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Abstract

Excessive buffering brings a new challenge into the networks which is known as Bufferbloat,

which is harmful to delay sensitive applications. Wireless access networks consist of

Wi-Fi and cellular networks. In the thesis, the performance of CoDel and RED are

investigated in Wi-Fi networks with different types of traffic. Results show that CoDel

and RED work well in Wi-Fi networks, due to the similarity of protocol structures of

Wi-Fi and wired networks.

It is difficult for RED to tune parameters in cellular networks because of the time-varying

channel. CoDel needs modifications as it drops the first packet of queue and the head

packet in cellular networks will be segmented. The major contribution of this thesis is

that three new AQM algorithms tailored to cellular networks are proposed to alleviate

large queuing delays.

A channel quality aware AQM is proposed using the CQI. The proposed algorithm is

tested with a single cell topology and simulation results show that the proposed algo-

rithm reduces the average queuing delay for each user by 40% on average with TCP

traffic compared to CoDel.

A QoE aware AQM is proposed for VoIP traffic. Drops and delay are monitored and

turned into QoE by mathematical models. The proposed algorithm is tested in NS3 and

compared with CoDel, and it enhances the QoE of VoIP traffic and the average end-

to-end delay is reduced by more than 200 ms when multiple users with different CQI

compete for the wireless channel.

A random back-off AQM is proposed to alleviate the queuing delay created by video in

cellular networks. The proposed algorithm monitors the play-out buffer and postpones

the request of the next packet. The proposed algorithm is tested in various scenarios

and it outperforms CoDel by 18% in controlling the average end-to-end delay when users

have different channel conditions.
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Chapter 1

Introduction

Mobile devices are becoming increasingly powerful these days. It is quite common that

one person has multiple devices connected to the network, which leads to the rise of

global data traffic. Smart phones and tablets facilitates people’s life. Nowadays, people

can have access to the Internet with different type of equipment and almost whenever

and wherever they want. Increasing numbers of devices accessing to the Internet causes

the growth of Internet traffic. As a result, delay of packets increases as packets waiting to

be transmitted in the queue along the Internet path. Increasing queuing delay of packets

has drawn researchers’ attentions. The phenomenon here referred to as Bufferbloat.

Three conditions are essential to trigger Bufferbloat. First is the bursty traffic which

makes it too hard to transmit packets at the intermediate node in the network in time;

second is that the node has a large buffer; third is that packets in the buffer are for

different clients. Bufferbloat potentially causes high latency and jitter, as well as reducing

the overall network throughput as a consequence of TCP synchronization.

Bufferbloat can happen in both wired and wireless networks. The access points (AP) in

wireless networks are often considered as the bottleneck of the whole path of a connection.

The unique features of wireless access networks, such as the time-varying channel, multi-

path fading, high bit error rate and etc. [CT14][JBT14], make it more challenging to

1



Chapter 1. Introduction 2

solve Bufferbloat issues.

1.1 Motivation

Ludwing, R., et al.[LRK+99] first pointed out the potential issue of over-buffering in

cellular networks in 1999, focusing on GPRS networks. Studies [JBT14][JWLR12] have

also confirmed that Bufferbloat indeed exists not only within cellular networks but also

in Wi-Fi networks and pointed out that it can lead to RTT in the order of seconds

for cellular networks. However, recent studies [HKT+17][GPKC17] focus on WiFi and

Satellite Networks but few papers focus on cellular networks. With the growth of hand-

held devices (e.g., smartphones and tablets) and with most devices equipped with both

Wi-Fi and cellular interfaces, wireless access to the Internet is growing fast. A forecast

[cic17] from CISCO shows that the global mobile data traffic of 2021 will be aroud 7 times

of that of 2016 due to growth of smart mobile devices, data-demanding applications and

services such as gaming, video and VoIP. Such kind of interactive applications, are delay-

sensitive. It can be seen that wireless networks are becoming an increasingly important

technology to access the Internet. Different from wired network with a fixed bandwidth,

wireless access networks have variable bandwidth as the number of users are changing

and there are interferences. As pointed out by [AGG+13], wireless networks have become

an integral part of day-to-day-life and suffer the most from large RTT, while minimal

work is done so far in solving long RTT in cellular networks. It is truly significant and

timely to focus on buffer de-bloating in wireless environments.

1.2 Aims and Objectives

The aim of this research is to mitigate Bufferbloat in wireless access networks by devising

AQM algorithm tailored to the target environment. The objective is

1. Design AQM algorithms for wireless access networks.
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2. Evaluate AQM algorithms in wireless access networks.

3. Reduce the queuing delay of each packets

The measurable outputs are end-to-end delay, packet loss probability, link utilization

and Jain’s Fairness Index. Jain’s Fairness is defined in terms of throughput. Results are

discussed in later chapters.

1.3 Novelty and Contributions

The novelty of the research presented in this thesis mainly comes from the three novel

AQMs proposed and deployed in wireless access networks. Existing works to solve the

Bufferbloat issues mainly focus on wired networks and Wi-Fi networks. This thesis

focuses on cellular networks. The contributions are:

1. Evaluate DropTail, CoDel and RED in Wi-Fi access networks with FTP and VoIP

Traffic.

2. Involve cross layer information in dropping decisions of AQMs.

3. Involve the Quality of Experience (QoE) metric to balance the drop and delay of

packets.

4. Propose AQMs for specific delay sensitive applications, VoIP and Dynamic Adap-

tive Stream over HTTP (DASH).

5. Involve queuing theory, G/G/1 queue, to forecast the trend of the queue.
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1.4 Outline of the Thesis

Chapter 2 reviews the techniques of network congestion control algorithms and state-

of-the-art technologies fighting against Bufferbloat issues. Chapter 3 evaluates and

analyses the performance of RED and CoDel in Wi-Fi Networks with FTP and VoIP

traffic. Chapter 4 proposes a novel AQM to alleviate congestion in cellular networks.

