protecting each MPDU with a FCS makes the A-MPDU

scheme more robust to wireless channel errors, as only those frames that fail

FCS need to be retransmitted. This makes the A-MPDU scheme preferable

when transmitting over lossy wireless channels. We focus on the A-MPDU

scheme in this thesis, as it is supported by the hardware we use in our testbed.

For its operation, the A-MPDU scheme enlists the aid of the Block Ack

protocol described in Chapter 4, Section 4.3 . Originally introduced in IEEE

802.11e [8], the Block Ack protocol is a session-based protocol that allows

multiple frames to be acknowledged by a single acknowledgment (ACK) control

frame. In the legacy IEEE 802.11 ACK scheme, each successfully received data

frame is ACKed individually. Sending an ACK for every frame in an A-MPDU

is inefficient. Instead A-MPDU aggregation is used in conjunction with the

Block Ack protocol which, allows ACKing all data frames in an A-MPDU using

a single ACK control frame.

1The IEEE 802.11n maximum header size is 36 bytes.
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4.3 The Block Ack Protocol
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Figure 4.1: Block Ack Session

The time sequence diagram in Figure 4.1 shows the lifetime of a Block

Ack protocol session. Before exchanging A-MPDUs, a Block Ack session is

established 1 between the communicating parties. Once the session is active

A-MPDU frames can be exchanged 2 between communicating parties. The

Block Ack session remains active until the communication becomes idle, or it is

explicitly terminated by either of the participants. The example in Figure 4.1

shows a case when the AP is the initiator of the Block Ack session, however

Wi-Fi clients can initiate sessions too. The AP starts a Block Ack session by

sending an ADDBA (Add Block Ack) Request action frame and the Wi-Fi

client acknowledges its receipt by sending an ADDBA Response action frame.

During the ADDBA exchange, the AP and the Wi-Fi client share infor-

mation such as buffer size, traffic identifier (TID), BACK frame type, BACK

policy, frame density, etc. Buffer size specifies memory constraints and TID
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specifies traffic priority, using one of the IEEE 802.11( e) quality of service

categories. The Block Ack protocol provides two types of BACK control frames,

uncompressed and compressed. An uncompressed BACK frame contains 64

entries of 16 bits each to specify successfully received frames. Having a 16-bit

entry for each of 64 frames significantly increases the size of the BACK (128

bytes just for the acknowledgment field), incurring overhead. Note that control

frames are sent at lower and more robust rates (i.e. 12 Mbps). To overcome the

space inefficiency of the normal BACK, IEEE 802.11n added the compressed

BACK. The compressed BACK contains a single 16-bit field denoting the

sequence number of the first frame in an A-MPDU and a 64-bit bitmap field

marking the success state of up to 64 frames. The compressed BACK control

frame is significantly smaller in size compared to the normal BACK control

frame, making it more efficient. In our experience, we only ever saw Wi-Fi

devices using compressed BACK control frames.

The Block Ack protocol also defines two BACK policies: normal and

delayed. Under normal BACK the receiver responds with a BACK after

receiving an A-MPDU while under delayed BACK the transmitter request a

BACK by sending a BACK request. Another purpose of the BACK request is

to force the receiver to advance the BACK window. This occurs in a situation

where the transmitter has given up retrying frames allowing the protocol to

advance. Finally, frame density defines frame spacing in an A-MPDU. This

allows receivers with limited resources to successfully process A-MPDUs.

1 1 0 1 0 1 1 1s=4

1 1 1 1 1 1 1 1s=6

Block Ack bitmap

4 5 6 7 8 9 10 11

6 7 8 9 10 11 12 13

1 1 1 1 1 1 1 1s=14
14 15 16 17 18 19 20 21

1

2

3

Figure 4.2: Compressed Block Ack reduces A-MPDU size in face of frame losses

The Block Ack protocol operates with a window of up to 64 unacknowledged
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frames. The window advances up until the first “hole” in the sequence space. On

wireless channels that do not corrupt frames, the Block Ack protocol operates

without problems. However, problems arise when the wireless channel corrupts

frames. Frame losses cause “holes” to appear in the Block Ack window and

the window only advances up to the first “hole” in the window. Subsequent

A-MPDUs’ sizes will be determined by the position of this first “hole” in the

window. To illustrate this problem, consider the example in Figure 4.2. The

starting sequence number of the first transmitted A-MPDU 1 is 4 (s = 4) and

from the received BACK bitmap the receiver indicates that it has failed to

decode frames with sequence numbers 6 and 8, which must be re-transmitted.

As a result, the new starting sequence number is 6 (s = 6), and only two new

frames (sequence numbers 12 and 13) can be included in the subsequent A-

MPDU 2 . While the A-MPDU 1 size was 8 frames, the second A-MPDU 2

is reduced to four frames only: two retransmitted frames (sequence numbers 6

and 8) and two new frames (sequence number 12 and 13). Finally, the starting

sequence number advances to sequence number 14 when transmitting the last

A-MPDU 3 , resulting in a full-sized A-MPDU.

4.3.1 Aggregated Frames

After establishing a Block Ack session the transmitter and the receiver can

exchange A-MPDU frames. When transmitting A-MPDUs, multiple MPDU

frames are “glued” together. The structure of an A-MPDU is shown in Figure

4.3. A-MPDU frames start with a PHY header (Preamble) which is used to

detect a transmission. Each MPDU in an A-MPDU is separated by a delimiter

field. The delimiter serves two main purposes: it spaces frames to conform

with the negotiated frame density, and serves as a synchronising sequence when

one or more delimiters are received in error. It is 32 bits in length and has

four fields: reserved (4 bits); length (12 bits) which represents the length of the

MPDU in bytes; CRC-8 an 8-bit CRC (over the reserved and length fields);

and signature (8 bits), a unique pattern used to detect the delimiter field when

scanning for MPDU. A delimiter with length set to zero is valid, and is used
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Figure 4.3: A-MPDU structure

to meet frame density constraints negotiated during Block Ack session setup.

Following the delimiter is the padded MPDU consisting of the MAC header

and the FCS. Each A-MPDU can contain many MPDUs separated by delimiter.

The maximum number of MPDUs is constrained by three factors. First, the

Block Ack protocol uses a window of 64 frames, so the maximum A-MPDU

size to 64 frames. Second, the total size in bytes of an A-MPDU is limited to

64 kilobytes (for IEEE 802.11n). Finally, the over-the-air time of an A-MPDU

is limited. According to the IEEE 802.11n standard, a station cannot transmit

for more than 10 milliseconds after a single channel acquisition.

4.4 Problem Definition
How efficient are A-MPDUs in amortising MAC protocol overheads and what

are the benefits of doing so? To understand the benefits of frame aggregation, we

extend the model presented in Chapter 3, Equation 3.1, to include A-MPDUs.2

In Figure 4.4 we plot theoretical goodput as a function of aggregate size (the

number of frames in an A-MPDU). The model assumes that the AP forwards

MTU-sized (1500 byte) TCP segments to a single Wi-Fi client. We further

model TCP with delayed ACKs and a lossless wireless channel, i.e., one that

2Appendix A shows the derivation of the model’s expansion.
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delivers all the packets on the first attempt. In the case of TCP delayed ACKs,

we further assume that the TCP receiver transmits TCP ACKs in response to

the AP’s A-MPDUs in aggregates half the length of the received A-MPDUs.

In other words, if the AP sends an A-MPDU containing n TCP packets, then

the client returns TCP ACKs in an aggregate of length n
2 . Finally, we assume

default wireless channel access parameters for the IEEE 802.11n DCF, with

short guard interval (SGI) and 40 Mhz channel width. Every curve in Figure 4.4

stops at the maximum A-MPDU size, subject to the IEEE 802.11n limitations

described in the previous section.
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Figure 4.4: TCP theoretical goodput over IEEE 802.11n DCF when using some of
the IEEE 802.11n PHY bit-rates.

The curves in Figure 4.4 are labeled with the PHY bit-rate in Mbps. They

represent the various modulation and coding schemes (MCS) supported by

IEEE 802.11n. For example, the curve labeled 15 is for MCS-0, which uses

a BPSK modulation, a coding rate of 1/2 and a single spatial stream. At

the other extreme, the curve labeled 600 is for MCS-31, the highest PHY
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bit-rate supported by IEEE 802.11n. It uses four spatial streams, QAM-64

modulation and a coding rate of 5/6. It is evident that using frame aggregation

significantly improves the performance of IEEE 802.11n networks, especially

when transmitting using high PHY bit-rates. With increasing bit-rate, the over-

the-air time of a frame decreases. Because of fixed channel access overhead, the

ratio between the frame time and the overhead decreases (effectively reducing

utilisation). For example, transmitting single frames at 600 Mbps (MCS-31)

achieves a goodput of 29 Mbps, compared to 372 Mbps goodput achieved when

transmitting the largest possible A-MPDUs. Using frame aggregation gives a

12.5× improvement. 600 Mbps is the greatest possible PHY rate supported

by IEEE 802.11n. In our experience it is uncommon for IEEE 802.11n Wi-Fi

hardware to support that PHY rate, which requires four transmit and receive

antennas. A more common configuration is Wi-Fi hardware with three or fewer

antennas. For example, 150 Mbps (MCS-7) is the highest PHY bit-rate that can

be achieved when using a single antenna. Transmitting single frames at the 150

Mbps PHY rate yields a goodput of 26 Mbps (17% wireless channel utilisation).

Using frame aggregation achieves 128 Mbps goodput (85% utilisation), a 5×

improvement. The take-away from Figure 4.4 is that frame aggregation is

necessary, and should always be used when transmitting using IEEE 802.11n

rates.3 Furthermore, sending the largest possible A-MPDUs is desirable to

achieve high wireless channel utilisation. But do today’s commercial Wi-Fi

NICs manage to send large A-MPDUs?

4.5 A-MPDU Size in Practice
To explore A-MPDU sizes systems send in practice we set up a testbed consisting

of an IEEE 802.11n Access Point (AP) and a varying number of Wi-Fi clients.

Our base-case AP runs the hostapd [13] application under the Linux operating

system. We set up a separate machine to act as a traffic generator (the sender)

and connect it to the AP’s distribution network using Gigabit Ethernet. The

3IEEE 802.11ac made it mandatory to use frame aggregation for all transmissions.
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traffic generated by the sender is forwarded to Wi-Fi clients by the AP over the

Wi-Fi network. First, Wi-Fi clients associate with the AP and each Wi-Fi client

runs the iperf [14] application in server mode. After Wi-Fi clients successfully

associate with the AP, the sender establishes a TCP connection with each

Wi-Fi client using iperf application and sends to each Wi-Fi client as fast as the

sending socket allows for 120 seconds. The Wi-Fi stations in these experiments

transmit using a fixed PHY bit-rate (MCS-6). We instrumented the device

driver to record the size of each A-MPDU transmitted. A full description

of the testbed and the experimental setup is provided later in the chapter.

The distribution of the A-MPDU sizes when the AP transmits to a varying

number of Wi-Fi clients is shown in Figure 4.5a. The first observation is that

as the number of Wi-Fi clients increases the AP’s A-MPDU size decreases. For

example, when sending to one client the A-MPDU size alternates between 42

(the maximum A-MPDU size) and 22. This alternation occurs as a result of the

interaction between the device driver algorithm used to transmit A-MPDUs

and the Block Ack protocol. We explain this behaviour in more detail later in

this chapter.

When sending to two Wi-Fi clients, as compared to one Wi-Fi client, the

median A-MPDU size has increased slightly, from 32 to 37, however the fraction

of time the AP sends maximum-sized A-MPDUs has fallen by 2%. In addition,

the fraction of time A-MPDU size is below 22 has increased by 20%. This

trend of the A-MPDU size dropping as the AP transmits to a grager number

of Wi-Fi clients continues. When the AP transmits to fourteen Wi-Fi clients

only 7% of A-MPDUs are maximum size, with a median A-MPDU size of 13

frames. Figure 4.5b shows the distribution of A-MPDU sizes Wi-Fi clients send

when transmitting to the AP. With the exception of the single Wi-Fi client

case, more then 50% of the time Wi-Fi clients transmit single frames. Given

these results in Figures 4.5a and 4.5b what is the impact on achieved goodput?

Figure 4.10a shows the TCP goodput achieved when the AP transmits to

between one and fourteen clients. As expected, the goodput decreases as the
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Figure 4.5: A-MPDU size empirical CDF when the AP transmits to increasing
number of Wi-Fi clients (Figure 4.5a) and when Wi-Fi clients transmit
TCP ACKs back to the AP (Figure 4.5b). The solid black line is one
client and lightest grey line is 14 clients.

number of clients the AP transmits to increases. With a single Wi-Fi client,

the achieved goodput is 103 Mbps, however it drops to 81 Mbps when the AP

transmits to fourteen clients. Going from one client to fourteen clients results

in a 27% goodput loss. Our findings suggest that the A-MPDU sizes sent by
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Figure 4.6: TCP Downlink Goodput

the AP and Wi-Fi clients are small enough to negatively effect the achieved

goodput.

We use these results as a motivation to answer the following questions:

1. Why is the majority of A-MPDUs sent small?

2. Why are more then half of TCP ACK transmissions single-frame trans-

missions?

3. TCP goodput decreases as the number of Wi-Fi clients increases. Is the

A-MPDU size responsible for this drop?

To answer these questions one must take account of the full stack of

protocols, including the Wi-Fi device driver. In particular, how and where

packets are buffered and queued as they traverse the stack is important. Queues

are an important component of any networked system as they glue together

rate-mismatched input and output processes. For this work we choose Linux,

as its open-source nature enables us to dive into the stack’s details.
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4.6 Packet Buffering in Linux
Figure 4.7 shows a general overview of the Linux network stack’s packet

transmission architecture. Above the stack are application programs that

use some transport protocol, such as TCP, to transmit data. TCP accepts

the application’s bytes and segments them into packets, and after performing

TCP-related processing, it passes each packet down the stack as a struct sk buff.

After IP decides how to forward the packet, it checks if the outgoing network

interface can accept the packet (i.e., it can transmit the frame immediately) it

is passed to the device driver. Otherwise the packet is queued in the IP queue

and stays there until the outgoing interface can accept new packets.

How packets are queued, dropped, and dequeued is determined by the

queueing discipline (qdisc) subsystem. The modular architecture of the qdisc

subsystem allows for various queueing policies to manage the IP queues. By

default, the FIFO qdisc is installed on a Wi-Fi device4. FIFO is the simplest

queueing discipline: it enqueues incoming packets at the tail of the queue and

dequeues them from the head of the queue. When the queue becomes full5, no

more packets can be admitted into the queue, and new packets are dropped.

Once the device driver can accept new packets for transmission, the IP queue

starts dequeuing packets at its head and passes them to the device driver.

On Linux, several Wi-Fi card device drivers (including that for the Atheros

9000 series) use the generic mac80211 layer. mac80211 handles standard IEEE

802.11 functionality, such as adding link-layer headers, maintaining stations’

association information, and handling various management frames.

The mac80211 layer does not include active queue management except

for temporary buffers used to perform tasks such as fragmentation. A detailed

description of the mac80211 layer is out of scope for this thesis. In summary,

after adding IEEE 802.11 headers and performing validation tasks such as

making sure that the station is associated, mac80211 hands the packet to the

device driver (ath9k).
4Four FIFO queues are installed, one for each IEEE 802.11e access category.
5By default the queue size is set to 1000 packets.
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Figure 4.7: Linux Network Stack

The device driver is the lowest software layer before the packet is handed to

the hardware device for transmission. Our experimental testbed runs on Atheros

hardware driven by the ath9k [12] open-source driver. Frame aggregation is

performed in the device driver, so we provide a description of how A-MPDUs

are created. The driver keeps a queue for each of the established Block Ack

sessions. Each queue is identified by a unique traffic identification (TID) and

access category (AC). Upon receiving a packet from the mac80211 layer, the

packet’s corresponding TID is found and the packet is queued on that TID’s

queue. TID queues are categorised based on access category defined by IEEE

802.11e quality of service (QoS). The device driver schedules TID queues for

packet transmission in round-robin fashion. First TID queues from the highest

AC are scheduled, followed by those on lower ACs. When the device driver

picks a TID for packet transmission it dequeues packets one at a time and

adds them to the A-MPDU. The driver ensures that the number of packets in

an A-MPDU does not exceed the IEEE 802.11n constraints. To help create

large A-MPDUs the ath9k driver manages a double buffer of DMA descriptors.

DMA descriptors are regions of host memory that can be directly accessed by

the hardware. Packets in the DMA descriptors are ready for transmission by

the hardware. Double buffering makes sure the hardware does not run dry and
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gives an opportunity for packets to be buffered in TID queues while there are

DMA descriptors filled with packets waiting to be transmitted.