The proposed algorithm takes the channel conditions into consideration, which improve

the performance of the proposed algorithm. Compared with CoDel, the proposed algo-

rithm can further reduce the delay and keeps fairness among different users. Chapter

5 proposes a novel AQM helping to enhance the Quality of Experience (QoE) of VoIP

traffic in cellular networks. The proposed algorithm uses QoE as the performance metric

and is based on queuing theory. Compared with CoDel, the proposed algorithm makes a

balance between drop and delay, hence improving the QoE of VoIP traffic. Chapter 6

proposes a novel AQM for video traffic. The video contents nowadays are mainly based

on DASH. The proposed algorithm is deployed in the DASH client. It monitors the

play out buffer of the client and reduces queuing delay of packets by delay the request

of following video contents. The proposed algorithm is compared with CoDel and it

outperforms CoDel in controlling the queuing delay. Chapter 7 summaries the work in

this thesis and discuss the future work.



Chapter 2

Background and Literature

Review

2.1 Introduction

In 1984, congestion in communication networks was first pointed out by John Nagle

in [Nag84] and two years later, the Advanced Research Projects Agency Network (ARPANET),

which is considered as the original of the Internet, suffered “congestion collapse” [Jac88].

Congestion collapse occurs when huge amounts of traffic is injected into the networks,

which results in large numbers of packets being dropped and few of packets being deliv-

ered. Congestion often happens at bottleneck links where the incoming traffic rate is

higher than the outgoing traffic. The initial solution that engineers came up with at

that moment is to increase the bandwidth. However, the “congestion collapse” came

over again and again until 1988 when Van Jackson enhanced the Transport Control Pro-

tocol (TCP) [Jac88] where the Additive Increase and Multiplicative Decrease (AIMD)

of the window size were proposed. Although “congestion collapse” is gone, researchers

and engineers never stop fighting with congestion as the traffic keeps increasing (see

Cisco’s forecast [cic17]). Meanwhile, the number of devices is also increasing, as shown

5
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in Fig 2.1. With the increasing number of devices and traffic, congestion happens when

Figure 2.1: Internet Host

the total number of packets in flight approaches the processing capacity of the network.

Congestion often happens at bottleneck links where the traffic comes faster than the

depletion rate of the packets in the buffer as shown in Fig 2.2. Packets are injected into

Figure 2.2: Bottleneck Link

the Internet and accumulated in the buffer where there is a bottleneck link. Accord-

ing to the locations of the congestion control algorithms, they can be either end-to-end

congestion control algorithms, such as TCP and its variants, or hop-by-hop congestion
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algorithms, such as AQMs. These are discussed in Section 2.2 and 2.3.

2.2 End-to-end Congestion Control

End-to-end congestion control algorithms are implemented at the end host, which detect

the congestion of the network according to the data transmitted or acknowledgements

(ACKs) received. TCP and its variants play an important role in end-to-end congestion

control. TCP tries to make full use of the bandwidth by increasing the sending rate

when the ACKs of packets sent before are being received. Defined in [Pos03], TCP is

a protocol for reliable transmission. TCP is connection oriented by establishing a flow

between tow machines. Each TCP flow is identified by 5-tuples which are source IP

address and port, destination IP address and port and the protocol. The reliability of

TCP is assured by sending ACKs back to the sender confirming the received packets.

Each packet has a unique sequence number in its header hence the receiver can respond

to the sender exactly which packet it receives. Since October 1988, when TCP was first

improved [Jac88], many efforts have been made to further enhance the performance of

TCP. According to the type of the mechanisms, there are now loss based, delay based

and hybrid TCP.

2.2.1 Loss based TCP

Loss based TCP controls congestion by decreasing the sending rate when the loss of

packets occurs. Duplicate (usually 3) ACKs or timeout of waiting for the ACK is used

as a signal of congestion in loss-based TCP, such as TCP Tahoe and Reno as shown in

Fig 2.3. Except for the mentioned AIMD algorithm, they both have Slow start (SS),

Congestion Avoidance (CA), and fast retransmission. In the SS phase, the Congestion

Window (CWND) size increases exponentially. In the CA phase, the CWND is increased

by 2/CWND each time an ACK is received. When a TCP connection is established,

the CWND is initialized with 2 and TCP enters SS phase. A threshold, ssthresh, is the
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upper bound of the SS phase. Once CWND exceeds ssthresh, TCP enters CA phase. A

timer will expire if the ACK of a packet is not received, which is called timeout. Timeout

usually means the loss of a packet or congestion in the networks. Once timeout happens,

CWND will be reset and TCP enters SS phase. Timeout is a way to detect the loss of

a packet, however it will take too long for TCP to react to the loss. Fast retransmission

is proposed to take advantage of three duplicate ACK. When three duplicate ACK are

received, the TCP sender will retransmission the lost packet without waiting timeout.

The difference between TCP Tahoe and Reno is that Reno also has a Fast Recovery

algorithm. Fast Recovery sets the ssthresh to half of the current value of the CWND

and the CWND is set to ssthresh plus 3 more segments. There are other loss based
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Figure 2.3: Congestion Window of Tahoe and Reno

TCP with different algorithms to adjust the CWND, such as Cubic TCP [HRX08],

which uses a cubic function to adjust the CWND. The idea of loss based is simple and

straightforward. However, due to the abuse of buffering in today’s networks, excessive

packets are kept in the buffer in case of packet dropping due to bursts of traffic, which

results in the failure to detect congestion in loss based TCP.
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2.2.2 Delay based TCP

In order to overcome the issues brought about by loss-based TCP, delay-based TCP

(which uses delay as the symptom) are designed, and TCP Vegas [BOP94] is the most

typical one. Vegas monitors the change of Round Trip Time of the packets in flight and

adjusts the CWND according to the difference between the expected throughput and

actual throughput. The expected throughput is calculated by Eq. 2.1 where BaseRTT

is the minimum RTT when there is no congestion in the network. The actual throughput

is calculated by Actual = CWND
RTT where RTT is the actually measured RTT value of

each packet. The difference is calculated by Diff = (Expected − Actual) ∗ BaseRTT .

Then, the difference is compared with α and β. α and β are predefined constant values.

Expected =
CWND

BaseRTT
(2.1)

Actual =
CWND

RTT
(2.2)

Diff = (Expected−Actual) ∗BaseRTT (2.3)

CWND =


CWND + 1 if Diff < α

CWND − 1 if Diff > β

(2.4)

Delay-based TCP is effective when dealing with large buffers. However it is not as

competitive as loss-based TCP, because when the packets accumulate in the buffer,

delay-based TCP begins to decrease the sending rate while loss-based TCP still keeps

increasing the sending rate, which will cause a fairness problem [JCH84] considering the

throughput of each user.
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2.2.3 Hybrid TCP

Hybrid-TCP uses both packet loss and delay as a combined symptom, such as TCP-

FIT [WWZH11]. TCP-FIT is designed to solve the fairness issue of delay-based TCP.