While the combination of FIFO queues and TID scheduling in the ath9k

driver works well when the AP serves only one Wi-Fi client, it gradually starts

sending smaller aggregates as the number of Wi-Fi clients increases. The reason

for this is twofold. First, the FIFO discipline manages only one queue, and

packets are dequeued on a first-in-first-out basis regardless of which Wi-Fi client

they are destined for, resulting in random dequeueing of Wi-Fi clients’ packets.

The second problem comes from the decoupling of the driver’s TID scheduling

and dequeuing of packets from the IP queue. This approach results in TIDs

being scheduled prematurely or the IP queue’s dequeuing more packets than it

should. When a TID is scheduled prematurely, a chance is missed to create

larger A-MPDUs, as there could be more packets for the given TID waiting in

the IP queue. On the other hand, as was mentioned previously, A-MPDU size

is limited by the length in bytes, maximum number of packets, and maximum

transmission time. Handing more packets to the driver than can fit into an

A-MPDU could potentially lead to sub-optimal A-MPDU size.

Armed with an understanding of how Linux buffers packets, we can turn

to the questions we previously posed, but before we do so we offer a brief

overview of another queueing discipline, namely Controlled Delay (CoDeL) [68].

CoDeL is an active queue management algorithm developed in response to

oversized queues observed on the Internet, a problem known as “bufferbloat” [43].

CoDeL’s aim is to achieve a parameterless active queue management algorithm

that keeps delay low while permitting bursts of traffic, and adapting dynamically

to link changes without having an adverse impact on utilisation. It achieves

these goals by using novel approaches such as using local minimum queue delay

as measure of standing/persistent queues and measuring packet-sojourn time

instead of queue size in bytes or packets. As long as the local queue delay is

below a target value (5 milliseconds, by default), packets are not dropped. If

the minimum queue delay has exceeded target for a time greater than interval
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(100 milliseconds, by default) CoDeL enters dropping mode. While in dropping

mode, packet drops are governed by a control mechanism ensuring that packet

drops cause a linear drop in throughput. Packets are dropped from the head

of queue. Once the minimum queue delay falls below target CoDeL exits

dropping mode.

An interesting variant of CoDeL is the Fair Queuing CoDel (FQ CODEL)

queueing algorithm. FQ CODEL is a combination of deficit fair queueing [80]

and the CoDeL algorithm. Each packet is classified by a flow and each flow

has a queue managed by an instance of the CoDeL algorithm. Fair sharing of

resources among queues is achieved using round-robin scheduling. By default

each flow is given a deficit of MTU (Maximum Transfer Unit) bytes and packets

are dequeued from the same queue until that flow’s deficit is used. Using a

queue per flow could potentially lead to large A-MPDUs, and we wanted to

see if that was the case. We repeat the same experiments we ran using FIFO,

however this time we run the AP with FQ CODEL instead.

Figures 4.8b (downlink) and 4.9b (uplink) show the distribution of A-

MPDU sizes when the AP runs FQ CODEL. Compared to A-MPDU size when

the AP is running FIFO (Figure 4.8a and Figure 4.9a), FQ CODEL sends

smaller A-MPDUs. This is contrary to what we’d expect from having per-flow

queues. However, FQ CODEL uses a deficit value of one MTU size, translating

to one packet per flow. This leads to fewer packets being queued in TID queues,

resulting in small A-MPDUs. In addition, by aiming to keep delay low, FQ

CODEL incurs more packet drops, which reduces the number of packets in

queues, leading in turn to smaller A-MPDU sizes. To see how these A-MPDU

sizes affect the goodput in Figure 4.10 we show TCP goodput for FQ CODEL

(Figure 4.10b) and FIFO (Figure 4.10a), for comparison. As the number of

Wi-Fi clients increases, FIFO achieves better goodput compared to FQ CODEL.

For example, when the AP uses FQ CODEL to transmit to nine Wi-Fi clients,

it achieves goodput similar to that achieved when the AP uses FIFO to transmit

to fourteen clients.
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Figure 4.8: Downlink A-MPDU size empirical CDF when the AP is running FIFO
and FQ CODEL. The solid black line is one client and the lightest grey
line is 14 clients.

4.6.0.1 Why does hostapd send small A-MPDUs when running

FIFO and FQ CODEL?

As we described earlier IEEE 802.11n constrains the number of packets that fit

in an A-MPDU. An A-MPDU cannot be larger then 64 KB in size and sending

MTU-sized packets thus results in maximum of 42 packets in an A-MPDU.
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Figure 4.9: Uplink A-MPDU size empirical CDF when the AP is running FIFO
and FQ CODEL. The solid black line is one client and lightest grey
line is 14 clients.

The other limitation comes from the window size of the Block Ack protocol,

which is 64 packets. This is why the maximum A-MPDU size on downlink

is 42 packets and 64 on uplink6. Two factors cause the A-MPDU size to be

less then the maximum allowed. First, there are not enough packets buffered
6TCP ACKs are small in size and are not limited by the maximum size in bytes, but they

are limited by the Block Ack protocol window.
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Figure 4.10: TCP goodput when the AP is transmitting to varying number of
Wi-Fi clients.

in the TID queue, and second, the Block ACK protocol window is limiting.

Packet losses can limit the Block ACK window as explained in Section 4.3.

To understand what causes A-MPDU size to be smaller than the maximum

size, we instrumented the device driver to log why an A-MPDU resulted in a

particular size. We log A-MPDU size, the number of packets in the TID queue

left after the A-MPDU was formed, and whether the Block ACK window was

closed. We classify A-MPDUs into four categories: baw, good, tidqe, and single

BAW TIDQGOOD SINGLE BAW TIDQGOOD SINGLE

FQ CODEL FIFO

Figure 4.11: FIFO and FQ CODEL fail to send large A-MPDUs because there are
not enough packets in the queue

The baw category indicates the Block Ack protocol window was closed.
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The good category indicates an A-MPDU was of maximum size. The tidqe

category indicates that the TID queue ran dry while forming an A-MPDU. And

the single category indicates single packet transmissions. For this experiment

we choose a configuration where the AP sends to four Wi-Fi clients, as the

Block Ack window will not be limited by the device driver’s double buffering

in this scenario. The histogram in Figure 4.11 shows the fraction of time each

category of A-MPDU occurs when the AP transmits to Wi-Fi clients using

FIFO and FQ CODEL. An empty TID queue is the main reason why A-MPDU

sizes are small. More than 60% of cases when the AP uses FIFO and more

than 85% on the AP when it uses FQ CODEL are in this category. Categories

baw and single occur infrequently, and so have negligible effect on A-MPDU

sizes. In summary, FIFO randomises the order of clients for which packets

are dequeued, resulting in TID queues being empty, while FQ CODEL keeps

queues small, resulting in empty TID queues.

4.6.0.2 Why are the majority of uplink transmissions single-

packet transmissions?

Surprisingly, the uplink results in Figures 4.9a and 4.9b show that the majority

of TCP ACK transmissions are single-packet transmissions. Understanding

this phenomenon requires an understanding of how A-MPDUs are processed

at the receiving Wi-Fi client. A-MPDU frames received by the hardware are

de-aggregated before being handed to the device driver upon firing of a receive

interrupt. Upon handling the receive interrupt, the device driver processes

packets one by one and passes them up the stack. As packets propagate up the

stack they elicit TCP ACKs once the TCP stack has processed them7. These

TCP ACKs are passed down the stack for transmission (following the same

transmission path described in Section 4.6) while further incoming packets are

still being processed. The processing of the TCP data and the transmission

of TCP ACKs occur in parallel. TCP ACK transmission may be spread out

7With delayed TCP ACK enabled, every second TCP data packet received will elicit one
TCP ACK.
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in time, depending on the processing time for the incoming packets, and they

may be scheduled prematurely before all are queued by the device driver in the

hardware. This premature transmit scheduling of TCP ACKs results in the

driver’s not being able to form large A-MPDUs, as simply not enough TCP

ACKs are in the TID queue, since they are still being generated.

Our hypothesis is that we can send large A-MPDUs by exchanging infor-

mation across layers to aid the device driver in scheduling and forming large

A-MPDUs. The next section describes AAQ, a queueing discipline designed

achieve these aims. In addition, we present the design of TAO, a simple op-

timisation that arranges aggregation of TCP ACKs into large A-MPDUs by

delaying TCP ACK transmission until all TCP ACKs for a received A-MPDU

have been generated.

4.7 Aggregation Aware Queueing (AAQ) and

TCP ACK Optimisation (TAO)
This section presents AAQ and TAO, techniques designed to send large A-

MPDUs and improve goodput for TCP flows that traverse Wi-Fi access points.

AAQ is designed to send maximum-sized A-MPDUs when Wi-Fi AP forwards

packets to Wi-Fi clients. And TAO is an optimisation that lets Wi-Fi clients

send optimal-sized A-MPDUs when sending TCP ACKs back to the AP for

forwarding to the remote sending host. TAO does not require AAQ and can

operate independently of the queueing discipline. Based on our observations of

the stock Linux stack’s behaviour, as described in the previous section, we set

the following goals for AAQ and TAO:

1. Maximise A-MPDU size on the downlink.

2. Maximise A-MPDU size on the uplink.

3. Share resources fairly between Wi-Fi clients.
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4.7.1 Aggregation Aware Queueing

AAQ is an IP queueing discipline designed to increase A-MPDU size. To

achieve this aim, AAQ exchanges information with the low-level device driver

that forms A-MPDUs. AAQ aims to provide fair sharing amongst Wi-Fi clients

and aid the device driver with scheduling decisions. To achieve fair sharing,

AAQ uses round-robin fair queueing, as does FQ CoDel. Unlike FQ CoDel,

AAQ uses per-destination queues instead of per-flow queues. Given that Block

Ack sessions are per-Wi-Fi destination, per-flow granularity does not provide

further benefit. AAQ creates 256 queues and determines on which queue to

enqueue a packet based on the last octet of the destination’s MAC address.

When two or more Wi-Fi stations have the same last octet, a collision occurs.

To handle collisions we use a linked list of queues resolved using the destination

MAC address. Like FQ CoDel, AAQ enforces a total queue length limit across

all queues, and packets are dropped from the flow with the greatest number of

packets enqueued when this limit is exceeded. When dropping packets, AAQ

uses a drop-head policy.

When dequeueing, AAQ picks queues in round-robin fashion. AAQ relies

on information from the device driver to decide when it should move to the

next queue. When dequeuing packets, AAQ keeps dequeuing from the same

queue until the device driver informs it to stop doing so. The device driver does

this by passing a message up the stack. Two different messages can be sent

by the device driver to AAQ. The first message is a PAUSE message, which

tells AAQ that it should stop dequeuing packets from the given queue and

move on to the next queue. The second message is a RESUME message, which

informs AAQ that it can dequeue packets for the given destination. The driver

sends the PAUSE message when the BlockAck window does not allow further

transmissions or the maximum allowed number of bytes/packets in an aggregate

has been reached. The driver sends the RESUME message when space for

more packets in the driver queue becomes available—that is, when packets

have been transmitted and the BlockAck window has opened. Algorithm 1
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shows the pseudocode for the enqueue operation. It enqueues a packet into the

corresponding queue, and checks if the global queue limit has been reached. In

cases when the queue overflows, it finds the longest queue and drops the packet

at its head.

Algorithm 1 enqueue(packet)
1: idx← packet.dstmac[5]
2: q← get queue for(idx)
3: enqueue packet(q,packet)
4: qlen++
5: if qlen≥ global qlen then
6: drop packet from the head of the largest queue
7: end if
8: if q.is new then
9: add to list(active queue list, q)

10: q.is new← FALSE
11: end if

The dequeue operation, whose pseudocode is given in Algorithm 2, de-

queues packets from one of the queues. To ensure that packets are dequeued

successively from the same queue, the current queue is stored in the shared

variable current queue.

Algorithm 2 dequeue
1: if not current queue then
2: if not empty(active queue list) then
3: current queue← get next queue(active queue list)
4: else
5: return null
6: end if
7: end if
8: packet← get packet(current queue)
9: if not packet then

10: remove queue(active queue list,current queue)
11: curren tqueue←NULL
12: go to 1
13: end if
14: return packet

Finally, Algorithm 3 shows pseudocode for a callback function registered

with the device driver. This function is called by the device driver to pass
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messages to AAQ about the queue’s state. Depending on the message received,

it either moves the queue to the list of active queues (for the RESUME message)

or it moves the queue to the list of paused queues (for the PAUSE message).

When the device driver invokes the callback method it passes a unique id as a

parameter. This id is used to map the device driver’s queue (TID queue) to

the corresponding AAQ queue. In the beginning id is set to zero for all AAQ

queues; id is updated when the driver passes it to AAQ.

Algorithm 3 driver callback(queue id, message)
1: if message == PAUSE then
2: if not current queue.id then
3: current queue.id← queue id
4: move queue(paused queue list,current queue)
5: current queue← null
6: end if
7: else if message == RESUME then
8: q← get queue(paused queue list, queue id)
9: if q then

10: move to tail(active queue list, q)
11: end if
12: end if

4.7.2 TAO
Today’s TCP design is blissfully ignorant of Wi-Fi’s link-layer aggregation of

frames. When an A-MPDU arrives at a TCP receiver, the host CPU interleaves

processing of TCP packets from the received A-MPDU with generation of

TCP ACKs for those received TCP packets. The result is that even when an

A-MPDU consisting of multiple tens of TCP packets has been received, the

receiver’s Wi-Fi card is presented with small bursts of just a few TCP ACKs,

which the Wi-Fi card sends as short A-MPDUs, unaware that more TCP ACKs

for TCP packets already received will arrive imminently. We rectify this lack of

coordination across layers by introducing the TCP ACK Optimisation (TAO),

which counts the TCP packets received and forces the Wi-Fi device driver to

delay their formation into A-MPDU and transmission until the driver possesses

TCP ACKs for all received TCP packets. TAO, too, requires passing of state
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across layers of the stack, and new control mechanisms that inspect and update

this state.

To summarise, AAQ is a fair queueing discipline designed to share state

with the low-level device driver to aid in forming large A-MPDUs. It uses a

per-destination queue with round-robin dequeuing and a drop-head policy. It

is designed to be used by Wi-Fi APs sending data to Wi-Fi clients. TAO is a

receiver-side optimisation that allows Wi-Fi clients to form large A-MPDUs

when sending TCP ACKs.

4.8 Implementation and Evaluation
We now describe the implementation of AAQ and TAO. In addition we present

experimental results from our testbed that evaluate AAQ and TAO ’s efficiency.

4.8.1 AAQ

AAQ is implemented as a new queueing discipline (qdisc) module for Linux

kernel version 3.18.7. The core AAQ functionality is implemented in 750 lines

of code. In addition, support for AAQ is added to the tc8 tool used to control

and manipulate Linux’s queueing subsystem. AAQ is registered under the

name fq aaq. We install fq aaq using tc as follows:

# /sbin/tc qdisc add dev wlan0 root fq aaq limit 1000

The above command installs AAQ and sets the global limit to 1000 packets

on Wi-Fi device wlan0. To support callback functionality from the device

driver to AAQ we modified struct Qdisc ops9 to add a new functifn pointer,

pause. When AAQ is initialised it registers the pause callback function. Calling

the function from the low-level device driver works in a similar fashion to the

existing method to stop the driver queue. When the driver queue becomes full

it calls ieee80211 stop queue which in turn propagates the call up the stack. We

added calls to ieee80211 pause queue to propagate the PAUSE and RESUME

messages up the stack. AAQ sets the pre-existing more data field of struct
8Traffic Control is part of the iproute2 tools.
9This structure is used when registering a new queuing discipline. It contains various

function pointers, such as for enqueue and dequeue functions.
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sk buff to inform the device driver if there are more data queued for the given

queue.

ath9k Changes To support AAQ we modify the ath9k device driver to make

use of the extra information provided by AAQ. struct ath atx tid represents a

TID session. We added the following new members to this structure:

• bool dont sched yet, a flag to hint to the TID scheduler that AAQ has

more packets to dequeue so it can postpone the scheduling of the given

TID.

• unsigned long id, the unique identifier for the given TID, and the id that

will be passed up to AAQ to map AAQ queues to TID queues. It is set

to the jiffies10 value at the time of a Block Ack session’s creation.

• int bytes in tid, keeps track of the number of bytes currently in TID.

• int bytes allowed, holds the maximum number of bytes that the current

TID can hold. When int bytes in tid reaches this value, the device driver

passes a PAUSE message to AAQ.

In addition to these struct ath atx tid modifications, two of the ath9k

driver’s functions have been modified:

• ath tx start is responsible for deciding a packet’s TID queue and invokes

the TID scheduling routine. We modify it to incorporate the decision on

when AAQ should stop dequeuing packets for the given queue. If the Block

Ack window is closed, or bytes in tid has reached bytes allowed we invoke

ieee80211 pause queue with id and the PAUSE message. In addition,

based on the state of the more data flag, we set dont schedule yet.

• ath txq schedule was modified to postpone scheduling of TIDs that have

dont schedule yet set.
10jiffies is a global variable in the Linux kernel holding the number of ticks since the system

was booted.
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4.8.2 TAO

Recall that TAO keeps a counter of the number of TCP packets received.

Because the MAC layer can retransmit packets, TAO must not count duplicate

TCP data packets. As duplicate suppression is handled in the mac80211 layer,

we added a callback to TAO from the mac80211 layer for each non-duplicate

packet. We register the callback function, ath9k rx success, when the ath9k

driver is loaded (if TAO is enabled). First, TAO looks for the TID the received

packet belongs to. Next, if the packet is a TCP data packet, the counter

data to ack for the given TID is incremented. If the packet is the last packet in

the A-MPDU we set the flag more data for the TID to false. On the transmit

side, TAO examines each outbound packet and determines if it contains a

TCP ACK. If that is the case, TAO adds the packet to a TCP ACK queue

unique to the given TID. We modify the TCP stack to pass the exact number

of TCP segments the TCP ACK acknowledges to the lower layer in a new field

ack cnt in struct skb buff. For each outbound TCP ACK packet, data to ack is

decremented by ack cnt. When data to ack reaches one and more data is false,

TCP ACKs queued will be released for transmission.

When TCP delayed ACK is used, there are cases where an inbound A-

MPDU contains an odd number of TCP packets. In such cases, the last packet

in the A-MPDU will only cause an ACK to be generated when the delayed

ACK timer fires 200 ms later. We don’t wait for the delayed ACK timer to fire

before releasing the TCP ACKs, as we don’t want to further delay them.

Before we discuss the evaluation of AAQ and TAO we outline two bugs we

found in the ath9k driver while validating our testbed. First, TCP occasionally

retransmitted TCP segments. These retransmissions were not the result of

packet drops at the IP queue, nor were they caused by the RTO (TCP retransmit

timeout) firing, nor by drops in the MAC protocol. Investigating further, we

noticed that the Wi-Fi hardware occasionally prematurely fired the receive

interrupt before the receive descriptors were properly filled. The driver treated

the given descriptor as invalid and never passed the descriptor up the stack,
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causing TCP to retransmit. We fixed this problem by not dropping the

descriptor, and instead delaying its processing. The hardware later properly

filled in the descriptors.11

The second problem was in the TID scheduling function. The scheduler

keeps a list of active TIDs that need to be scheduled. In cases when there are

already two A-MPDUs in memory reserved for DMA to the Wi-Fi card, and

the scheduler tries to schedule a third TID, that TID will not be scheduled.

When this condition occurs the third TID is replaced on the list of active TIDs.

In the original driver this TID was added to the tail of the active TID list.

This behaviour has the potential to be unfair when the AP is serving multiple

Wi-Fi clients. To fix this problem, we re-insert the given TID at the head of the

queue instead of the tail. This way, the TID will be the first to be scheduled

when the AP has finished transmitting the previously queued A-MPDUs.

4.8.3 Testbed

We evaluate AAQ and TAO using a testbed (Figure 4.12) consisting of fourteen

Wi-Fi clients equipped with a combination of Intel i7 3.2 Ghz desktop PCs

and Intel NUC mini-PCs with 1.8 Ghz i5 CPUs and 8 GB of RAM. All Wi-Fi

stations in our testbed run Ubuntu 14.04.5 LTS [22] and our modified Linux

Kernel 3.18.7 [16]. The first AP runs on a Intel NUC using hostapd v2.3 [13]

and the second AP is a commercial Cisco Linksys WRT610Nv1 [15]. A passive

monitoring Wi-Fi client captures and stores traffic during experiments using

tcpdump [17]. The traffic generator is a desktop PC with an Intel i7 3.2 Ghz CPU

and 24 GB of RAM and is connected to the APs using 1 Gbps Ethernet. We

ensure that the traffic generator is not the bottleneck by increasing socket buffer

sizes. In addition, TCP small queues [21] is disabled. TCP is configured to run

the Reno congestion control algorithm [19], with selective acknowledgments

(SACK) [20], window scaling [18], and timestamp options [18] enabled. iperf [14]

is used to generate traffic. The default IP queue length is set to 1000 packets.

We use Wi-Fi hardware with Atheros chipsets (9300 and AR5418) running

11This issue was reported on the ath9k mailing list.



4.8. Implementation and Evaluation 91

1 
G

bp
s 

E
th

er
ne

t

Traffic Generator

Linux AP

Cisco AP

Wireless Client 1

Wireless Client 2

Wireless Client 13

Wireless Client 14

.

.

.Wireless Monitor

Figure 4.12: Experimental testbed.

the ath9k device driver. Wi-Fi stations are configured to use the 5 Ghz band

(Channel 157) and 40 Mhz channel bandwidth with the short-guard-interval

(SGI) and RTS/CTS enabled. Both APs and Wi-Fi clients are configured to

use a fixed PHY rate of 135 Mbps (MCS-6).

4.8.3.1 AAQ Evaluation
We evaluate AAQ using the testbed described in the previous section. The

aim of the evaluation is to see if AAQ manages to send large A-MPDUs. In

addition to comparing AAQ to FIFO and FQ CODEL, we also compare it

to a commercially available Linksys AP. We are interested to see how the

A-MPDU size changes as the number of Wi-Fi clients the AP serves increases.

We start with the AP serving only one Wi-Fi client and increment the number

of Wi-Fi clients up to fourteen. The traffic generator’s iperf client is instructed

to establish a TCP connection with each Wi-Fi client’s iperf server. Each

experiment lasts for 120 seconds and is repeated five times.

Figure 4.13 shows the empirical distribution of A-MPDU sizes when APs

transmit to Wi-Fi clients. Results combine measurements from five experiments

for AAQ, FIFO, FQ CODEL, and Linksys. The solid black curve shows the
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Figure 4.13: Downlink A-MPDU size empirical CDF when the AP is sending from
one to fourteen Wi-Fi clients. The solid black line is one client and
lightest grey line is 14 clients.

case when the AP transmits to one Wi-Fi client and the lighter coloured curves

show increasing numbers of Wi-Fi clients. The case with fourteen clients is the

lightest coloured curve. When the AP sends to one Wi-Fi client, we observe

the effect (Figure 4.13a and Figure 4.13b) of double buffering in the ath9k

driver. Because there is only one Wi-Fi client available to which to send packets,

the A-MPDU size alternates between 42 packets and 22 packets. At first the

AP aggregates 42 packets and initiates a DMA transfer. When forming the

next A-MPDU, while the previous A-MPDU is still waiting for transmission,

the next A-MPDU can only be as large as 22 packets, because the BlockAck

window closes. Once the first A-MPDU of 42 packets has been transmitted

and acknowledged by the receiver, space becomes available in the window and

another 42 packets can be aggregated. This process repeats in alternation
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leading to the results in Figure 4.13a and Figure 4.13b. This effect is less

visible when the AP runs FQ CODEL (Figure 4.13c) because FQ CODEL

keeps IP queues small, resulting in more empty TID queues when forming

A-MPDUs. In cases when the AP sends to more then one Wi-Fi client, Figure

4.13a shows that AAQ sends maximum-sized A-MPDUs more than 90% of the

time, except for cases when the AP sends to more then 9 Wi-Fi clients. To

further investigate why, we examine A-MPDU size per client when the AP

sends to 14 Wi-Fi clients, shown in Figure 4.14. We choose the case where

the AP is transmitting to 14 Wi-Fi clients as this is the case when all of the

Wi-Fi clients in our testbed are active. Two Wi-Fi clients in Figure 4.14 send
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Figure 4.14: Per Wi-Fi client empirical CDF of A-MPDU size using AAQ. The
solid black line is one client and lightest grey line is 14 clients.

small A-MPDUs, with only 41% and 43% of A-MPDUs maximum size, and

about 6% of transmissions single-frame transmissions. Investigating further,

we find that two Wi-Fi clients in question experience a higher loss rate, leading

to MAC protocol retransmissions. Losses cause the Block Ack window to close,

a phenomenon observed previously [72]. In Figure 4.15 we show the per Wi-Fi

client distribution of the number of bad frames in an A-MPDU. A value of zero

in the x-axis means all packets in an A-MPDU were successively acknowledged
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Figure 4.15: Distribution of number of bad packets in an A-MPDU per Wi-Fi
client when the AP is transmitting to fourteen Wi-Fi clients. The
solid black line is one client and lightest grey line is 14 clients.

by the receiver. More then 30% of A-MPDUs transmitted by the AP to the

Wi-Fi clients in question, have one or more packets in an A-MPDU fail. These

packet failures result in smaller A-MPDU sizes because the Block Ack window

closes. Note that this phenomenon is not observed when the AP is running

other schemes, as it is masked by empty TID queues.

The results in Figure 4.13 show that AAQ successfully sends large A-

MPDUs when the AP forwards packets to Wi-Fi clients. But do the large

A-MPDU sizes observed result in better goodput? Figure 4.16 shows mean

aggregate goodput, averaged over five experiments, with standard deviation

as error bars. When calculating aggregate goodput, for each TCP flow (one

TCP flow per Wi-Fi client), we filter samples at the beginning of the flow and

only consider samples when all TCP flows are active. To avoid in-phase back

off of TCP flows, a phenomenon where TCP flows drops are synchronised, we

randomise starting times for TCP flows. The results in Figure 4.16 show the

aggregated one-second samples taken from the middle part of each experiment.

To calculate aggregate goodput we first calculate the mean goodput each Wi-Fi



4.8. Implementation and Evaluation 95

client gets across all experiment runs, and then we sum the mean of each Wi-Fi

client to get the aggregate goodput. The solid lines on top of each bar shows

the best theoretical goodput achievable.12 Compared to other schemes, AAQ

achieves higher goodput as the number of Wi-Fi clients increases. When the

AP sends to one or two Wi-Fi clients, all schemes but Linksys, achieve similar

goodput. With so few clients, the limiting factor is the double buffering in

the ath9k driver. As the number of Wi-Fi clients increases beyond two, AAQ

achieves consistently better goodput then the other schemes. For example,

when the AP is transmitting to 14 Wi-Fi clients, AAQ (92 Mpbs) improves

goodput by 27%, 21%, and 19% compared to FQ CODEL (72 Mbps), FIFO (76

Mbps), and Linksys (77 Mbps), respectively. Linksys presents an interesting
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Figure 4.16: TCP downlink goodput when the AP transmits to varying number of
Wi-Fi clients.

case where despite sending smaller A-MPDUs (see Figure 4.13d), it manages

to keep the goodput at the same level as FIFO and FQ CODEL. We postpone
12The model used to calculate theoretical goodput is shown in in Appendix A.
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the discussion of why is the case until later in this section.

Despite AAQ’s goodput improvements, there is still a gap between the

achieved goodput and the theoretical goodput. Multiple factors contribute to

this gap. The theoretical model assumes a lossless channel and that A-MPDUs

are transmitted with maximum size. In addition, the model does not take into

account collisions between the AP and Wi-Fi clients transmitting TCP ACKs.

As shown in Figure 4.15 the AP experiences some number of retransmissions

when transmitting to a few Wi-Fi clients. Packet retransmission takes air time,

in addition to reducing A-MPDU size as a result of the Block Ack window.

Furthermore, A-MPDU sizes when Wi-Fi clients are transmitting TCP ACKs

back to the AP are smaller in size than assumed by the model.

Next we look at the uplink A-MPDU sizes. In Figure 4.17 we show the

distribution of A-MPDU sizes when Wi-Fi clients are transmitting TCP ACKs

back to to the AP for AAQ, FIFO, FQ CODEL, and Linksys. As we have

discussed in Section 4.6, Wi-Fi clients transmit TCP ACKs mostly as single

packet transmissions. AAQ helps Wi-Fi clients form larger A-MPDUs when

transmitting TCP ACKs as compared with FIFO and FQ CODEL. When using

AAQ the AP sends large A-MPDUs resulting in the wireless medium’s being

busy for more of the time, once the AP has acquired the wireless channel. This

results in Wi-Fi clients having to wait for longer periods of time before they

can acquire the channel. This delay causes more TCP ACKs to be enqueued

in TID queues, which helps in forming larger A-MPDUs for TCP ACKs.

We briefly mentioned that Linksys presents interesting behaviour. We

now further investigate this Linksys behaviour. We note that when the AP is

transmitting to Wi-Fi clients it sends small A-MPDUs (see Figure 4.13d), with

a maximum A-MPDU size of 16 packets. Despite this small A-MPDU size, the

Linksys AP manages to keep the aggregate goodput in line with that of FIFO

and FQ CODEL (see Figure 4.16). In addition, in Figure 4.17d, we see that

Wi-Fi clients transmit TCP ACKs back to the AP with larger A-MPDUs as

compared to other schemes. We have seen that AAQ enables Wi-Fi clients to
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Figure 4.17: Distribution of A-MPDU sizes when Wi-Fi clients transmit TCP
ACKs back to the AP. The solid black line is one client and lightest
grey line is 14 clients.

send larger A-MPDUs because it keeps the medium busy for longer. However,

Linksys sends a maximum A-MPDU size of 16 packets, so it can’t be keeping

the medium busy. Our hypothesis is that Linksys sends multiple 16-packet

A-MPDUs back-to-back, as that is the only other strategy that could keep the

wireless medium busy for longer.

We do not have access to the Linksys source code to instrument it for

logging. We therefore rely on wireless traces captured by the monitoring station.

We process these traces offline and count the number of back-to-back A-MPDUs

Linksys transmits to Wi-Fi clients. Figure 4.18 shows the distribution of back-

to-back A-MPDUs sent by Linksys and AAQ, for comparison. A value of of

zero in the x-axis means that only one A-MPDU was transmitted by the AP.

Most of the time Linksys sends back-to-back A-MPDUs with only 5% single



4.8. Implementation and Evaluation 98

0 5 1 0 1 5 2 0
N u m b e r  of con se cu t ive  A-M PDUs  se n t  b y t h e  AP

0 .0

0 .2

0 .4

0 .6

0 .8

1 .0

E
C

D
F

Linksys AP

Linux AP

Figure 4.18: Empirical CDF for consecutive A-MPDUs transmitted by the AP.

A-MPDU transmissions. In contrast, AAQ sends single A-MPDU more than

70%. Linksys has a median consecutive A-MPDU transmission of two, resulting

in three back-to-back A-MPDU transmissions. The median A-MPDU size when

the Linksys AP transmits to Wi-Fi clients is 16 packets (see Figure 4.13d).

Effectively, Linksys’s median A-MPDU size is 48. When using Linksys Wi-Fi

clients wait longer, on average, before they can acquire the wireless medium

for transmission, resulting in more TCP ACKs enqueued in TID queues.

4.8.4 TAO Evaluation

The previous section examined AAQ’s performance. We now repeat the same

experiments as in the previous section, but with TAO enabled on clients. Again,

we vary the number of Wi-Fi clients and instruct the sender to send TCP data

to each client as fast as the sending socket allows. The results in Figure 4.19

show that TAO further improves goodput. When the AP is sending to fourteen

Wi-Fi clients mean aggregate goodput improves by 10% for AAQ, by 30%

for FIFO, 20% for FQ CODEL and 15% for Linksys. FIFO sees a significant

goodput improvement, from 72 Mbps to 100 Mbps. The result in Figure 4.20

show the distribution of A-MPDU sizes Wi-Fi clients transmit when sending

TCP ACKs. TAO virtually eliminates all single-frame transmissions across
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Figure 4.19: TCP Downlink Goodput with TAO Enabled

all the schemes. When using AAQ majority of A-MPDU sizes are 21 frames,

which corresponds to half of the maximum-size A-MPDU sent by the AP (42

frames). Sometime, TAO sends more then 21 frames in an A-MPDU as a result

of the interaction between the TCP ACK queue maintained by TAO, the TID

queue and the double-buffered DMA queue. TAO may decide to release TCP

ACKs, but released TCP ACKs may wait in the TID queue to be scheduled

for transmission, resulting in more then 21 TCP ACKs being transmitted in

an A-MPDU.

FIFO with TAO sees the greatest goodput improvement. This is interesting

as it suggests that AAQ might not add any benefit as just running TAO with

FIFO could be enough. Do we need AAQ, or is combining FIFO and TAO

enough to achieve high goodput? To answer this question we need to look at

the goodput fairness achieved.
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Figure 4.20: Uplink A-MPDU size empirical CDF when the AP is sending from
one to fourteen Wi-Fi clients with TAO enabled. The solid black line
is one client and lightest grey line is 14 clients.

4.8.5 Goodput Fairness

The results in Figure 4.19 suggest that combining FIFO and TAO could be

enough to achieve high aggregate goodput and that AAQ may not be necessary.