TCP-FIT adjusts CWND by Eq. 2.5, where N is the number of TCP flows using TCP-

FIT algorithm. From Eq.2.5, it can be seen that CWND is updated every RTT. However,

the flow with larger RTT will have a lower frequency of updating their CWND. To solve

this issue, γ = RTT/RTT0 is introduced as the normalization factor and RTT0 is the

statistical “floor” of the RTT values in the network. The number of flows is estimated

by Eq. 2.6 where α is a preset parameter and Q is the estimation of the packets queued

in the networks. Q is estimated as Eq. 2.7.

Each RTT : CWND ← CWND + γN

Each Loss : CWND ← CWND − (CWND/2N)
(2.5)

Ni+1 = max{1, Ni + (α − Q

CWND
Ni)} (2.6)

Q = (avg_rtt − rtt_min)
CWND

avg_rtt
(2.7)

There are other Hybrid TCPs with different algorithms to adjust the CWND, such as

Compound TCP [TSZS06] specific for Windows Operating System, and TCP West-

wood [CGM+02].

2.2.4 Multi Path TCP

Multi Path TCP (MPTCP) is proposed to allow a single TCP connection to take advan-

tage of multiple paths to transmit data simultaneously, as shown in 2.4. Compared

with traditional TCP flows, sub-flows are established to transmit packets from the same
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Figure 2.4: Multi Path TCP Illustration

flow. MPTCP has advantages in competing the bandwidth and MPTCP can be used

to stablize a connection. Nowadays, mobile devices are often equipped with two dif-

ferent types of interfaces accessing the Internet Wi-Fi and Cellular. As is shown in

Figure 2.5, MPTCP establishes multiple paths instead of a single path. MPTCP wants

to distribute the load onto other available paths, hence improve the link utilization of net-

work resources [FRHB13]. Each sub-connection behaves like a standard TCP. MPTCP

Figure 2.5: Multi Path TCP Illustration

requires sub-flow management and congestion control in sub-flows to work well [ZDZ+17].

As there are multiple connections between the server and the client, MPTCP needs to

carefully schedule packets into different sub-flows. Each sub-flow is possibly in different
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network conditions. Take Figure 2.5 as an example. The sub-flow with Wi-Fi connection

has lower Round Trip Time (RTT) compared with the RTT of sub-flows with cellular

connection. It will bring the Head-of-Line (HOL) blocking issue [SK] as TCP guaran-

tees in-order delivery. As shown in Figure 2.6, packets are transmitted through 3 paths

and packet 1 is lost somehow and hence being retransmitted. Assuming that the buffer

can only contain 9 packets, before packet 1 is received correctly by the receiver, other

packets will be held in the receiver’s buffers. If packets with larger sequence number

Figure 2.6: Head-of-Line Blocking

are scheduled into sub-flows with lower RTT, they have to wait in the buffer until the

arrival of packets with smaller sequence number. HOL blocking will increase delay of

packets and hurt delay sensitive applications. To solve HOL blocking issues, different

schedulers can be used. A round robin (RR) scheduler equally shares packets into all

sub-flows which can be used if all the sub-flows are homogeneous. If the sub-flows are

heterogeneous, priority scheduler can be used to put more packets into the sub flow with

lower RTT. Schedulers will be discussed in section 2.3.3. As there are many versions of

TCP algorithms, different flows can use different kinds of TCP, which makes it hard to

control congestion on the Internet.
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2.3 Hop-by-Hop Congestion Control

In hop-by-hop algorithms, the intermediate network routers are responsible for detecting

congestion and providing feedback to the sender indicating network conditions [Jac88].

End-to-end algorithms work well for traffic that is responsive to congestion e.g. TCP

traffic. However, non-responsive traffic, e.g., UDP traffic, may still cause congestion

since it does not react to congestion. Hence, hop-by-hop congestion control algorithms

have drawn increasing attention [JWLR12][FODA14][PKTH16][GQC+16].

2.3.1 Understanding Traffic Control (TC) within a Node

In the operating systems of a electronic device, traffic control is a set of technology,

including queuing systems, scheduling schemes and etc. To control congestion within a

device, the mechanism of how TC works is introduced. Taking Linux OS for example,

figure 2.7 shows how packets go through the kernel stacks. When packets are received by

Figure 2.7: Traffic Flow Chart in Linux Kernel

Network Interface Card (NIC), a de-multiplexer is involved to decide whether a packet

is for the local node or not. After de-multiplexing, forwarding decide where the packet

is forwarded. The output queue model is where packets is waiting to be sent. Since the

first AQM algorithm was proposed [FJ93] in 1993, a variety of components have been

proposed to improve the performance of queue management algorithms. As shown in

Figure 2.8, traffic control nowadays has multiple components which allow devices to give

more specific control of the traffic. When packets arrive at the output queue, they can

be firstly classified into different sub-queues where different AQMs can be applied. Then
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Figure 2.8: TC with different Components

traffic shapers, such as Token Bucket, will allocate bandwidth to each traffic. Finally,

the scheduler can give priority to certain types of traffic or improve throughput fairness

among different traffic flows.

2.3.2 AQM Algorithms

2.3.2.1 Random Early Drop

Random Early Drop (RED) [FJ93] works by monitoring the average queue length. As

shown in Figure 2.9, RED has two thresholds: the minimum threshold (minth) and the

maximum threshold (maxth). When the average queue length is smaller than the minth,

no packets are dropped. When the average queue length is bigger than the maxth, each

arriving packet is dropped. When the average queue size is between the two thresholds,

each arriving packet is marked with probability pa, where pa is a function of the average

queue length as shown in Figure 2.9. A general discard probability function is shown as

Eq 2.8.

pa = pmax ∗
qlenavg −minth

maxth −minth
(2.8)

where qlenavg is the moving average queue length; minth is the minimum threshold and

maxth is the maximum threshold; pmax is the maximum drop probability. To calculate
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Figure 2.9: RED AQM

the moving average queue length, RED has a fixed parameter, called queue weight (wq).