In this section we look at the goodput for each Wi-Fi client. When the AP

sends to multiple Wi-Fi clients, it is important that each Wi-Fi client gets a

fair share of the available goodput. In Figure 4.21 we show the distribution

of one-second interval goodput each Wi-Fi client gets, across all experiments,

when the AP transits to fourteen Wi-Fi clients. From Figure 4.21 we can

conclude that AAQ, FQ CODEL, and Linksys are fair, and each Wi-Fi client

gets a fair share of goodput. On the other hand, FIFO is not fair, as we would

expect from a single FIFO queue system. FIFO’s mean aggregate goodput is

high because some Wi-Fi clients are penalised and obtain a smaller share of
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Figure 4.21: Empirical CDF of one-second interval TCP goodput of each Wi-Fi
client when the AP is transmitting to 14 clients.

the available goodput.

4.9 Discussion
Providing information exchange mechanisms between layers increases A-MPDU

size when Wi-Fi APs send, resulting in improved TCP goodput. We showed

that AAQ improves goodput by as much as 27% compared to FQ CODEL

and 21% compared to FIFO. AAQ achieves this while providing fair shares

of available goodput to all Wi-Fi clients as a result of using fair queues.

In bi-directional protocols such as TCP, faster transmission of TCP ACKs

improves goodput. We showed that today’s Linux implementation sends small

A-MPDUs when transmitting TCP ACKs back to the sender. We designed

TAO, a simple TCP optimisation technique that further improves aggregate

goodput by transmitting large A-MPDUs when Wi-Fi clients send TCP ACKs

back to the AP for forwarding. TAO improves goodput across all of the schemes

we tested.

We evaluated AAQ and TAO using a fixed transmit rate (MCS-6). But

Wi-Fi clients choose best transmit rate dynamically based on the wireless

channel conditions. For AAQ and TAO to be successfully deployed on today’s
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Wi-Fi networks they must work even when the transmit rate varies. Three

factors influenced the decision to evaluate AAQ and TAO using only one

transmit rate. First, using a fixed transmit rate removes the dynamics of rate

control algorithms, simplifying the analysis. Second, using a fixed rate let us

choose a rate that would limit the Block Ack window as a result of losses.

Finally, when we evaluated AAQ and TAO using Linux’s default rate control

algorithm, we noticed that A-MPDUs were broken into smaller sizes. In the

next chapter we will look into this problem in more depth, and present a rate

control algorithm design that can send large A-MPDUs and show that AAQ

and TAO still produce large aggregates when using dynamic transmit rates.



Chapter 5

Aggregation Aware Rate Control

In the previous chapter we showed that by coordinating scheduling of packets

between IP queues and device driver queues maximum-sized A-MPDUs can

be transmitted, thus improving MAC protocol utilisation. In this chapter

we continue our journey to improve MAC efficiency by reducing unnecessary

channel acquisitions incurred by the rate control (RC) mechanism used for

Wi-Fi.

The wireless channel is characterised by time-varying random effects that

can cause bit-errors. One of the mechanisms used in Wi-Fi networks to com-

municate robustly despite the dynamics of the wireless channel is to adaptively

adjust the transmit rate depending on channel conditions. IEEE 802.11 defines

a range of transmit rates designed to cover various wireless channel conditions.

Low bit-rates provide robustness for wireless channels with low SNR, while high

bit-rates are designed for wireless channels with high SNR. While IEEE 802.11

specifies the list of transmit rates that can be used, it does not mandate how

and when these rates should be used. Instead, selection of the best transmit

rate is up to W-Fi implementations. Rate control (RC) algorithms play an

important role in Wi-Fi performance and as such they, have been the subject of

study for more then two decades, resulting in many RC algorithm proposals. In

this chapter we will focus our attention on the RC scheme currently in Linux,

and we will show that it falls short at sending large A-MPDU. To address this

problem, we propose Aggregate Aware Rate Control (AARC) a new algorithm
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MCS Modulation Coding Rate Data Rate (Mbps)
0 BPSK 1/2 15
1 QPSK 1/2 30
2 QPSK 3/4 45
3 16QAM 1/2 60
4 16QAM 3/4 90
5 64QAM 2/3 120
6 64QAM 3/4 135
7 64QAM 5/6 150

Table 5.1: 802.11n MCS list for single spatial stream

that sends large A-MPDUs, thus improving MAC protocol utilisation and

outperforming Linux’s current RC scheme.

5.1 Background

The wireless channel is characterised by time-varying random effects that

cause bit-errors. These effects, such as signal attenuation, multi-path fading

and interference are time-varying, typically unpredictable processes that are

accentuated by changes in the environment, such as the movement of people

and objects [45]. IEEE 802.11 provides various PHY rates that can be used to

combat these effects on the wireless channel. The supported rates come from

the combining of various modulations and coding rates. IEEE 802.11n supports

four different signal modulations, namely BPSK (Binary Phase Shift Keying),

QPSK (Quadratic Phase Shift Keying), 16-QAM (16-Quadrature Amplitude

Modulation), and 64-QAM. In addition to these modulation schemes, IEEE

802.11n supports 1
2 , 2

3 , 3
4 , and 5

6 coding rates. The combination of modulation

and coding rate gives the various PHY rates supported. Table 5.1 shows the

modulation and coding schemes (MCSes) supported by IEEE 802.11n for one

spatial stream. The data rate shown is the greatest PHY rate achieved using a

40Mhz channel and the short-guard-interval (SGI). The list of MCSes in Table

5.1 repeats for each additional spatial stream. For example, MCS-12 has the

same modulation and coding as MCS-4, but there are two independent spatial

streams, doubling the PHY rate.
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Each MCS in Table 5.1 is best for some particular operating regime, which

depends on the wireless channel conditions. If conditions on the channel are

worse than this operating regime for the MCS, performance will suffer, as the

receiver will not be able to successfully decode data transmitted using this

MCS. In Figure 5.1 we show operating points for each MCS from Table 5.1.

The operating points are shown as a function of SNR, and were generated using

well known theoretical SNR-BER mapping equations [88, 31]. It is assumed

that bit-errors are independently distributed, and the y-axis shows raw PHY

rate (i.e., excluding overheads incurred by the MAC protocol and other higher

lever protocols). The time-varying nature of the wireless channel makes it a

challenging task to identify a wireless channel’s current most appropriate PHY

rate. Rate control algorithms aim to first identify the channel conditions and

then decide the best MCS to use when transmitting. Ideally, RC algorithms

would follow the envelope in Figure 5.1 (dashed line) by moving up or down a

rate at the intersection points as wireless channel conditions change. At first

finding the best MCS to use may seem like a trivial task: measure the SNR and

use the SNR-to-BER mapping formulas to find the operating point. However,

it has been shown [99] that in practice this approach does not work well in

practice because of imperfections in hardware devices.

Broadly speaking, RC algorithms either use some PHY metric such as

SNR to predict channel conditions, or they gather frame loss statistics. Further,

they can be divided into algorithms that require feedback from the receiver,

or make rate decisions independently. Earlier RC algorithms relied on SNR

to make transmit rate decisions, but it has been shown that SNR is not a

good metric for predicting wireless channel performance [46, 67]. As such, rate

control algorithms that use frame delivery statistics have become the default

type of RC used with today’s off-the-shelf hardware. Their main advantage

is simplicity: if the frame loss rate is high, use a lower (more robust) rate, or

increase transmit power. While loss-based algorithms are able to find the best

transmit rate for a slow varying wireless channel, they fail to adapt quickly to
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Figure 5.1: SNR vs PHY Rate Envelope for 802.11n rates.

dynamic environments (i.e., moving devices). Also, the latest 802.11 standards

(IEEE 802.11n, IEEE 802.11ac), significantly increase the number of available

transmit rates (and combination of different configurations), increasing the

search space, thus rendering rate adaptation more complex.

A well known frame-based RC is SampleRate [67]. In addition to providing

an implementation for off-the-shelf hardware (IEEE 802.11a only), the Sam-

pleRate authors also show that SNR is not a good predictor. SampleRate keeps

frame delivery statistics for each Wi-Fi station and groups statistics for large

and small frames. Minstrel and Minstrel HT [24] are similar to the SampleRate

algorithm and are the default RC algorithms used in Linux. Minstrel is used for

legacy IEEE 802.11 standards (IEEE 802.11a,IEEE 802.11g, and IEEE 802.11b)

and Minstrel HT is used for the more recent IEEE 802.11n and IEEE 802.11ac.

RC algorithms such as SoftRate [91] use fine-grained PHY information to

decide on the best transmit rate. Since its publication, SoftRate has served

as a benchmark for comparing RC algorithms. While a state-of-the-art RC

scheme, it relies on low-level PHY layer information, which is not available

from off-the-shelf hardware. More recently, eSNR [46] has been shown to be a

simple solution using Channel State Information. Our AARC rate control is
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based on eSNR and, to the best of our knowledge, is the first RC design based

on eSNR that works online using off-the-shelf hardware.

5.2 Minstrel HT
Minstrel is the default RC algorithm in Linux and is similar to SampleRate in

that it uses frame loss rate statistics to estimate channel conditions and select

the best transmit rate. For each station, it keeps a table of statistics for each

of the supported rates. Rate statistics are filled in using data gathered from

transmit reports for each of the rates used. To explore new (or update old) rates,

Minstrel uses probing frames. Probing incurs overhead. As probing frames are

more likely to be lost, Minstrel attempts to limit probing to 10% of transmitted

frames. In addition, it has mechanisms to further reduce probing for cases when

channel conditions are good and not changing. Minstrel randomises the rates to

be explored, and for each Wi-Fi station it keeps a table of four rates (used as a

retry policy table): the best throughput rate, the second-best throughput rate,

the best delivery probability rate and lowest base rate. Combining single-frame

probing and a retry policy gives Minstrel the advantage of quick recovery when

the probing frame is lost.1 Minstrel HT is an extended version ff Minstrel RC

designed to work with IEEE 802.11n rates and configurations. The novelty of

Minstrel HT is in the grouping used when exploring new rates. In the next

section we highlight the problems that Minstrel HT probing incurs and describe

our AARC scheme in Section 5.5.

5.3 Problem Statement
In the previous chapter we evaluated AAQ and TAO using a fixed bit rate

only. Avoiding interaction with RC allowed us to simplify the dynamics of the

system and better understand the performance of AAQ and TAO. However, for

AAQ and TAO to be usable in real-world scenarios, they should also perform

well when run under a RC algorithm. When enabling RC and running AAQ
1When sending probes the retry policy slightly changes: probing rate, best throughput

rate, best probability rate, and lowest base rate.
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and TAO, we observed that their benefits are diminished. The culprit is

Minstrel’s probing mechanism. Because probing frames might get lost, Minstrel

HT probes using single-frame transmissions. When Minstrel HT probes a

transmit rate, it marks the corresponding frame with a PROBING flag. When

the device driver encounters probing frames, it ensures that these frames are

transmitted as a single frame, by breaking an A-MPDU at the probing frame.

Thus a single A-MPDU transmission often ends up being divided into three

transmissions: the first part of the transmission is formed from the frames up to

the probing frame, followed by a single probing frame transmission, and finally

the remaining frames. To illustrate this problem we show the A-MPDU size

when using Minstrel HT and the MCS-6 fixed transmit rate in Figure 5.2. We
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Figure 5.2: A-MPDU size Minstrel HT v Fixed MCS 6 Rate

can see that enabling Minstrel HT significantly reduces the number of frames

that are transmitted in an A-MPDU. More than 20% of frame transmissions

are single-frame transmissions, which incur a significant overhead. While not

all of these frames are probing frames, the effect of the 10% probing frames

used by Minstrel HT is magnified when it interacts with frame aggregation. In

the next section we explain our aggregate friendly approach to RC.
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5.4 Goal
The central question of this chapter is: is it possible to design an RC algorithm

that can be implemented using off-the-shelf hardware and that manages to

send large A-MPDUs? A simple straw-men approach to this problem is to

probe using a whole A-MPDU, instead of probing using single frames. Two

problems arise with this approach. First, probing with A-MPDUs is risky in

cases when the probed rate is too fragile for the channel, as a large number

of frames will be lost and hence retransmitted. This is the problem Minstrel

HT tries to avoid by sending single-frame probes. The second problem is the

limitation of the Block Ack window as a result of the experienced losses. As

was explained in Chapter 4 (Section 4.3), frame losses leave “holes” in the

Block Ack window, reducing the number of frames that can be transmitted in

subsequent A-MPDUs. Next we will show a simple RC algorithm and explain

why that approach is not sufficient. Motivated by those limitations we then

present our full RC algorithm, AARC.

5.5 Aggregation Aware Source Rate Control

(AASRC)
We first describe an initial approach to aggregate-friendly RC, Aggregation

Aware Source Rate Control (AASRC) and empirically show cases where this

simple design is not enough. This motivates the AARC design described

later in the chapter. AASRC is an RC algorithm where the transmitter (the

source) makes rate decisions independently. As mentioned earlier, sending

probes using full-sized A-MPDUs would eliminate the problem Minstrel HT

has with sending single-frame probes. However, losing whole A-MPDUs could

be expensive, especially if an A-MPDU is lost multiple times (i.e., at probing

higher rates). To minimise A-MPDU losses during probing, AASRC introduces

an exponential backoff mechanism that will delay subsequent probings of a

rate. When probing a new rate, AASRC sends a full A-MPDU. When AASRC

decides (we explain later in the chapter how AARC decides if it should switch
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to the new rate) that the rate being probed is not better than the currently used

rate, a backoff mechanism for the probed rate is invoked. Subsequent probings

of the rate are postponed until the backoff timer has expired. The backoff time

is calculated using Equation 5.1. b starts at zero, and is incremented for every

failed probe for a rate, until bmax. When a probe succeeds, b is reset to zero.

MCSbackoff = 2b { for b = 0, .., bmax } (5.1)

Like Minstrel HT, AASRC keeps statistics for the number of transmitted

frames and the number of failed frames for each MCS. In addition, AASRC

tracks (using an EMWA) the A-MPDU size for every supported rate. To decide

what rate to use AASRC uses throughput Equation 5.5.

Util = AMPDUtxtime

MACoverhead +AMPDUtxtime

(5.2)

AMDPUtxtime = AMPDUavgsize×PKTlength

PHYrate
(5.3)

SuccessRate = 1− failedframes

sentframes
(5.4)

Tput = SuccessRate∗Util ∗PHYrate (5.5)

Initially, when there are no statistics collected for a rate, the PHYrate is used

to compare rate performance. PHYrate is the raw physical transmit rate of

the rate (see Table 5.1). MACoverhead captures the 802.11 MAC protocol2

overheads, and PKTlength is set to 1200 bytes. AASRC starts at the lowest

rate (MCS 0) and progresses upwards, probing using full A-MPDUs. When

Equation 5.5 yields that the throughput of the probed rate is lower than that

of the currently used rate, the backoff procedure described above is invoked

and the next probe is delayed. Unlike Minstrel HT, AASRC only uses linear

probing: it only probes the rate above the current rate, and only advances one

2These overheads come from average contention time, DIFS, and SIFS.



5.5. Aggregation Aware Source Rate Control (AASRC) 111

rate at a time. When channel conditions worsen, i.e. the current rate is not

supported by the channel, AASRC switches to the rate below immediately and

continues to go downwards until a working rate is found. When switching to

a lower rate, AASRC also resets statistics for the higher and the current rate

prior to switching. One crucial parameter that affects AASRC’s performance is

the maximum backoff parameter. Setting it to a low value will incur frequent

probing, resulting in poor performance. Setting it to a high value may result in

missing a probing opportunity, for cases when the channel has improved. We

choose a maximum backoff value of 32 ms, which was derived empirically as we

explain in the next section.

5.5.1 Empirical Evaluation of the Maximum Backoff

Parameter
Choosing a correct maximum backoff parameter for AASRC is important

as it will have a direct impact on performance. To choose the value for

maximum backoff, we empirically evaluate a range of values under varying

channel conditions. We set up a Wi-Fi client, an AP and a sender. The sender

is connected to the AP via Gigabit Ethernet and establishes a TCP connection

with the Wi-Fi client. To emulate varying channel conditions we vary the

transmit power on the AP. We emulate a random walk by randomly choosing

transmit power change values in the range of [-2,-1,0,1,2] dBm. Negative values

indicate that the transmit power is reduced by the given amount, zero indicates

that the transmit power remains the same, and positive values indicate the

transit power increases by the given amount. The channel delay specifies the

time between transmit power changes. For example, for a channel delay of 32 ms

the AP transmits for 32 ms at the chosen transmit power before moving to the

next transmit power. For each combination of Channel Delay and Maximum

Backoff, the sender sends for 10 seconds. Each experiment is repeated 20

times and the experiments are run during the night to minimise the effects of

changes in the surrounding environment. Figure 5.3 shows a heatmap of the

goodput achieved for various configurations. Column 0 represents the default
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Figure 5.3: Heatmap of Maximum Backoff Parameter vs Channel Variability

behaviour, where the transmit power remains unchanged. As can be seen, for a

static channel, choosing a higher back-off value yields the best results. This is

expected as when the channel does not change, probing only incurs overhead,

and choosing a large maximum backoff value incurs less such overhead. The

inverse is true for dynamic channels. A large maximum backoff value performs

poorly as AASRC is “blind” to varying channel conditions. Based on the results

in Figure 5.3, we choose a maximum backoff of 32ms as a compromise between

maximising the goodput achieved on a static channel vs. on a dynamic channel.
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5.5.2 Deficiencies of AASRC

AASRC works well in relatively static environments. However, on more dynamic

channels, the backoff mechanism will prevent AASRC from reacting in a timely

fashion. In this section we show two examples from our empirical evaluation (see

Section 5.9) that highlight two types of environments that illustrate AASRC’s

performance regimes. While these two examples are a small subset of all

possible conditions, and not broadly representative, the purpose here is to

highlight the benefits and disadvantages of AASRC when operating in these

two contrasting environments.
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Figure 5.4: AASRC v Minstrel HT under static channel conditions.