Then, the average queue size is calculated by Eq 2.9 if the queue is not empty.

qlenavg = (1− wq) ∗ qlenavg + wq ∗ qlen (2.9)

If the queue is empty, the average queue length is calculated by Eq 2.10, where time is

the current time and q_time is the start of the queue idle time.

qlenavg = (1− wq)
time−q_time ∗ qlenavg (2.10)

As RED is easy to implement and effective, many variants of RED have been pro-

posed such as Adaptive RED (ARED) [FGS+01], Modified RED (MRED) [DK13] and

SmRED [PKTH16]. They will be discussed Section 2.4.

2.3.2.2 CoDel AQM

Aiming to solve the parameter setting issue and the Bufferbloat, a novel AQM was

proposed in 2012, called CoDel. CoDel is different from prior AQMs [NJ12] as it does

not use queue length or as the parameter. Instead, CoDel uses the waiting time of the
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first packet in the queue, i.e. HOL queuing delay. CoDel uses fewer parameters compared

with prior AQMs. The threshold in CoDel is called target, which is the minimum HOL

delay that the algorithm wants to keep. Another parameter is the interval to decide

whether a packet needs to be dropped. CoDel monitors the sojourn/waiting time for

each packet through the standing queue. The sojourn time is then compared to the

target (5ms by default). If the sojourn time is above the target, it will trigger the

dropping algorithm which will be introduced later. It also explains why the target is

the minimum HOL delay as all the value above the target will trigger the dropping

algorithm. Although queuing delay can be calculated by queue length, it depends on the

bandwidth, which results in the issues of tuning parameters. By using HOL delay, the

performance metric is directly related to user-perceived performance.

CoDel works in two phases. When a packet arrives at the buffer, CoDel enqueues the

packet if the buffer is not full, and adds a timestamp to it. On depature of each packet,

the timestamp is extracted and the sojourn time for the packet is obtained by calculating

the difference between the current time with the time recorded. This is the first phase.

The second phase is about making drop decisions. CoDel operates over a certain period,

which is called interval (100 ms by default) as mentioned above. At the departure of

the last packet during the interval, if the lowest queuing delay is above the target, then

the packet is dropped and the next interval is shortened according to Eq. 2.11

interval =
100
2
√
n
, n = 1, 2, 3, ... (2.11)

where n is the sum of packets being dropped. It can be seen that the more packets are

dropped, the shorter the interval becomes, and CoDel can drop packets more quickly.

Once the sojourn time goes below the target value or there is no packet in the queue,

the counter, n, will be reset to 0 and the interval is reset to 100ms. CoDel leaves the

dropping mode.

CoDel is a promising method as it controls the latency directly to address the Bufferbloat

problem; however, CoDel provides poor link utilization compared with RED and ARED [RAT13].
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2.3.2.3 PIE AQM

Similar to most AQMs, PIE [PNP+13] drops packets randomly from the tail of the

queue. The drop probability pdrop is updated every λ = 30ms by Eq 2.12. E[T ] and

E[T ]old are the current and previous estimate of queuing delay. τ is the target as defined

in CoDel. α is a tuning parameter that controls how deviation of current queuing delay

from τ affects pdrop. β controls how the trend of the queuing delay affects pdrop, i.e., the

queuing delay is increasing or decreasing.

pdrop ← pdrop + α ∗ (E[T ]− τ) + β ∗ (E[T ]− E[T ]old) (2.12)

PIE consists of 3 components, as shown in Figure 2.10. The first part of PIE is the

dropping algorithm, which drops a packet randomly on the arrival of a packet. The

second part is the algorithm that updates the dropping probability periodically. And

the third part is the algorithm that estimates the departure rate of packets. The dropping

Figure 2.10: PIE AQM

probability of PIE is updated every 15ms by default, which is the interval in PIE. The

calculation of the dropping probability is based on the dropping probability from the

last period, the deviation of the current delay from the target value and the tendency

of the latency, e.g. going up or down. In this way, PIE adjusts the dropping probability

dynamically according to how severe the congestion is seen to be.
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2.3.3 Scheduling Scheme

First-in-first-out (FIFO), also known as First-Come-Fist-Serve (FCFS), is the simplest

scheduling scheme. In FIFO, traffic flows from different source or applications share the

same buffer and as its name implies, it does not give any priority to any flows. Packets

are stored in the queue according to the order of arrivals. The contents in the queue

are depleted from the head to the tail of the queue. FIFO queue are widely deployed

in the networks. However, delay-sensitive applications such as Voice over IP (VoIP),

Video and gaming, requires higher level of QoS which allows packets pass the queue

first. Non-FIFO scheduling enables this kind of operation. Non-FIFO scheduling uses

multiple sub-queuing systems and by adopting different kinds of schedulers, it allows

packets from different sub-queues to leave the queue first. The most common schedulers

are discussed below.

2.3.3.1 Round Robin

The Round Robin (RR) scheduler is shown in Figure 2.11. A device with RR scheduler

has separate queues for different traffic flows. Using this scheduler, the first packet in

each queue takes turn to be served. The predefined value of the number being served in

each turn is one. If the packets size of each traffic flow is different, then different amount

of data is served during each cycle, which causes a fairness issue.

2.3.3.2 Weighted Round Robin

The Weighted Round Robin Scheduler is shown in figure 2.12, where w is the weighting

factor. WRR is first proposed in [KSC91]. Static weights are assigned to different

queues. It cycles through queues transmitting amount packet from each queue according

to its weight. It was designed especially for ATM networks where the size of packet is

fixed. In today’s IP networks with variable size packets, the weighting factor needs to
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Figure 2.11: Round Robin Scheduler

be normalized.

Figure 2.12: Weighted Round Robin Scheduler

2.3.3.3 Deficit Round Robin

To solve the drawbacks of RR scheduler, an enhanced round robin called Deficit Round

Robin (DRR) [SV95]. A DRR scheduler is shown in Figure 2.13. As its name suggests,

DRR improves fairness with the help of a counter called Deficit Counter. The counter

has a predefined value and each queue is served. Or else the packets are queued and will

be served in the next round. In the meantime the counter is increased by a quantum
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value. When a queue being served has no packets, the counter is reset to its initial value.

Figure 2.13: Deficit Round Robin Scheduler

2.4 Literature Review

This section introduces the effort researchers have made to fight against delays in a

chronological order. This section reviews the state-of-the-art technologies for designing

the mechanisms to reduce the delay of packets.

As previously mentioned, after the “congestion collapse” [Jac88], TCP is enhanced by

Van Jackson with the AIMD algorithm. Five years later in 1993, RED [FJ93], the first

AQM, was proposed. Giving a set of fine-tuning parameters, RED provides good perfor-

mance, however with the fast advance of both hardware and software, new services and

equipment keep emerging in the Internet, which makes it hard to tune RED. Inspired

by RED, variants versions of AQM are proposed such as Fair RED (FRED) [LM97] and

Adaptive RED (ARED) [FGS+01]. Compared with RED, FRED is more fair to different

types of flows. FRED tracks the flows that have packets in the buffer and for each active

flow, FRED has 2 parameter, minq and maxq which are the minimum and maximum

packets that can be buffered. ARED aims to solve the issue of RED that parameters

need to be pre-configured. It monitors the average queue length to make the decision
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whether ARED should be aggressive or conservative, i.e., drop more or less packets. It

uses AIMD mechanism to adjust the maximum drop probability, maxp, instead of using

a static value. Users define the target delay and minth, the minimum threshold, is chosen

according to the target delay and the link bandwidth. A recent study [TSH+18] com-

pares RED and ARED in the Benchmark Scenarios from RFC 7928 and the results show

that ARED outperforms RED if there are no abrupt changes in traffic load. [RAT13]

compares ARED with RED and CoDel in wired networks. Results in [RAT13] show that

the advantage of ARED is less drop of packets but lower link utilization.

AQMs are initially proposed for wired networks. For wireless networks, the potential

issue of over buffering in wireless link was first pointed out in [LRK+99] in 1999. The

work traces packets at different layers and finds the mismatch between the load and

the link capacity, which is caused by the improper setting of the buffer size. This work

shows the negative effects of over-sized buffers such as inflated RTT and degraded user

experience of web browsing which may take several seconds due to the standing queue.

The over buffering issue becomes severe as the link capacity of cellular network increases

rapidly with the advance of transmission technology, as larger buffer are required in the

networks to absorb the burst of traffic.

In [SCHW01], a Markov model for the Rayleigh fading channel and the link layer is built

to evaluate the buffer overflow issue. The work takes the standing queue into consider-

ation and reveal the relation of TCP sending rate, queue length and queuing delay.

In [SLMP03], a new queue management technology, called Packet Discard Prevention

Counter (PDPC) is proposed by Ericsson and it is accepted as the default queue/buffer

management by 3GPP. Compared with RED, it exploits the link’s capacity to set the

minimum threshold of the instantaneous queue size rather than the average queue size.

The PDPC algorithm has a counter and for each packet drop will initialize the counter

with the value of n. When the queue length exceeds the minimum queue length, one sin-

gle packet is dropped and the counter is triggered. For each arriving packet the counter

will be down counted and as long as the counter is with positive value and the queue

length is below maximum threshold, the arriving packets will be accepted. If the queue
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is empty, the counter is set to be 0 to recover the discard policy. By doing this, PDPC

prevents losing multiple packets from certain traffic flow and ensures the congestion is

notified by dropping a packet immediately after the queue builds up.

Research work [AGG+13] investigates the interaction between different TCP versions

and buffering used in cellular networks. Their results are convincing since the measure-

ments are performed in the commercial 3G, 3.5G and 4G cellular networks with the

mixture of long and short TCP flows. The TCP versions tested are CUBIC, New Reno

and WestWood+. They have claimed that the excessive buffers occupied by long flows

will obviously increase the delay of short flows.

Research work [SJS14] analyses the Bufferbloat in IEEE 802.11n wireless networks, which

points out that the excessive buffers occupied by long flows, such as transferring files by

FTP, can lead to the RTT exceeding 4.5 seconds. This work proposes MAC-layer pro-

tocol to alleviate the issue but more measurements are required for real time flows, such

as VoIP. Another research work [HJKT+17] explores the 802.11 performance anomaly.

Based on the conclusion from previous work [SJS16] that neither deploying AQM or

reducing the buffer size to Wi-Fi interface can provide same delay reduction as for wired

links, it points out that the queuing in lower layers is the reason for the limited per-

formance of the mentioned algorithms. The work makes modifications to the queuing

protocol stacks in the Access Point (AP) as it is easier to deploy and it also takes the

aggregation mechanism into consideration. The algorithm it proposed contains three

part. The First part is the AQM at the enqueue stage. If the queue limitation is reached,

the arriving packet is dropped. Otherwise, the arriving packets are hashed into a sub

queue according to the DiffServ markings, Traffic Identifiers (TIDs). The second part is

at the dequeue stage. When a sub queue needs to dequeue a packet, a DRR scheduler is

applied to the queue. The third part is the scheduling algorithm which focus on airtime

fairness. Different from Jain’s Fair Index which is based on throughput, airtime fairness

is based on time. In wired network, the airtime is equal to transmit same amount of data

for the links with same speed as the connection is stable. However, for wireless access

networks, the connection between each station and the AP are with variable link speed
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due to variable distance, interference from other devices and the multipath fading. The

scheduling algorithm in this work aims to achieve airtime fairness among different con-

nections. The proposed algorithms in this research work can reduce the latency however

it sacrifice the throughput of the users with poor connection.

Another research work in Ericsson [Tan09] focus on the uplink of LTE and proposed

a delay based AQMs specifically for LTE scenario. The proposed AQM is deployed at

the Radio Link Layer (RLC) layer of eNode Base stations (eNB), named Receiver-AQM.

The receiver refers to the base station and it aims to reduce the queuing delay in uplink

direction. Compared with AQMs deployed in each UE (transmitter), Receiver-AQM is

easier to deploy as it only requires the eNB to install the AQM.