Figure 5.4 shows the case of a fairly static channel where the AP is

transmitting to a single Wi-Fi station. Note that the y-axis does not start

at zero and the purpose here is to highlight differences, and not compare
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performance. Figure 5.4a shows that because AASRC sends large A-MPDUs

it achieves slightly (2%) higher goodput for one-second samples. Figure 5.4b

shows that AASRC manages to send large A-MPDUs and virtually eliminates

single-frame transmissions. Alternating between 39 and 25 frames in an A-

MPDU is a result of double buffering used in the device driver (see Chapter 4,

Section 4.6). On the other hand, Minstrel HT sends single frames more then

40% of the time. AASRC uses MCS-6 more then 90% (see Figure 5.4c) of the

time and probes the higher MCS, MCS-7, about 7% of the time. This indicates

that the backoff mechanism helps in reducing frame losses. This probing is

reflected in the number of failed frames in an A-MPDU, shown in Figure 5.4d.

While AASRC manages to preform well under static channel conditions,

in more dynamic environments (Figure 5.5), AASRC fails to adapt to channel

conditions quickly enough. In this environment, Minstrel HT’s random probing
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Figure 5.5: AASRC fails to adapt to changing channel conditions.
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manages to capture the channel’s variability, but AASRC simply does not

probe as a result of the backoff timer. This can be seen in Figure 5.5c.

In summary, AASRC performs well for channels that are relatively static

as, it will probe using full A-MPDUs and reduce probing for rates that are not

supported by the channel. However, the backoff mechanism prevents AASRC

from being responsive enough under dynamic channels. Ideally we’d have an

RC that has all the benefits of AASRC yet is able to react to sudden channel

changes. In the next section we describe AARC and RC scheme with all the

benefits of AASRC, but which further introduces a mechanism that will cancel

the backoff timer in cases where channel conditions have improved.
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5.6 Aggregation Aware Rate Control (AARC)
As explained in the last section, AASRC won’t be able to detect improved

channel quality until its backoff timer has expired. It is desirable that AASRC

is able to switch to a better rate as soon as possible if a channel change is

detected. In this section we present Aggregation Aware Rate Control (AARC),

a RC algorithm that relies on receiver feedback to detect channel improvements,

so that the sender can react to them before its backoff timer expires. To achieve

this, AARC uses channel state information, fine-grained information that gives

a detailed view of the status of the channel.

5.6.1 Channel State Information

Unlike RSSI/SNR, CSI is a fine-grained metric that shows channel gains for

each of the OFDM sub-carriers used in IEEE 802.11n to transmit data [46].

CSI is used in the decoding process at the receiver to compensate for the effects

of the wireless channel. While off-the-shelf hardware internally uses CSI to

decode received frames, this information is not reported to the device driver,

and it has remained information internal to hardware until recently. The first

platform to extract CSI from off-the-shelf hardware used Intel wireless cards

to export CSI from the hardware to the upper layers [47]. More recently, a

similar platform was developed that enables wireless network interfaces based

on the Atheros chipset to export CSI to the upper layers [96]. Figure 5.6 shows

three examples of CSI information exposed by the hardware on the Atheros

platform. The x-axis represent sub-carriers used to transmit data. A total of

114 sub-carriers are used when transmitting using 40Mhz channel bandwidth.

Each sub-carrier’s CSI is a complex number showing the power gain and the

shift of the signal of that sub-carrier. The y-axis in Figure 5.6 shows the channel

power in decibels for each of the sub-carriers. Unlike RSSI/SNR, CSI provides

rich information about each of the sub-carriers used for data transmission. For

example, with CSI1 we can see that sub-carrier 43 experiences deep fading,

which is likely to cause frame errors. This effect is not captured by RSSI/SNR.

Figure 5.6 shows CSI after it has been processed; in the next section we show
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how we process raw CSI reported by the hardware.
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Figure 5.6: Example CSI

5.6.2 Processing CSI
To extract CSI from Atheros Wi-Fi hardware we use the ath9k-csitool device

driver changes [96]. ath9k-csitool has three major components: the first

component enables the correct registers to instruct the hardware to pass CSI

up to the device driver; the second component is the code that parses raw bytes

of CSI into a CSI matrix; and the last component is a module that exports

CSI to user-level applications for processing. In our work we only use the first

two components and write a Netlink [2] component, similar to the CSI tool

for Intel cards [46], enabling user-level applications to download CSI from the

device driver. The advantage of using the Netlink layer is that applications can

use use the well-known socket API to receive CSI information. In addition, we

also wrote code that allows CSI to be written in PCAP [17] format for offline

processing. The reported CSI is a Ntx×Nrx×Nsc complex matrix, where Ntx

is the number of transmit antennas, Nrx is the number of receive antennas and

Nsc is the number of OFDM sub-carriers used for transmission. For 20 Mhz

channels, Nsc is 56 and for 40 Mhz channels Nsc is 114. For the purposes of this

work we only consider a 1 by 1 antenna configuration and a 40 Mhz channel,
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therefore our raw CSI is a vector with 114 entries. While the techniques we use

work for MIMO systems, we don’t have documentation for how our hardware

processes multiple streams and the spatial matrices it uses. This information

must be used in processing of MIMO CSI. Each entry in the CSI matrix is a

20-bit complex number, using 10 bits each for the real and imaginary parts.

CSI provides rich information about power attenuation and the shifting

of the signal as it propagates through the environment. For the purposes of

AARC, we are only concerned with the power attenuation profile of the signal,

as it is the only piece of information required by AARC to make decisions.

CSI is an undocumented feature, and through experimentation and trial-and-

error we determined how to process CSI. We observe that the reported power

of raw CSI is with respect to an unknown reference, as the power of raw CSI

does not change with changes in transmit power. To verify this, we set up
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Figure 5.7: Changes in transmit power are not reflected on the raw CSI reported
by the hardware.

an AP and a client and we instruct the AP to transmit to the client while

we vary transmit power at the AP. At the client, we record the CSI and SNR

information reported by the receiving hardware. Figure 5.7 shows that despite

the transmit power changes being reflected in the measured SNR (Figure 5.7b),

the CSI (Figure 5.7a) does not reflect these changes. This behaviour is similar

to that reported in the Intel CSI project [46], and we use the same method
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to normalise and scale the reported CSI. The normalisation procedure is as

follows: First we calculate the mean power, Powermean, as follows:

Powermean = 1
Nsc
×

Nsc−1∑
i=0
|CSIraw|2

then the normalised CSI CSInormalised is :

CSInormalised = CSIraw√
Powermean

The normalisation process has two effects on the raw CSI. First, it removes

the unknown reference power, and second, it reduces noise present in the raw

CSI. Note that in Figure 5.7a there is a ∼ 3dB band and the normalisation

reduces the band to ∼ 1dB (see Figure 5.8).
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Figure 5.8: The result of applying normalisation to the raw CSI in Figure 5.7a

Then we calculate scaled CSI, CSIscaled, as follows:

CSIscaled = CSInormalised×
√

SNRpower

This procedure will scale the normalised CSI with respect to the reported SNR.

SNRpower (linear scale) is the signal-to-noise ratio reported by the hardware for
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each raw CSI. Unlike previous work that uses 20 Mhz channels [46, 96] we use

40 Mhz channels for AARC. When using a 40 Mhz channel the hardware reports

two SNR values, SNRctrl for the first (control) channel and SNRext for the

secondary (extended) channel. In this work SNR is the mean of SNRctrl and

SNRext. We decided to use the mean (in linear scale) as we found empirically

that it gives the best results. The resulting CSIscaled is used as the input to

calculate eSNR, as explained in the next section. AARC then uses eSNR to

react to channel changes.

5.6.3 Computing effective SNR (eSNR)
We replicate here the steps required to compute eSNR [46]. Before computing

eSNR, first the effective bit-error-rate (eBER) is computed. To compute eBER,

power for each OFDM sub-carrier is calculated:

ρ[i] = |csi[i]|2 (5.6)

csi[i] is the complex number representing CSIscaled for sub-carrier i. From

sub-carrier power one can calculate uncoded BER ρ for each sub-carrier i. BER

is calculated using the well known textbook equations [88] shown in Table 5.2.

Modulation (m) Bits/Symbol BERm[i]
BPSK 1 Q(

√
2ρ[i])

QPSK 2 Q(
√

ρ[i])
16QAM 4 3

4Q(
√

ρ[i]
5 )

64QAM 6 7
12Q(

√
ρ[i]
21 )

Table 5.2: Calculate BER from SNR ρ for sub-carrier i

Q (qfunction) is the standard normal CDF. After calculating BER for each

sub-carrier, the effective BER is calculated as follows:

eBERm = 1
Nsc

Nsc−1∑
i=0

BERm[i] (5.7)

That is, eBER is the mean BER across OFDM sub-carriers. Note that eBER

is calculated for each modulation, as different modulations have different
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constellation density. Finally effective SNR is calculated using the inverse

BER−1
m :

eSNRm = BER−1(eBERm) (5.8)

AARC uses eSNRm to detect channel changes.

5.7 AARC Design
AARC uses eSNR to decide if the probing backoff timer should be canceled and

probing initiated. Calculating eSNR from CSI results in four eSNR values, one

for each supported modulation. The calculated eSNR values are for uncoded

channels, as the equations in Table 5.2 for calculating BER do not take coding

into account. Prior work has proposed a calibration process to map an uncoded

channel to a coded channel [46]. That calibration process involves transmitting

using various power levels and measuring eSNR values and their corresponding

frame error rates (FER). Note that it is not possible to directly measure BER

from off-the-shelf hardware, so FER is the closest metric that we can measure.

The prior work’s calibration process generates mapping tables that map eSNR

to FER for each of the supported rates. These curves are then used to make

rate decisions. When trying to generate our own calibration curves using our

hardware we found that as a result of noisy SNR measurements the resulting

curves were insufficiently accurate to use directly to set the MCS. We observed

multiple overlaid curves depending on channel conditions. Instead, AARC uses

the difference between two eSNR values measured at different points in time as

an indicator of the trend in the channel’s status.

Figure 5.9 shows the architecture of AARC. It consists of two main com-

ponents. The user-level application (CSID) runs on both the AP and clients.

CSID receives raw CSI from the device driver, processes the CSI and calculates

the eSNR, which is then transmitted back to the transmitter via a feedback

channel. On receiving eSNR feedback, CSID reports the value to the AARC

module in the kernel. AARC operates in the same way as AASRC until a
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Figure 5.9: Architecture of AARC

probing rate fails, at which point AARC stores the current eSNR. For each

subsequent transmission, eSNR is reported to the AARC module and the

difference between the most recent eSNR and the eSNR recorded at the time

of failure is calculated. If the difference calculated is bigger than a threshold

(see Section 5.7.1), a probe is initiated without waiting for the backoff timer to

expire. The motivation for this design is that AARC works well under stable

channel conditions, where the backoff timer reduces number of probes sent.

However, we want AARC to detect channel changes as soon as possible and

react to them quickly.

5.7.1 Empirical Evaluation of eSNR difference threshold
We take a similar approach as we did in AASRC when we empirically evaluated

the maximum backoff timer. To evaluate the eSNR difference threshold that

will trigger a probe to a higher rate, we evaluate various eSNR differences under

varying channel conditions. Figure 5.10 shows the heatmap of the goodput

achieved. From the results in Figure 5.10 we choose an eSNR difference

threshold of 1 dB, as that gives the best overall performance across the range

of channel variations.

5.7.2 Empirical Evaluation of the Maximum Backoff

Parameter
We used the same apporach we used for AASRC to determine the maximum

backoff parameter (see Section 5.5.1). Figure 5.11 shows the heatmap for

maximum backoff for AARC. We choose a value of 256ms as it gives the best
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Figure 5.10: Heatmap of the goodput achieved (Mbps) as a function of eSNR
difference under varying channel conditions

balanced throughput. Note that this is larger then AASRC’s which we set to

32ms. Given that AARC reacts to channel changes, and cancels backoff when

the channel improves, doing so allows for a larger maximum backoff which is

beneficial when the channel remains static.
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Figure 5.11: Heatmap of goodput achieved (Mbps) as a function of maximum
backoff parameter under varying channel conditions for AARC

5.8 Implementation
We implement AARC as a mac80211 layer module in Linux kernel version

3.18.7 and implement CSID as a user-level application written in C and C++.

Implementing CSID at user level simplified implementation and debugging.

For production deployment, CSID functionality could be implemented in the

kernel.

On the kernel side there are two main components of AARC. The first

component handles the CSI data and the second implements the AARC algo-

rithm.

5.8.1 Handling of CSI Data

The hardware at the receiver reports CSI information only if transmitted frames

have been marked with the sounding flag. Furthermore, hardware registers at

the receiver hardware have to be set as published in the ath9k-csitool [96]. The
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receiver’s hardware uploads the CSI data to the device driver in two separate

“transactions“. The user data payload is uploaded first, followed by the CSI

data. When uploading the user payload the hardware sets the more data field

of the receive descriptor. The device driver treats the data payload as part of

a larger fragmented frame and buffers until the next “fragment“, consisting of

the CSI data, is uploaded. Once CSI data is transferred from the hardware,

the device driver “de-fragments“ both the user payload and the CSI data into

a single packet. This “glued” packet is then passed up the networking stack for

processing. The original ath9k-csitool only copies the CSI data into its internal

buffer and leaves the “glued” packet intact. This leads to frames being dropped

further up the stack, resulting in low throughput. We modify the original

ath9k-csitool such that the payload data and CSI data are separated before

forwarding to the upper layer. In order to do so, we store extra information in

the control block of the struct sk buff. We extend the struct ieee80211 rx status

and add a new structure that contains CSI-related data.

struct ieee80211_csi {

u_int16_t csi_len;

u_int8_t n_rx;

u_int8_t n_tx;

u_int8_t n_subcarriers;

int8_t rssi_ctl;

int8_t rssi_ext;

s8 noise;

};

csi len contains the length of the CSI data in bytes. n rx and n tx are the

number of receive and transmit antennas, respectively. n subcarriers is the

number of OFDM sub-carriers. rssi ctl holds RSSI for the primary channel,

and for 40 Mhz channels, the secondary channel’s RSSI is stored in rssi ext.

The received CSI data are passed up the stack with the data payload, and

the struct ieee80211 csi entries are filled accordingly. When the mac80211
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sub-layer receives an sk buff with fields indicating that CSI data is present it

performs two actions. First, it splits data contained in the sk buff at the CSI

data boundary and the user data payload is forwarded up the stack as per

default behaviour. Second, the CSI data is handed to the AARC module for

further processing. When AARC receives CSI data, the first action it performs

is to find the association ID (aid) of the Wi-Fi client that sent the data frame

(using the MAC address). The aid and the CSI data tuple are inserted into the

CSI queue managed by the AARC module. A kernel thread (tasklet) wakes up

and processes the CSI data by sending each CSI to the NETLINK layer.

In a full implementation, we envision that eSNR feedback will be transmit-

ted to the data sender via BlockAck control frames. However, as our hardware

does not allow us to modify BlockAck content, we implement the feedback chan-

nel in CSID using UDP via an entirely separate Wi-Fi channel, using a second

Wi-Fi NIC. We discuss the implications of this simplification in Section 5.8.4.

The AARC module also handles reception of the CSI feedback sent from the

receiving host via the NETLINK layer. The AARC module registers with the

NETLINK layer to receive CSI feedback. Once the feedback is received, the aid

is used to find the Wi-Fi client and the data for the Wi-Fi client and AARC

uses the feedback as described in Section 5.6.

It is worth noting that while validating the ath9k-csitool we encountered

a performance problem where goodput achieved was very low (i.e., 20 Mbps).

After investigation we noticed that when enabling the CSI tool and the transmit-

ted data is not 8-byte aligned, the receiver would drop frames. This behaviour

only occurred when CSI reporting was enabled. We work around this bug in the

mac80211 layer’s transmit path: we examine the transmitted data length and

if it is not multiple of 8-bytes, we pad the data. We informed the ath9k-csitool

authors and made our fix available.