In 2009, Dave Reed reported large RTT with low packet loss rate in 3G networks during

daytime in the end-to-end mailing list. In the night, the RTT became much short as the

number of flows reduced. The large RTT was believed to be caused by excessive buffer-

ing. However, it didn’t draw too much attention until in 2011, Bufferbloat [CJWG11]

in wired networks was pointed out. The author noticed a latency up to 1.2 seconds in

his home network. The high latency is captured in both cable modems and fibre net-

works. It reveals the fact that abuse of buffer will cause high latency. This work indicate

that essence of Bufferbloat is the latency under load. Bufferbloat will not be noticed if

researchers only test the latency when the link is idle. As is pointed out by [Get11],

the side effect of Bufferbloat appears every time the link is saturated. Network services,

such as DNS, will fail due to the large latency induced by Bufferbloat. High frequency

traders treasure 1ms advantage to their competitors. Web browsing will be annoying as

contents need seconds to be loaded. [CJWG11] also points out that although there are

AQM algorithms such as RED, few networks are running with them.

The abuse of buffer is actually everywhere. TCP needs to keep unacknowledged packets

in the buffer. Buffering is necessary to absorb burst of traffic and even the device drivers

also have large buffers. If looking inside the operating systems, Bufferbloat will be found

at multiple layers, as pointed out by [CJWG11]. Hence, there is no single solution to

solve the issue. To mitigate Bufferbloat, it needs the cooperation of Internet Service
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Providers (ISPs), application vendors and device manufactures. One of the most effec-

tive way to alleviate Bufferbloat is deploying AQM in home routers. RED, mentioned

previously, is a good starting point. RED makes the drop decision according to the

average queue length. However, as the packets size and link capacity differs from each

other, average queue size cannot give enough information to predict the latency.

In 2012, CoDel, mention in section 2.3.2.2, was proposed to solve the issue in wired

networks. CoDel uses a local minimum queue as a more reliable and accurate measure

of standing queue and hence is able to use a single state variable to show whether the

latency is below or above the target value. As is mentioned in the previous section,

target is the minimum delay that CoDel wants to keep. CoDel labels a queue “good” or

“bad”. A “good” queue accommodates incoming packets and turns bursty arrivals into

smooth departures. While a “bad” queue accumulates packets and create unnecessary

delay.

[KLM14] compares the performance of CoDel and RED in the most common topology

as shown in Figure 2.14, where A and B are the servers and E and F are the client. C

and D are routers and the bottleneck is the link between C and D. This work simulates

Figure 2.14: Common Topology

the process of downloading a file of 10MB and points out that CoDel outperforms RED

in reducing the latency. However the downloading process with CoDel costs 42% longer

than that with RED. Hence, RED can also be considered as a candidate to mitigate

Bufferbloat.

[Cer14] confirms that Bufferbloat is a performance challenge at the edges of the Inter-
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net. [RAT13] evaluates the effectiveness of CoDel with different versions of TCP in wired

networks. In the simulation, the bottleneck bandwidth and number of TCP flows are

varied. CoDel is compared with RED and ARED. The results show that CoDel achieves

high link utilization and reduces the queuing delay. This work also points out that the

effectiveness of CoDel in wireless networks remains to be evaluated.

PIE, mentioned in the previous section, is proposed after CoDel. [CR15] evaluates the

performance of Compound TCP with PIE. It uses a fluid model of TCP and points out

PIE is unstable when the queuing delay gets larger. [Whi15] evaluates PIE in cable net-

works. Compared with DropTail queue, PIE reduces the upstream latency by hundreds

of milliseconds which can significantly improve the user experience of web browsing,

VoIP and online games.

Flow Queue (FQ) CoDel [HJMT+14] is proposed then providing isolation among differ-

ent flows. FQ-CoDel uses a hashing algorithm to distinguish packet from different flows.

The hashing is based on a 5-tuple of source IP, destination IP, source port, destination

port and protocol number. Byte-based DRR scheduler is used to keep fairness among

all the sub queues. CoDel algorithm is applied in each sub queue. [KKFR15] evaluated

the performance of CoDel and FQ-CoDel in capacity-limited networks with large RTT.

The results show that both CoDel and FQ-CoDel have difficulties in reducing latency

properly with default configurations. In rural broadband scenario, CoDel and FQ-CoDel

with default settings drop too many packets resulting in a very low link utilization. This

work proposes a new set of parameters that can provide higher link utilization while

maintain a lower queuing delay. Although CoDel is claimed to be parameterless and

insensitive to link capacities and RTTs [NJ12], it is not the case according to the test of

this work.

[JK17] proposes a new AQM that can handle rapid changes of load by predicting the

load in the near feature. Compared with CoDel and PIE, the proposed AQM provides

shorter flow completion time. The work also points out that CoDel and PIE cannot

handle queues containing packets with small RTTs.

[ASAB17] evaluates the Low Extra Delay background Transport (LEDBAT) performance
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through bottlenecks with PIE, FQ-CoDel and FQ-PIE. LEDBAT [SHIK12] stands for

Low Extra Delay Background Transport. It is based on UDP and reacts to both delay

and loss. LEDBAT aims to help bulk transfer applications, such as software updates.

LEDBAT utilizes available bandwidth with a delay threshold of 100 ms. Default setting

of CoDel allows a minimum delay of 5 ms which is much lower than 100 ms. Results

in [ASAB17] show that AQM algorithms lead to poor link utilization of LEDBAT.

[KNAB17] explores the effective of AQM algorithms on Internet of Things (IoT) appli-

cation flows in home broadband networks. FQ-CoDel, FQ-PIE and PIE are tested in

this work. With the emergency of smart devices, such as sensors and health monitors,

IoT application flows are quite common in home broadband networks. IoT flows [PA14]

are often require low bandwidth as the packet size is small, but they often have strict

QoS requirements. For example, dropping packets from a health monitor device is very

dangerous as important information is possibly dropped. Competition with other flows

over a shared bottleneck will hurt IoT flows as single-queue AQM algorithm will dis-

tinguish packets from different flows. [KNAB17] points out that FQ-AQM algorithms

provide good flow isolation and hence protect IoT flows.

[AOAL17] makes modification to the famous RED algorithm. As different classes of

flows have different QoS requirements, this work proposes a Fair Weighted Multi-Level

Random Early Detection (FWMRED). The definition of fair weighting factor is defined

according to the quality of server, in terms of delay and bandwidth. Multiple-Level RED

means a RED algorithm with adaptive parameters which are decided by average queue

length. The results from this work show that the proposed algorithm improves band-

width fairness and reduce the latency compared with RED and ARED. However, RED

and ARED were proposed quite a long time ago, hence the proposed algorithm needs to

be compared with new emerging algorithms such as CoDel and PIE.

[KRB+17] explores the operating range of CoDel and PIE, in terms of RTT, bottleneck

bandwidth and congestion level. PIE allows more queuing delay with default settings,

but both CoDel and PIE result in poor performance in data center and rural broadband

networks. Although CoDel claims parameterless and try to be adaptive, manual tuning
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is unavoidable.

As video streaming traffic accounts for a large proportion of Internet traffic, extensive

research work has been done on optimization on video delivery technology. [JDSL14]

focus on the coding scheme when the content is dominated by different colours. [LCTA12]

proposed a network management algorithm to improving the quality of mobile IPTV.

It takes advantage of network performance metrics such as bandwidth, jitter, delay and

packet loss to decide the coding schemes of the delivered video. [SVS14] proposed a QoE-

driven framework for RTP based video due to the limitation of available QoE model.

Although QoE on DASH video has drawn the attention of researchers, [HSVT12] points

out the challenge in developing a proper QoE model. The retransmission mechanism in

TCP makes it complex when it comes to packet loss and other network impairments.

User activities such as Pause, Resume, Switching among different resolutions and time

shifting when watching the video will influence the QoE [MCLC11]. Some research work

point out that initial delay, stalling and rate changing are the main factors in evaluating

the QoE of video content [SCW+16][HSBP13].

• Initial delay refers to the time between content request and start of the actual

playout of the content. The QoE of live steams is more sensitive to initial delay.

• Stalling refers to the phenomenon when the frame freezes which is due to lack of

contents in the buffer. Playback will be resumed when the buffer is refilled.

• Rate changing refers to the phenomenon that the resolution of the video changes

during playback. It is normally due to the change of network conditions such as

the bandwidth. Rate changes when congestion happens in the network, which can

avoid stalling.

[CJWG11] points out one video stream from YouTube and one video stream from Net-

flix can completely saturate the buffer of a home router. [MVSA13] proposed a Smooth

Adaptive Bit RatE (SABRE) algorithm to mitigate the Bufferbloat issue in residential

networks. This work tests the performance of RED and points out that RED outper-
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forms DropTail but the queuing delay still remains hundreds of milliseconds. According

to the results from the work, it is because the threshold of RED is not properly set. RED

allows too many packets in the buffer before it starts to drop a packet. The proposed

SABRE algorithm monitors the socket buffer level at the client and it changes the value

of RWND to reduce the number of packets sent by the erver. If the buffer level is reaches

75%, SABRE will reduce the RWND and if the buffer level is lower than 75%, it will

increase the RWND. However, the results in this work only compares DropTail queue

after it points out the drawbacks of RED.

With the deployment of modern AQMs in home router, the interaction between DASH

and AQMs is complex as DASH will try to adapt to the networks conditions and AQMs

will trigger the adaptive nature of DASH by dropping incoming packets. [KAB16] studies

the impact of AQMs on DASH delivery. Results shows that a flow queuing scheduling

scheme with PIE algorithm in the sub queues gives the best throughput. [AG16] improves

DASH performance by using multiple TCP connections and measures the occupancy of

the buffer in the home router. It can be seen that the queue keeps full which causes

the Bufferbloat issue. [KA17] proposes a chunklets algorithm to optimize DASH over

AQM enabled gateways. The essence of chunklets is to use parallel TCP connections for

DASH content which makes DASH more aggressive in competing for bandwidth with

other flows.

Lots of work have been done in wired networks. Bufferbloat in cellular networks has also

drawn the attentions from both researches and device manufactures. Compared with

Wi-Fi and wired network, the protocol stack of cellular networks is different to those of

wired and Wi-Fi networks. Data transmitted between the base station and the UE is

carried by a virtual concept, “bearer” [CPG+13], which means each UE has a dedicated

buffer for communication in the base station. As shown in Figure.2.15, the RLC Layer

and PDCP Layer, where the queuing of packets for different UE happens. Each UE,

when connected to an eNB, will be allocated a dedicated PDCP and RLC buffer for

downlink data transmission. RLC layer has three different transmission modes, Tran-

sient Mode (TM), Unacknowledged Mode (UM) and Acknowledged Mode (AM) mode.
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Figure 2.15: Protocol Stacks of Cellular Network

• TM Mode: it does not make any modifications to data, which means no headers

are added or removed, no segmentations created and no aggregations. And it does

not require any ACK/NACK from the receiver.

• UM Mode: it is similar to TM mode but the difference is that UM mode has its

own headers and it can segment or concatenate data.

• AMMode: it is used to guarantee reliable transmission which requires ACK/NACK

from the receiver. It can also segment or concatenate data and has its own headers.

Moreover, it will make a copy of the transmission buffer for a possible retransmis-

sion.

TM mode and AM mode are used in the control plane and UM mode is used for trans-

mitting data. Our algorithm is deployed in the UM buffers so that it does not affect

the control and signaling messages. An AQM tuned for cellular networks is proposed

in [PKTH16] and this is a variation of RED and it is implemented in the RLC layer.

The authors change the control function from linear function to non-linear and simula-

tion results show that it outperforms RED from the aspect of end-to-end average delay.
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However, it is based on RED and cannot solve the tuning issue as the length of the queue

is not directly related to delay.

Queue aware scheduling, such as reported in [AEN16], gives priority to real time (RT)

traffic. However, most of the traffic in cellular networks are RT traffic, so giving priority

is not easy and it can be conflict with the priority settings of 3GPP specifications.

[JLW+12] and [JWLR12] exploit the Bufferbloat phenomenon in 3G/4G networks. Both

of the works are taken in real cellular networks which are operated by the 4 main carriers

in the USA. [JLW+12] confirms the Bufferbloat issue is in the cellular part instead of the

Internet part. They also point out the abnormal behaviour of TCP in smart phones as

shown in Figure 2.16. It can be seen from the figure that TCP in iPhone and Android

Phone behave differently compared with that in Windows Phones. Knowing the TCP

Figure 2.16: Abnormal TCP Behavior (Figure 7 in [JLW+12])

congestion control mechanism, [JLW+12] reveals the reason why TCP in iPhone and

Android can give a flat CWND. To prevent the side-effects of large buffers, ISP gives

hard limit of the Receiver Window (RWND) size over the air interface to stop the pack-

ets accumulating in the buffer, hence stops the inflations of TCP flows. Such limit of

RWND will result in the degradation of throughput for long-lived TCP flows. Then,

a light-weight AQM called Dynamic Receive Window Adjustment (DRWA) [JWLR12]
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is proposed which makes modifications to the size of RWND. It uses the timestamp

option in TCP to get accurate estimation of the RTT and the estimation of RTT is used

to control the RWND size. The proposed algorithm reduces latency at the sacrifice of

throughput of high speed links with small RTT. However, it improves the throughput

iofn high speed links with large RTT.