5.8.2 AARC

The mac80211 subsystem in Linux is modular, so adding an RC algorithm

requires implementing the necessary functions that are called by the device
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driver. The two main functions are the transmit status report function, called

when the device driver is notified about the status of a transmission, and

the the function that sets the transmit rate, called by the device driver when

preparing a transmission. Upon transmit completion the device driver informs

AARC of the outcome of the transmission. It reports the size of the A-MPDU,

the number of frames that failed in the A-MPDU, the number of transmission

retries, and the MCS used to transmit the frame. For each MCS, AARC keeps

track of the number of frames transmitted and number of frames that failed

and uses this information to calculate success rate. In addition, AARC tracks

the A-MPDU sizes for each MCS using an EWMA. The AARC module also

registers with the NETLINK layer to receive CSI feedback. This received

feedback is the eSNR calculated by the receiver.

5.8.3 CSID

CSID is a multi-threaded user-level application written in C++ and C. It uses

the low-level library (libcsi), written in C, that handles NETLINK communi-

cation between the CSID application and the Linux kernel. CSID has three

main components. The first component handles NETLINK communication

using libcsi. The second component sends and receives CSI feedback using

UDP transport. The final component manages the main buffer where CSI

data are stored. All the components use an asynchronous API from the boost

library [79]. CSID operates in two modes: AP mode and Wi-Fi client mode.

When in AP mode, CSID maintains a list of all the Wi-Fi clients and uses the

aid received from NETLINK to uniquely identify each Wi-Fi client. CSID sends

and receives CSI feedback and as such needs IP addresses to communicate.

When running in Wi-Fi client mode, the IP address of the AP is hard-coded,

while in the AP mode, the IP addresses of Wi-Fi clients are learned from

the received CSI feedback. CSID uses sockets to receive raw CSI data from

the device driver. Upon receiving the CSI, CSID processes it as described in

Section 5.6.2 and calculates eSNR (see Section 5.6.3). The calculated eSNR is

sent back to the transmitter via the feedback channel using UDP.
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5.8.4 Practical Limitations

eSNR Feedback would ideally be sent as part of the BlockAck control

frame, however we cannot modify BlockAck control frames using our platform.

Therefore, we instead send AARC feedback using UDP frames on a feedback

channel. As mentioned earlier, in our implementation we used a separate Wi-Fi

card running on a different Wi-Fi channel to transmit feedback information.

Sending feedback via BlockAck control frames would incur extra overhead and

our results would see a slight decrease in goodput. Sending eSNR feedback

would require 9 bits per spatial stream to be added to the BlockAck control

frame. We use a fixed-point encoding to encode eSNR with a scaling factor

of 1
100 , yielding a maximum eSNR value of 51.2 dB. BlockAck control frames

are sent at the highest basic rate that is less then or equal to the sending

rate. In our setup BlockAck control frames are sent at 24 Mbps, resulting in

0.375µs overhead added (or 1.125µs when using three spatial streams). Using

utilisation Equation 3.1 from Chapter 3 and accounting for extra BlockAck

overhead, the total reduction in utilisation is 0.04%, a negligible overhead. It

is worth mentioning that the IEEE 802.11n standard defines procedures for

exchanging CSI feedback designed for transmit beam-forming [50]. However,

that scheme exchanges multiple messages, adding unnecessary overhead for the

purposes of AARC.
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(a) SNR reported by the hardware.
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(b) EWMA of the SNR.

Figure 5.12: Raw mean SNR of the primary channel and the secondary channel
and its EWMA

.
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SNR reported by the hardware varies by 1 dB even on stable channels. We

don’t exactly know what causes this variation, but we speculate it to be either

AGC imbalance, or the result of integer quantisation. To smooth the SNR

reported by the hardware, we use an EWMA. Figure 5.12 shows the SNR

reported by the hardware, and the EWMA version of it. Note that the SNR

shown in Figure 5.12 is the mean of the two SNR values reported by the

hardware for the two 20 MHz “halves“ of the 40 MHz channel used.

Transmit Power was limited to 14dBm, as we noticed that when transmitting

with full power (20dBM) the received power was clipped, resulting in noisy

SNR and CSI measurements.



5.9. Evaluation 130

5.9 Evaluation
We evaluate the performance of AARC empirically, both synthetically and on a

Wi-Fi testbed we set up on 7th floor of the UCL CS building, shown in Figure

5.13. There are a few questions we’d like to answer in our experiments. The
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Figure 5.13: The indoor office environment and wireless topologies used to evaluate
AARC. The access point is marked as AP. The Wi-Fi client marked
as S is the desktop Wi-Fi client that remains in the same location in
all experiments. Numbers on each Wi-Fi client indicate the topology
used during the evaluation.

first question we address is whether our RC algorithms are practical. Second,

we set the goal to create a RC algorithm that manages to send large A-MPDUs.

How well does AARC achieve this goal? Note that in a real environment,

when the dynamics of the channel change, the greatest A-MPDU size is largely

determined by the transmit rate supported by the wireless channel and the

frame loss rate. If AARC achieves greater A-MPDU sizes as compared to other

schemes, does it also improve goodput? More specifically, is the aggregated

achieved goodput greater as compared with other schemes? In Chapter 4 we

showed that AAQ is fair to Wi-Fi clients when the transmit rate for all Wi-Fi

clients is the same. Does AAQ remain fair, however, in a Wi-Fi network that

uses diverse transmit rates? Finally, does AARC perform well in a mobile

usage scenario?
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5.9.1 Setup

To run AARC, Wi-Fi stations must be equipped with Wi-Fi network interface

cards (NICs) that are capable of reporting CSI. In our experimental testbed

we have six Wi-Fi NICs that support CSI. Therefore, we evaluate AAQ using

five Wi-Fi clients and a Wi-Fi AP. Our AP runs on a desktop machine with

an Intel i7 CPU and 12 GB RAM, equipped with a PCIe Atheros 9300 NIC.

The Wi-Fi client marked with letter the S in Figure 5.13 is a similar desktop

machine that runs one of the Wi-Fi clients, and its location does not change in

different topologies. The other four Wi-Fi clients run on Intel NUC devices

equipped with mini-PCIe Atheros 9300 Wi-Fi NICs, and are placed on various

locations marked in Figure 5.13 for various topology configurations.

5.9.2 Methodology

We use the same setup as in Chapter 4, Section 4.8.3 and Figure 4.12. The

AP and the traffic generator are connected using a 1 Gbps Ethernet segment.

Wi-Fi clients associate to the AP and the traffic generator sends to Wi-Fi

clients using iperf for 120 seconds. The AP operates on a 5 GHz band (channel

154) and uses 40 MHz bandwidth with the SGI enabled. We evaluate four

different schemes: Minstrel HT, AASRC, and AARC with all using AAQ and

TAO, and Minstrel HT with FIFO queues (the default configuration in Linux).

When running AARC, the feedback channel runs over a separate Wi-Fi network

that operates in the 2.4 GHz band.

An ideal evaluation testbed for RC algorithms will capture the dynamics

of the wireless channel, test the internal mechanisms of the RC algorithm and

at the same time be repeatable. While the first two properties can be achieved

using a real testbed, achieving repeatability is challenging if not impossible.

Still, we want an evaluation that is repeatable, as we must make sure that the

RC algorithms are tested under the same wireless channel conditions. To achieve

repeatability the research community has relied on using simulations. While

simulations give repeatability, they fall short in capturing the real dynamics

of the wireless channel and the interaction among various components in the
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systems. To have a better representation of the wireless channel, simulations

are complemented using recorded traces. These traces record statistics from

a real wireless channel and then the simulator is run using statistics from

the traces. This trace-driven approach improves upon pure simulation-based

approaches because frame losses are from a real wireless channel.

In attempting to capture the properties mentioned above, we use various

evaluation methods to compare RC algorithms. We first use a synthetic

approach, where we vary transmit power using a random walk that emulates

rapid wireless channel changes. As AARC is a closed-loop algorithm, using

this approach instead of a trace based approach allows us to account for the

behaviour of the close-looped functionality. Using the synthetic approach, we

compare RC algorithms under the same wireless channel conditions. Thus we

produce an evaluation with repeatability, and to some degree, wireless channel

variability. Secondly, we evaluate RC algorithms using the real indoor Wi-Fi

network testbed shown in Figure 5.13. The advantage of this approach is that

it captures the real dynamics of the wireless channel in an open plan office floor.

However, as real testbed, it sacrifices repeatability. Finally, we use an indoor

mobile scenario to measure the performance of AARC under mobile conditions.

Channel fading is the dominant phenomenon under mobile conditions, and our

synthetic methods fail to capture it. When running our synthetic evaluation we

only change the transmit power and the underlying channel remains the same.

When running testbed experiments, we place four Wi-Fi clients at various

locations shown in Figure 5.13, while the Wi-Fi client marked S remains static.

For each physical placement of Wi-Fi clients we run experiments for all schemes

where four Wi-Fi clients are active at the same time, resulting in five sub-

topologies for each physical placement. In total, we run experiments on fifty

(50) different topologies with four Wi-Fi clients active at the same time. We

randomise the order in which the RC algorithms run on a topology and repeat

each experiment four times, where each experiment runs for 120 seconds.
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5.9.3 Synthetic Experiment Results

First we present results from our synthetic experiments. The goal of this

evaluation is to compare RC algorithms on the same rapidly changing wireless

channel. Using this methods allows us to also capture the dynamics of the

CSI feedback loop. In these experiments we use a single Wi-Fi client and we

change the transmit power at the AP during the course of the experiment. To

change the transmit power we use a random walk. The AP transmits at a

particular power for a duration of time (y-axis) before changing the transmit

power again. We use the same random seed for all RC algorithms to ensure that

the transmit power change is the same across all the RC algorithms compared.

Each experiment runs for 60 seconds and is repeated 10 times. When plotting

the data we show the mean goodput achieved across all one-second samples.

We compare Minstrel HT, AASRC and AARC, with AAQ and TAO enabled

for all RC schemes. The heatmap of goodput results is shown in Figure 5.14,

with the x-axis showing RC algorithm and the y-axis the time delay between

transmit power changes. Under these emulated conditions, AARC outperforms

other RC schemes, with up to 12% improvement over Minstrel HT. These

experiments served as a preliminary feasibility test for our RC algorithms. Next

we show results from our experiments conducted in the indoor Wi-Fi network

testbed shown in Figure 5.13.

5.9.4 Testbed Experiment Results

In this section we show results from our testbed Wi-Fi network experiments in

which Wi-Fi clients remain static at the locations noted in Figure 5.13. Each

Wi-Fi client is placed at desk height to emulate a typical office scenario where

Wi-Fi clients remain static. We first present a high-level view of the goodput

distribution for each RC algorithm across all topologies. Figure 5.15 shows

the distribution of one-second goodput values each Wi-Fi client experiences

on all topologies. To generate the figure we plot the empirical CDF (ECDF)

of one-second goodput samples Wi-Fi clients experience across all topologies

and runs. More then 70% of the time Wi-Fi clients get better goodput when
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Figure 5.14: Heatmap of the goodput (Mbps) achieved by different rate control
algorithm when transmit power varied by random walks with different
time step duration.

using AARC. This suggests that for the majority of the time, in our testbed,

choosing AARC is beneficial. Next, in Figure 5.16 we show the ECDF of

the aggregated mean goodput each RC algorithm achieves. To generate the

figure we calculate the mean goodput (among 80 one-second samples from the

middle of the experimental run) each Wi-Fi client experiences and sum the

values to obtain the aggregate goodput for a topology and a run. We then use

these aggregated goodput data points for each run and topology to generate

Figure 5.16. Most of the time AARC achieves higher aggregate mean goodput.

The median goodput when using AARC is 6%, 10%, and 20% better then

AASRC, Minstrel HT + AAQ + TAO, and Minstrel HT + FIFO, respectively.

Table 5.3 shows 1st, 25th, 50th, 75th, and 99th percentiles for each of the

RC algorithms. Figures 5.15 and 5.16 suggest that Wi-Fi clients benefit from

using AARC. However, it does not show how each RC algorithm performs with
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Figure 5.15: One second goodput (Mbps) distribution across all topologies, runs
and Wi-Fi clients.
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Figure 5.16: Aggregated goodput (Mbps) ECDF across all topologies.

RC 1st 25th 50th 75th 99th
AARC + aaq + tao 26.0 45.4 54.0 68.7 83.0
AASRC + aaq + tao 23.0 42.6 49.0 63.2 75.5
Minstrel HT + aaq + tao 21.0 42.7 51.1 63.8 77.6
Minstrel HT + fifo 19.0 31.1 42.0 49.2 69.7

Table 5.3: Aggregate goodput (Mbps) percentiles across all topologies
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respect to the others on each topology. Next we explore a coherent comparison

between RC algorithms, and show the benefits each algorithm offers, and under

which circumstances.
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Figure 5.17: Scatter plot of AARC v Minstrel HT + FIFO for Topology 5.

Before we present these results we need to restate the challenge that comes

when comparing RC algorithms using a real wireless network testbed. As

mentioned earlier, ideally a comparison of RC algorithms would be realised

under identical wireless channel conditions. However, arranging identical

wireless channel conditions in a real wireless network testbed is hard, if not

impossible. To mitigate this difficulty we repeat each experiment over multiple

runs and randomise the order in which schemes execute. Given the random

nature of the wireless channel, we do not expect AARC to outperform other

RC algorithms for every one-second sample. For example, in Figure 5.17 we

show a scatter plot of AARC vs Minstrel HT + FIFO for one-second goodput

samples on one of the topologies. As can be seen in Figure 5.17 there are

samples where Minstrel HT + FIFO achieves higher goodput. However, for

the majority of data points, AARC performs better. When we evaluate RC

algorithms we will calculate average goodput and compare RC algorithms using

aggregate mean goodput achieved on each topology. To calculate the mean
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goodput for a topology we first calculate the mean goodput each Wi-Fi client

achieves across all four runs. That is, we have 80 seconds worth of goodput

samples for each run, with a total of 320 seconds of goodput data across all

four runs. Then the aggregated average goodput for a topology is calculated

by summing the mean goodputs of all Wi-Fi clients active in a topology.

First we look at the performance gains of AAQ and TAO using Minstrel HT

as compared to Minstrel HT when running with FIFO queues. This will show

the benefit of just running AAQ and TAO. We then continue the comparison

by adding new techniques we developed, and compare the performance to the

previous best system. This way we will be able to see the benefit each technique

adds. Figure 5.18 shows a scatter plot comparing Minstrel HT + FIFO (x-axis)
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Figure 5.18: Aggregate goodput comparison of Minstrel HT + fifo and Minstrel
HT + AAQ + TAO for all topologies.

with Minstrel HT + AAQ + TAO (y-axis). Each data point represents the

aggregate mean goodput of a topology with fifty data points in total, one for

each topology. Minstrel HT gains are significant when enabling AAQ and TAO,

outperforming Minstrel HT + FIFO in 94% of the topologies with up to 230%

goodput improvement and 30% goodput improvement on average. Given that

the Minstrel HT algorithm is the same for both schemes, these improvements



5.9. Evaluation 138

in goodput are the result of AAQ and TAO sending larger A-MPDUs. To

show this we plot the ECDF of the A-MPDU sizes each scheme achieves across

all topologies. In Figure 5.19 we see that enabling AAQ and TAO results in
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Figure 5.19: Distribution of A-MPDU size when the AP is transmitting (Downlink)
to Wi-Fi clients and when the Wi-Fi clients transmit to the AP
(Uplink) across all topologies.

Minstrel HT sending larger A-MPDUs. However, note that for both schemes

there is still a large fraction of single-frame transmissions as a result of the

probing frames used by Minstrel HT.

Next, we compare AASRC + AAQ + TAO and Minstrel HT + AAQ +

TAO. We want to see if simply using AASRC gives performance improvements.

In Figure 5.20 we show a similar scatter plot as in Figure 5.18. We see that

both schemes achieve similar performance, with AASRC achieving an aggregate

mean goodput of 51.3 Mbps across all topologies, and Minstrel HT achieving

52.6 Mbps. In Figure 5.22 we show the distribution of number of frames

in an A-MPDU and in Figure 5.23 we show the number of bad frames in an

A-MPDU across all topologies. AASRC + AAQ + TAO sends larger A-MPDUs.

But, this is not reflected in the goodput achieved. There are two causinges,

as we explained in Section 5.5. First, AASRC incurs more bad frames in an

A-MPDU (Figure 5.23) as a result of probing with a whole A-MPDU, and
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Figure 5.20: Aggregate goodput comparison of Minstrel HT + AAQ + TAO and
AASRC + AAQ + TAO for all topologies.

0 10 20 30 40 50 60
AMPDU size

0.0

0.2

0.4

0.6

0.8

1.0

E
C

D
F

Minstrel HT + aaq + tao (Downlink)
Minstrel HT + aaq + tao (Uplink)
AASRC + aaq + tao (Downlink)
AASRC + aaq + tao (Uplink)

Figure 5.21: A-MPDU size

Figure 5.22: Distribution of A-MPDU size when the AP is transmitting (Downlink)
to Wi-Fi clients and when the Wi-Fi clients transmit to the AP
(Uplink) across all topologies.

second, it does not promptly react to channel changes. In Figure 5.25 we show

the distribution of MCSes used across all topologies and note that Minstrel HT

uses MCS-6 3% more often then AASRC. As discussed earlier, this drawback
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Figure 5.23: Bad frames in a A-MPDU

Figure 5.24: Distribution number of bad frames in a A-MPDU when the AP is
transmitting (Downlink) to Wi-Fi clients and when the Wi-Fi clients
transmit to the AP (Uplink) across all topologies.
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Figure 5.25: MCS used by Minstrel HT + AAQ + TAO and AASRC + AAQ +
TAO on all topologies.

with AASRC motivated us to develop AARC. Next we compare AARC and

AASRC. In Figure 5.26 we show a scatter plot comparison between the two.

In 90% of topologies AARC performs better than AASRC. AARC gives up to
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Figure 5.26: Aggregate goodput comparison between AASRC + AAQ + TAO and
AARC + AAQ + TAO for all topologies.

21% aggregate mean goodput improvement with 8% improvement on average.
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Figure 5.27: Distribution of A-MPDU size when the AP is transmitting (Downlink)
to Wi-Fi clients and when the Wi-Fi clients transmit to the AP
(Uplink) across all topologies.

Figure 5.27 shows that both AASRC and AARC generate the same A-MPDU

sizes. However, in Figure 5.28 we see that AARC produces fewer bad frames

in an A-MPDU. The reason is that AARC probes less often then AASRC, as
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Figure 5.28: Distribution of bad frames in a A-MPDU when the AP is transmitting
(Downlink) to Wi-Fi clients and when the Wi-Fi clients transmit to
the AP (Uplink) across all topologies.

AARC uses a greater maximum backoff parameter. In Figure 5.29 we can see

that AARC uses higher MCSs for some fraction of time more than AASRC.

The reason is that AARC uses CSI to detect channel improvements, and cancel

backoff early. We looked at the number of probes that AARC and AASRC
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Figure 5.29: Distribution of MCS used by AASRC + aaq + tao and AARC + aaq
+ tao on all topologies
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Figure 5.30: Aggregate goodput comparison of Minstrel HT + fifo and other schems
for all topologies

send and note that across all topologies, on average, for AARC about 6.6% of

transmitted frames were probing frames, out of which 7.1% were forced probes.

Out of forced probes, 37% were successful (probing that resulted in the new

rate being used). On the other hand, AASRC sent about 24% of frames as

probes and 4% were successful.

Finally, in Figure 5.30 we show a scatter plot comparing each of the

schemes to Minstrel HT + FIFO. The vertical lines connect the points that

belong to the same topology. AARC outperforms Minstrel HT + FIFO in

92% of topologies with up to 2.3x improvement in goodput. Compared to

Minstrel HT + AAQ + TAO, AARC performs better on 72% topologies with

up to 56% improvement and 12% improvement on average. In 6% of topologies

AARC and Minstrel HT + AAQ + TAO have equal performance and in 12%

of topologies AARC performs worse then Minstrel HT + AAQ + TAO, with

6% lower goodput on average. Lastly, to give a more intuitive comparison, we

show all the scatter plots next to each other in Figure 5.31.
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Figure 5.31: Per topology goodput comparison: Minstrel HT + FIFO vs Minstrel
HT + TAO + AAQ (Figure 5.31a), Minstrel HT + AAQ + TAO vs
AASRC + AAQ + TAO (Figure 5.31b) and AASRC + AAQ + TAO
vs AARC + AAQ + TAO (Figure 5.31c)

5.9.5 Goodput Fairness

So far we have compared RC algorithms by mean aggregate goodput. We

have not yet discussed the goodput each Wi-Fi client sees and if Wi-Fi clients
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get fair share of available goodput. We note that in some topologies some

Wi-Fi clients achieve higher goodput when running Minstrel HT + FIFO. For

example, in Figure 5.32 we show aggregate goodput for topology 13. We chose

topology 13 for illustration purposes only; the same behaviour is observed in

other topologies when this phenomenon occurs. When running Minstrel HT +
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+ aaq + tao

AASRC
+ aaq + tao

Minstrel HT
+ fifo

Minstrel HT
+ aaq + tao

rc

0

10

20

30

40

50

60

70

Go
od

pu
t (

M
bp

s)

sta15
sta16
sta21
sta23

Figure 5.32: Average goodput each Wi-Fi client gets on topology 13 (topology 3,
subtopology 3).

FIFO, the Wi-Fi client labeled sta16 achieves higher goodput as compared to

when running with other schemes. In addition, Wi-Fi clients sta21 and sta15

see significantly lower goodput. From the point of view of aggregate goodput,

RC algorithms running AAQ and TAO achieve significantly higher goodput.

But, could it be that AAQ and TAO suffer from fairness problems when run

under a RC algorithm? To analyse this behaviour we compare the distribution

of MCSes used and A-MPDU sizes for each Wi-Fi client when running Minstrel

HT + FIFO and AARC + AAQ + TAO. In Figure 5.33a and Figure 5.33c we

see that the AP mostly uses MCS-1 when transmitting to Wi-Fi client sta16.

The other three Wi-Fi clients use higher transmit rates, tough MCS-3, MCS-6,

and MCS-7 most of the time. In Wi-Fi networks with transmit rate diversity,

the over-the-air data transmission time of a Wi-Fi client that transmits slowly
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increases for the same amount of data, as compared to clients that transmit

at higher rates. This leads to fairness problem where a slowly sending Wi-Fi

client takes a larger fraction of wireless channel time. This is a well known

problem [83]. To overcome it the Wi-Fi MAC protocol introduced time-based

fairness through which the amount of time each Wi-Fi client can transmit with

a single wireless channel acquisition is limited (4ms in our testbed). But despite

the Wi-Fi MAC protocol’s use of time-based fairness, why do we still observe

unfairness? The problem is the interaction between A-MPDU size and the

scheduling of A-MPDUs by the device driver. Recall that in our setup we use

the ath9k device driver which schedules Wi-Fi clients for transmission using

a round-robin scheduling discipline. In the case of Minstrel HT + FIFO, the

(a) (b)

(c) (d)

Figure 5.33: Distribution of MCS and A-MPDU size when the AP is transmitting
(Downlink) to Wi-Fi clients when using Minstrel HT + FIFO (5.33a
and 5.33b, respectively) and AARC + AAQ + TAO (5.33c and 5.33d,
repsectively) on topology 13.

quickly sending Wi-Fi clients produce low A-MPDU sizes (see Figure 5.33b),
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which leads to these Wi-Fi clients’ not fully utilising their share of transmit

time. In turn slowly sending Wi-Fi clients obtain more than their fair share of

transmit time.

To illustrate this problem, suppose that the AP only transmits to Wi-Fi

clients sta16 and sta21. Say it first schedules Wi-Fi client sta21, which uses

MCS-7, and it sends A-MPDUs with size 17 on average. The over-the-air time

for sta21’s transmission is about 1.5ms (much less then the 4ms it can use

to transmit). After that, the device driver schedules sta16 for transmission

using MCS-1 and an A-MPDU size of 4 frames on average. The over-the-air

time for sta16’s transmission is about 3.2ms, more then twice that of sta21.

In addition, because sta21 does not use all of its fair share of time, sta16 gets

to be scheduled more often than it should. This interaction with round-robin

scheduling in the device driver leads to loss of the time-based-fairness provided

by the MAC protocol. This is another argument why analysing cross-layer

interactions is important to improve end-to-end performance.

When using AARC + AAQ + TAO, time-based fairness is restored, be-

cause quickly sending Wi-Fi clients send larger A-MPDUs (see Figure 5.33d),

increasing the fraction of their share of time they utilise. Recall that AAQ

receives explicit stop messages from the device driver when the number of

dequeued packets for a Wi-Fi client equals the maximum number of frames that

can be formed into an A-MPDU. Because maximum A-MPDU size is limited to

4ms, AAQ essentially achieves an approximation of time-based-fairness. To ver-

ify this we measure the fraction of time each Wi-Fi client uses for transmission

as shown in Figure 5.34. We can see that when using Minstrel HT + FIFO,

the slowly sending Wi-Fi client sta16 uses the wireless channel for a larger

fraction of time. While using AAQ and TAO does not completely eliminate

unfairness, it certainly helps in improving time-based fairness. To completely

uphold time-based fairness, the AP must transmit to all Wi-Fi clients with

maximum A-MPDU size. However, on a wireless channel where frames are lost,

this is not possible, as frame losses will lower A-MPDU sizes.
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Figure 5.34: Fraction of transmit time each Wi-Fi client gets on topology 13.

5.9.6 Mobile Experiment Results

So far we have shown results from our synthetic experiments and from our real

Wi-Fi network testbed. However, none of these experiments capture wireless

channel fading. In synthetic experiments we compared the performance of

RC algorithms on a dynamic channel by changing only the transmit power,

which does not change the underlying wireless channel. In our real testbed

experiments, Wi-Fi clients are static, so the wireless channel changes only

when people move around. To better evaluate the performance of AARC under

wireless channel fading, we measure it in a mobile scenario. Ensuring that the

RC algorithms are run under same mobile scenario conditions is hard. One

can have a mobile experiment run many times (i.e., a week worth of runs)

while trying to follow the same mobility pattern, but doing so consistently is

difficult. The approach we take is to compare AARC with a variant of AARC

that uses SNR instead of eSNR to detect channel improvement. This way

minimise changes in the algorithm, allowing us explore AARC’s ability to react

to rapid channel changes. In this experiment the AP forwards TCP segments

by transmitting them to a single Wi-Fi client while it is moving along the pre-

defined path shown in Figure 5.35. We use the same location as in Figure 5.13
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with Figure 5.35 cropped to show only the area where the Wi-Fi client moves.

When running the SNR variant, AARC uses SNR difference instead of eSNR
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Figure 5.35: The walking path starting at the point marked S and ending at the
point marked E for mobile experiments comparing eSNR and SNR.

difference, and the algorithm otherwise remains unchanged. The Wi-Fi client
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Figure 5.36: Mean goodput (with 95% confidence intervals error bars) AARC and
AARC SNR achieve under a mobile scenario experiment.
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is held in hand similarly to how a person holds a handheld device while typing

and walking at normal speed. Each experiment starts at the location marked S,

and the mobile device is moved along the path at walking speed until it reaches

the location marked E. Each experiment is repeated 10 times and the order

of the runs of variants is random. On average, each experiment runs for 40

seconds. AARC offers a mean goodput of 22 Mbps while AARC SNR achieves a

mean goodput of 18 Mbps. AARC achieves a 20% higher goodput then AARC

SNR. These experiments first show that AARC is able to adapt the transmit

rate under rapidly changing wireless channels and second show the superiority

of eSNR to SNR, as also shown previously [46]. Looking at the probe statistics,

we note that for AARC 5.8% of the probes were forced probes were 86% of

them resulted in success. For AARC SNR, 6.3% were forced probes and 72%

resulted in success. AARC SNR triggers probing more often, which also results
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Figure 5.37: AARC SNR wrongly decides to probe in response to a wireless channel
change.

in more failed probes. To understand why, consider an example (Figure 5.37)

showing the CSI when AARC SNR takes a snapshot of the SNR (solid black

line) and the CSI when AARC SNR decides that the wireless channel has

improved (solid grey line). The black and grey dashed lines show the recorded
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SNR for the respective CSI curves and the dotted black and grey lines show

the eSNR recorded for the respective CSI, for comparison. From the CSI we

can see that there has been a wireless channel change. This change resulted in

improvement for lower frequency sub-carriers (the left-hand side subcarriers),

while the higher frequency sub-carriers experienced a deep fade. As previously

shown SNR is biased towards higher power sub-carriers [46], which in this

example leads to a greate enough SNR change triggering an AARC SNR probe.

However, because of deep fading the probe fails. For comparison, note that

the eSNR change is not great enough to trigger a probe, so AARC would not

probe. This leads to AARC SNR’s triggering probes more often, resulting in

more loss.
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5.10 Discussion

In this chapter we presented shortcomings of the default rate control (RC)

algorithm used in Linux, Minstrel HT. To explore new transmit rates Minstrel

HT uses a probing mechanism. While this probing mechanism allows Minstrel

HT to react quickly to losses it comes up short in sending large A-MPDUs. We

developed AASRC and AARC RC algorithms that probe using full A-MPDUs

thus, keeping the A-MPDU size large. Under loss, probing with full A-MPDUs

is costly. AASRC and AARC use an exponential backoff mechanism that delays

probing of transmit rates that experience high loss. When using AASRC,

the transmitter makes decisions independently about which transmit rates

to use, while AARC relies on the receiver’s feedback to make transmit rate

decisions. AASRC works well when the wireless channel rarely changes but the

backoff mechanisms prevents it from reacting in time when the wireless channel

improves. To overcome this problem with AASRC, we designed AARC, which

uses channel state information (CSI) to detect wireless channel improvements.

AARC uses effective SNR difference, measured at two different points in time, to

detect channel improvements and trigger transmit rate probing. We evaluated

the performance of AARC using a combination of synthetic wireless channel

experiments, experiments on a real Wi-Fi network testbed, and a mobile Wi-

Fi scenario. In our testbed AARC achieves up to 2x more aggregate mean

goodput compared to the default Minstrel HT configuration in Linux. Our

mobile experiments show that AARC is able to adapt to wireless channel

changes in mobile scenarios.

To the best of our knowledge, AARC is the first practical rate control

algorithm implementation that uses CSI. Nevertheless, as we discussed earlier,

AARC as presented in this chapter used only one spatial stream. Today’s

Wi-Fi devices support multiple streams (MIMO), and for AARC to fully exploit

that hardware, it must support multiple spatial streams. To make AARC

work with MIMO, we need details of howw multiple streams are processed by

the specific Wi-Fi card. We do not have those details for commodity cards.
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While the math for calculating effective SNR and the techniques presented here

work for MIMO streams, AARC’s probing algorithm would need modifications

for it to work using MIMO. Designing a probing algorithm for use in MIMO

systems is left as future work. One approach is to use the same approach as

in [72] when exploring spatial streams. Also, one can rely on Minstrel HT’s

approach to exploring spatial streams. Regarding the tracking of eSNR, AARC

for MIMO would have to keep eSNR differences for each spatial stream, tough

the exponential backoff design would remain unchanged.

As we noted we fixed the wireless channel to 40 MHz, and the guard

interval to the short-guard-interval (SGI). By default, the AP will enable 40

MHz channel width if no neighbouring AP is heard on the secondary channel.

Designing a channel width selection algorithm is out of scope for this thesis. The

same goes with the guard interval. CSI can aid in designing a guard-interval

algorithm, however. Using CSI one can calculate a power delay profile [96] and

use it to decide on which guard interval to use. For example, if a large delay

spread is observed, the long guard interval is used, otherwise the short guard

interval can be used. We leave this as future work to explore.



Chapter 6

Conclusion and Future Work

When studying systems of networked computers, everyone is taught the advan-

tages of layered design. A layered design promotes modularity, which offers

several advantages, such as isolation of information and development indepen-

dence. Each layer performs a specific task and provides a well defined interface

to the layer it serves, sharing only necessary information. This allows for

independent development of each layer without affecting other layers. But as

we argue in this thesis, cross-layer interactions in Wi-Fi end-host stacks cause

subtle problems that result in a performance penalty. We take a cross-layer

approach in this thesis, where through empirical analysis and evaluation we

show that available Wi-Fi capacity can be reclaimed by propagating informa-

tion across layer boundaries. We then designed and implemented cross-layer

techniques that enable the IEEE 802.11 MAC to improve channel utilisation

and therefore goodput. Of course, the idea of cross-layer design is not new

to this thesis: previously it has been identified that cross-layer hints provide

performance benefits [78, 41]. The rest of this chapter is organised as follows: in

Section 6.1 we discuss the cross-layer interactions we identified during the work

in this thesis, and the techniques we developed that mitigate these interactions;

in Section 6.3 we consider avenues for future work that explore promising

directions we have not yet explored in this thesis; and we conclude this thesis

in Section 6.2 with a discussion of our techniques and how they relate to other

approaches introduced during the work in this thesis.
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6.1 Cross-Layer Interactions in Wi-Fi Net-

works
In Section 1.1 we listed five hypotheses that show cross-layer interactions

that might cause the IEEE 802.11 CSMA/CA MAC to achieve low channel

utilisation. We found that cross-layer interactions impacting Wi-Fi performance

occur across various layers of the networking stack. At the transport layer,

protocols such as TCP interact with the Wi-Fi MAC in a way that causes

unnecessary channel acquisition overheads. At the network layer, the IP

protocol’s queueing subsystem is oblivious to the frame aggregation used by the

Wi-Fi MAC protocol, which causes small numbers of packets to be aggregated,

significantly reducing achieved goodput in Wi-Fi networks. Finally, at the

MAC layer, the interaction between the transmit rate control algorithm and

frame aggregation by the Wi-Fi MAC can reduce achievable goodput.

At the transport layer we identify two problems when using TCP over Wi-

Fi networks. First, TCP ACKs are treated as normal data by the Wi-Fi MAC

protocol (hypothesis H3), and therefore go through the same channel access

procedure, incurring overhead. Secondly, TCP ACKs are robust to loss and

are not congestion-controlled by TCP, but as shown in Chapter 4, uncontrolled

transmission of TCP ACKs over Wi-Fi networks can cause unnecessary channel

acquisition overhead and can increase collisions (hypotheses H4 and H5).

The first problem is addressed in Chapter 3, where we designed and

implemented TCP/HACK, a system that eliminates most of the expensive

medium acquisitions that TCP ACK packets require, improving TCP goodput

for bulk downloads. TCP/HACK addresses hypotheses H3 and H5.

We address the second problem in Chapter 4, where we presented TAO, a

TCP optimisation technique that queues TCP ACKs generated by the receiving

TCP stack until all TCP ACKs for an incoming data aggregate have been

generated. Once all TCP ACKs have been generated, a large aggregate can be

formed from them and transmitted. The reader may notice that TCP/HACK

and TAO address the same problem: the interaction described in hypothesis
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H5. We will compare these two approaches in Section 6.2.

At the network layer, the IP queueing subsystem is oblivious to modern

Wi-Fi card’s use of frame aggregation. In Chapter 4 we presented the design of

AAQ and showed that by coordinating the IP queueing subsystem with the

frame aggregation functionality of the Wi-Fi MAC, wireless channel utilisation

can be increased. Chapter 4 addresses hypotheses H1 and H4. AAQ is a

queuing algorithm that enables information exchange between the IP queueing

subsystem and the Wi-Fi driver to aid with frame aggregation. AAQ provides

one bit of information to the Wi-Fi driver indicating if there are more packets

in the queue for the given Wi-Fi station. This information is used by the device

driver to decide if frame aggregation can be scheduled for that Wi-Fi station.

Finally, at the datalink layer, interactions within the Wi-Fi MAC protocol

itself can reduce achieved goodput in Wi-Fi networks. While AAQ and TAO

help in aggregating many packets in a single aggregate, the interaction between

frame aggregation and the default rate control algorithm used in the Linux

operating system results in a potentially large aggregate being broken into

multiple smaller aggregates. The culprit is the probing frames transmitted by

the rate control algorithm used for exploring new transmit rates: a relic of the

legacy IEEE 802.11b rate adaptation system inherited by the modern Wi-Fi

design. This interaction diminishes the performance gains offered by AAQ

and TAO. In Chapter 5 we presented AARC, a rate control algorithm that is

aggregate friendly. In AARC, Wi-Fi stations enlist the help of channel state

information to aid in transmit rate decisions. Using AARC, Wi-Fi stations

probe the channel using whole aggregates, as opposed to single-frame probing.

AARC provides mechanisms to guard against the continuous loss of probing

frames, allowing Wi-Fi stations to transmit the large aggregates achieved by

AAQ and TAO.
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6.2 Discussion

We now reflect on the relationship between TCP/HACK and TAO, which

solve the same problem by different means, and discuss the generality of

our techniques, as well as evolution of the Linux Wi-Fi stack that occurred

concurrently with the work in this thesis.

As mentioned earlier, both TCP/HACK and TAO address the same

problem: the overhead incurred by TCP ACKs when transmitted over the Wi-Fi

network. These two systems were designed for different scenarios. TCP/HACK

targets the case where we give ourselves the freedom to change the MAC

protocol, whereas TAO targets the case where we limit ourselves to today’s

IEEE 802.11 MAC protocol compliance. Which approach is preferable?

While we don’t provide empirical results comparing TCP/HACK and

TAO, we believe that when MAC changes are feasible, TCP/HACK should be

used. TCP/HACK eliminates most TCP ACK transmissions by encapsulating

TCP ACK information in link-layer ACKs, reducing Wi-Fi channel overhead

and collision probability. By contrast, TAO reduces TCP ACK Wi-Fi channel

acquisitions, but it does not completely eliminate them. TCP ACKs are still

transmitted over the wireless channel and incur channel access overhead. As

the number of Wi-Fi stations increases, the probability of collisions increases,

so TCP/HACK should provide better performance then TAO. TAO, on the

other hand, is directly usable in scenarios where we cannot change the MAC

protocol and need a design that works with today’s unmodified hardware. As

described in Chapter 4, TAO queues TCP ACKs until all TCP ACKs for the

received aggregate have been generated. While keeping TCP ACKs in the

queue adds delay, TAO’s benefits outweigh its cost (Section 4.8.4). Sending

large aggregates reduces the number of channel acquisitions, which reduces the

channel acquisition overhead and collision probability.

This thesis presents TCP/HACK as implemented for TCP. We think that

the TCP/HACK concept is general and can be applied to other reliable protocols.

TCP carries the majority of today’s Internet traffic, but new protocols such
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as QUIC [60] have gained popularity recently. QUIC is a user-level protocol

that runs on top of UDP and is encrypted by default. If the QUIC application

provided hints about acknowledgment packets down the stack, the TCP/HACK

concept could be applied to QUIC in a similar way to TCP.

In this thesis we described TCP/HACK as an implementation for IEEE

802.11a, but TCP/HACK also works with the frame aggregation introduced in

IEEE 802.11n. A key enhancement to the MAC protocol introduced in IEEE

802.11n, frame aggregation, provides better utilisation of the high PHY rates

introduced in IEEE 802.11n. We evaluated TCP/HACK (see Section 3.4.4)

with frame aggregation in simulations where we assumed that Wi-Fi stations

send the maximum number of allowed frames in an aggregate, as this this

maximises channel utilisation [75]. But was the assumption that Wi-Fi stations

send the maximum number of allowed frames in an aggregate correct?

As presented in detail in Chapter 4, the aggregate size status quo for

commercial Wi-Fi cards and the Linux Wi-Fi stack was unfortunately too small

to fully utilise the available PHY capacity (see Section 4.5). Using the insights

gathered from our experimental testbed motivated the design of AAQ and

TAO, lightweight approaches that coordinate packet processing decisions in

the TCP, IP queuing, end-host MAC, and Wi-Fi driver layers to ensure that a

sender transmits full-sized aggregates.

Concurrent with the work in this thesis, the Linux community changed

the design of the device driver and the mac80211 layer in a way that affects

the aggregate sizes the Linux system generates [61, 62]. Their new design

introduces queues in the mac80211 layer, and packets are pulled from the

queues by the device driver instead of the mac80211 layer pushing them to the

device driver. Is there any advantage to this new design as compared to AAQ?

Each TID in the new design gets a queue managed by a CoDeL algorithm,

and while we have not evaluated this new design, we believe the results will

be similar to those we present for CoDeL in Chapter 4. CoDeL measures the

time packets stay in queues regardless of the number of Wi-Fi stations the AP
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is serving. In Wi-Fi the time packets stay in queues for a Wi-Fi client is a

function of how many Wi-Fi stations the AP serves. As a result, CoDeL is too

aggressive in targeting low delay, resulting in few packets residing in queues

and preventing formation of large aggregates. In contrast, AAQ learns the

exact number of packets that can be dequeued for transmission from the device

driver, resulting in large aggregates, which reduces wireless channel overheads.

One could make CoDeL Wi-Fi-aware by keeping a count of the number of

Wi-Fi clients being served by the AP, and measuring the average time it takes

for a Wi-Fi station to transmit. Using these two measurements, one could

potentially arrive at a target time for each Wi-Fi client, but it is not clear even

if then CoDeL will keep enough packets in queues to form large aggregates.

Also, their new design does not solve the problem of staggered TCP ACKs,

which TAO solves. We believe that AAQ offers a simpler design for achieving

high goodput for bulk traffic on Wi-Fi networks.

6.3 Future Work

Frame aggregation is an important feature that allows the IEEE 802.11 MAC

protocol to keep up with ever-increasing PHY rates. While in IEEE 802.11n

the use of frame aggregation was optional, it was made mandatory in IEEE

802.11ac, so all transmissions should be aggregated. The upcoming IEEE

802.11ax standard makes further enhancements to frame aggregation. Prior

to IEEE 802.11ax, all frames in an aggregate belonged to the same traffic

identifier (TID, indicating the data priority such as best-effort, voice, etc.).

IEEE 802.11ax introduces the Multi-Traffic Identifier Aggregated MAC Protocol

Data Unit (Multi-TID AMPDU), which allows packets with different priorities

to be aggregated together, so that Wi-Fi stations can aggregate more efficiently.

For example, in situations when there are not enough packets in the queue

from a particular TID, the transmitter can group frames from other TIDs to

form a large aggregate, improving channel utilisation. This extension in IEEE

802.11ax should further enhance the benefit of our techniques for producing
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large aggregates, though we leave that exploration of IEEE 802.11ax to future

work.

Frame aggregation is an important technique that improves channel utili-

sation and will continue to be important in the future. Despite this importance,

one of the side effects of using frame aggregation is traffic burstiness. Burstiness

can negatively impact certain types of traffic, such as voice. We leave the

analysis of these effects on TCP flows as future work.

In addition, currently all frames in an aggregate must belong to a single

Wi-Fi MAC destination address. Improving frame aggregation so that it can

accept frames for multiple MAC destinations could further improve aggregation

efficiency, but this will require hardware changes. We leave this improvement

as future work.

In Chapter 5 we describe AARC, though our implementation only supports

one spatial stream. Extending AARC to support multiple spatial streams

requires detailed knowledge of how the Wi-Fi hardware processes spatial streams.

In addition, with multiple streams, the algorithm for exploration of new rates

must be amended. One can use the same approach for exploring rates as Minstrel

does in Linux, or use the zigzag approach taken in MiRA [72]. Furthermore,

the receiver must report the effective SNR difference for each of the spatial

streams and the transmitter must track the effective SNR difference for each

stream. We leave these enhancements to AARC to future work.

In AARC we choose to probe using full aggregates, as opposed to using

single-frame probing, as done by Minstrel. To guard against repetitive losses

of full aggregates when probing we use an exponential backoff algorithm. A

better approach would be to send full aggregates, but within an aggregate,

mark single frames as probing frames by modulating them at the MCS we wish

to probe. Status-quo IEEE 802.11 frame aggregation mandates that all packets

in an aggregate are to be modulated using the same MCS, so MAC standard

and hardware changes would be necessary for this approach to work.

The latest IEEE 802.11ax [23] standard, which postdates much of the
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work in this thesis, departs from the traditional CSMA/CA-only MAC protocol

by using a centralised channel access protocol based on OFDMA. One of the

primary goals of IEEE 802.11ax is to provide connectivity to Wi-Fi networks

with large numbers of clients, such as IoT devices. Using OFDMA, IEEE

802.11ax divides the wireless channel into sub-carriers and groups them into

chunks called Resource Units (RUs), which are assigned to Wi-Fi clients. The

AP can transmit simultaneously to multiple Wi-Fi clients using assigned RUs.

As mentioned earlier, frame aggregation is still used in IEEE 802.11ax, and

Machrouh et al. show that sending large aggregates improves performance in

IEEE 802.11ax Wi-Fi networks [63]. Our techniques presented in Chapter 4

will thus complement IEEE 802.11ax.

IEEE 802.11ax presents a particular challenge for rate-control algorithms as

the success of a rate is also dependent on the RU assigned by the AP. This adds

another extra dimension to the rate adaptation algorithm, adding complexity.

Adapting AARC to work with IEEE 802.11ax would be an interesting future

research direction.

Finally, during the implementation of our techniques using the ath9k

open-source driver we unearthed interesting questions regarding the interface

between the device driver and the hardware, and how they interact. Some of the

problematic interactions we noticed are a relic of legacy systems that pre-date

frame aggregation. For example, often Wi-Fi cards offer the ability to specify

multiple transmit rate policies in the form of multi-rate retry tables. This allows

the device driver to specify a chain of transmit rates that the Wi-Fi hardware

will independently try in cases when the first transmit rate fails. While this

makes sense for single-frame transmission, when using frame aggregation this

potentially can lead to multiple problems. First, if the transmit rate specified

by the rate adaptation algorithm fails, it is desirable to report back the failure

as quickly as possible so rate adaptation reacts in a timely fashion. Secondly,

retrying at a different transmit rate leads to fairness problems, as Wi-Fi stations

get more then their share of transmission time. Another interaction concerns
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frame aggregation. In ath9k, aggregates are formed in the device driver. In

addition the device driver is responsible for scheduling aggregate transmissions.

One problem with this approach is that once an aggregate is scheduled for

transmission it cannot be modified. A potentially superior approach is to

move the process of frame aggregation into the mac80211 software layer. This

way, mac80211 will maintain TID queues, and TID state such as the block

ACK window would be updated accordingly by the device driver. Given that

information, mac80211 would mark TID queues that are ready for transmission

i.e, TID queues that have enough frames enqueued (TID queues that have

reached the block ACK window capacity). The device driver would only

schedule TIDs marked ready for transmission. Potentially, the device driver

could DMA all ready TID queues to the hardware and the hardware would

schedule all DMAed queues.

The aforementioned approach would also eliminate the double-buffering

problem we describe in Chapter 4. The IP queueing discipline, such as AAQ,

would interact with the mac80211 layer instead of the device driver. This

approach simplifies the device driver’s design, as the only responsibility of the

device driver becomes to schedule (or rather just DMA queues and let the

hardware schedule) transmissions. In addition, the multi-rate retry table would

be removed from the hardware, so transmit failures could be reported to the

rate adaptation algorithm immediately. This design would also allow for frame

retransmission to be handled by the mac80211 layer, further simplifying the

device driver’s design. We leave this refactoring of responsibilities between

driver and hardware to future work.

To conclude, in this thesis we have shown that the nuances of cross-layer

interactions incur extra overhead that reduces Wi-Fi network performance. We

have shown that using a cross-layer approach in designing Wi-Fi systems can

eliminate these overheads, and so improve Wi-Fi network performance.



Appendix A

IEEE 802.11n Analytical

Goodput

In this chapter we show the goodput analytical goodput prediction for TCP

over IEEE 802.11n DCF. Let tUdata
and tF rame, be the over-the-air time for a

single user data packet and the corresponding IEEE 802.11n frame with added

IEEE 802.11 headers, IP headers, and TCP headers, respectively. The DCF

utilisation to send an A-MPDU of size n is defined as follows:

Utilisation = n× tUdata

n× tF rame + ⌊n
2 ⌋× tTACK

+DCFoverhead +AMPDoverhead

(A.1)

DCFoverhead the IEEE 802.11’s DCF overhead defined as follows:

DCFoverhead = 2× (DIFS +Ebackoff + tba + tpreamble +SIFS + trtscts) (A.2)

Two A-MPDUs have to be transmitted. First A-MPDU is for transmitting

TCP segments and the second A-MPDU is for transmitting TCP ACKs, both

incurring DCF’s channel acquisition overhead.

tpreamble is the time it takes to serialise the preambles prepended to each

A-MPDU.

tpreamble = STF +LTF +SIG+(Nss×LTF1) (A.3)
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Nss is the number of independent data streams used (i.e, the number of

antennas).

AMPDUoverhead = 3×n

2 × tdelim + 3×n

2 −2× tpad (A.4)

Each subframe in A-MPDU starts with the delimiter, a header that marks

the beginning of the subframe. In addition, all frames but the last one are

padded to be multiple octets. In total there are n TCP data and 1
2 ×n TCP

ACKs, therefore in total there are 3×n
2 subframes. Table A.1 show the values

for the parameters used.

Parameter Value Description
tUdata

20 µs−2 ms Time to transmit 1448 byte of user data for
IEEE 802.11n bit-rates. We assume TCP
Timestamp Options therefore after removing
20 bytes of TCP header, 12 bytes for TCP
Timestamp options, and 20 byte IP header,
total user data is 1448.

tF rame 20.4 µs−2 ms Time to transmit 1536 byte frames (after
adding TCP,IP, and MAC headers and FCS).

SIFS 16 µs Short Interframe Spacing time.
SLOT 9 µs Timeslot duration.
DIFS 43 µs DCF Interframe Spacing. DIFS = SIFS +

(AIFS×SLOT ) AIFS = AIFSN [AC]. We
use Best Effort AIFSN which is 3.

Ebackoff 67.5 µs Expected backoff wait time assuming
CWmin = 16×TSLOT .

tba 10.6 µs Time to transmit link-layer Block Ack at 24
Mbps.

tTACK
0.7−69 µs Time to transmit TCP ACKs.

STF 8 µs Short Training Field.
LTF 8 µs Long Training Field.
LTF1 4 µs Long Training Field for each spatial stream.
SIG 8 µs SIGNAL time.
trtscts 27.2 µs Time to complete the RTS/CTS exchange at

24 Mbps.

Table A.1: IEEE 802.11n goodput calculation parameters
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