Research work [ZMZ+17] evaluates the performance of CoDel and DRWA in millimeter

wave (mmWave) links. As there are massive spectrums available in mmWave, the band-

width is much higher than existing networks. Although using mmWave can significantly

increase the bandwidth, there are also side effects. MmWave are easily blocked or atten-

uated by building materials such as brick [PK11][ZMS+13][AR04][ASC08], and even a

human body can cause 35dB attenuation [LSCP12]. Hence, mmWave has very high data

rate but high variability. This work suggests that a cross layer design that MAC and

RLC layer can cooperate with each other is necessary.

In the Packet Data Convergence Protocol (PDCP) buffer in each UE, there is a timer

to control whether to drop a packet or not. When the PDCP buffer receives a packet

from higher layers, the discard timer is started. If the packet is not sent by the UE when

the timer expires, the packet will be dropped. To dig out the potential of the default

queue management, [TWTGG11] tries to optimize the performance of the discard timer

by figuring out the proper setting. It does a series of the test however fixed settings

cannot meet the requirement of today’s complicated mixture of traffic. the optimized

performance under one circumstance is sub-optimized in another scenario.

A research work in Nokia [SV15] also contributes in managing the buffer at PDCP layer.

They propose two mechanisms. One is called TCP Packet Pacing (TPP) and another

is Advertised Window (AWND) management. The TPP has three components, first is

to measure the real depletion rate of the PDCP buffer and then a ACK shaper shapes

the rate of ACKs and hence the rate of ACK matches the depletion rate of TCP. Sec-

onds is to adopts a virtual discard mechanism at the reverse ACK flow. It will insert

duplicated ACKs (identical copies of already transmitted ACKs) in the reverse ACK

flow to give the sender a fake signal of congestion. The third component is to deploy fair
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queuing at the PDCP buffer to further improve the fairness among different flows. The

AWND management also calculates the depletion rate of the PDCP buffer and uses the

reverse ACK flow to feedback the AWND information to the sender. Research papers

[JWLR16] and [IJLB16] try to control the traffic sending rate by making modification

on the congestion RWND. Both of the works take advantage of (RTT) and aim to solve

Bufferbloat in cellular networks. [JWLR16] is primarily based on the estimated RTT

and the minimum RTT value. The estimated RTT is the average of RTT value from

all the samples of RTT and if the estimated RTT is larger than the minimum RTT, the

RWND will be reduced. Work [IJLB16] controls RWND by monitoring queue states.

The queue state is estimated using the difference between the minimum RTT value and

the real RTT value. It assumes that the minimum RTT value is the RTT when there

is no queue in the buffer. However, when there is no queue in the buffer, the dynamic

nature of wireless channel and the number of UEs competing for the bandwidth will also

affect RTT. Additionally, the calculation of RWND in their work is a function of the

dropping function of AQM deployed in the router and different AQMs may behave very

differently. [PKTH16] proposed a variation of RED specially for LTE networks. Based

on the conclusion from [PZR02], they modified the drop function of RED. When the

traffic load is low and the link bandwidth is not fully utilized, a small drop probability

is needed to prevent further reducing the link utilization. When the traffic load is high

and the link is fully utilized, a large drop probability is need to prevent the latency.

The proposed smart RED algorithm uses different functions to calculate the dropping

probability when the traffic load changes. This work also emphases that a cross layer

design is needed to make AQM in LTE scenario more practical. This work compares

the proposed algorithm with RED which is proposed long time ago. Comparison with

recent algorithms need to be done.

Work [AEN16] focus on the real time application in LTE scenario. It classified appli-

cations into categories, namely real time (RT) applications, such as VoIP and video,

and non-real time (nRT) applications such as web browsing and file transfer. It then

proposes a two-level scheduling scheme which is called Rate-Controlled Priority Queuing
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Discipline (RCPQD). The proposed algorithm is based on the deficit weighted round

robin (DWRR). The RT traffic are classified into high priority queues and the nRT traf-

fic are classified into low priority queues. The scheduler will keep processing the high

priority queues as long as they have packets in the queue. The low priority queues will

be processed if the high priority queues are empty. To keep the fairness, the high priority

queues has a counter. When certain number of packets from high priority queues are

processed, low priority queues will be served for a period of time which is decided by the

delay requirement of the RT traffic.

A recent study [BNPF17] evaluates two promising AQM algorithms, i.e. CoDel and

PIE, in cellular networks by simulation. The results show that CoDel and PIE lower

the link utilization and induce too many losses of packets when the bottleneck link is of

high variation. This work proposes a new metric, queue balance, for designing effective

congestion control in cellular networks. Queue balance is the difference between arrival

and departure rates f packets, and there is work [ALLY01] trying to find the mismatch

between the arrival and departure rate. The effective of the congestion control using

queue balance still remains to be seen.

With the prevalent of distributed systems, in the future 5G network, traditional base sta-

tions are decoupled into two components. One is called distributed radio heads (RRHs)

which are with radio frequency functions supporting high capacity in hot spots, and

the baseband units (BBUs) clustered as a BBU pool providing large-scale collaborative

processing cooperative radio resource allocation (CRRA) in a centralized location. The

BBU pool communicates with RRHs via common public radio interface (CPRI) protocol.

When it refers to resource allocation, the most common assumption is the infinite queue

backlogs and stationary channel conditions such as [BHL+14] and [KWL15], as pointed

out in [PSL+16]. However, the time-varying radio channel and standing queue in the

devices have significant effect to the performance. Parameters from the physical layer

play an important role in cellular communications, e.g. CQI which indicates the quality

of the wireless channels for data transmission. CQI is measured at the UE side and

reported to eNB using the Public Uplink Control Channel (PUCCH). The Modulation
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and Coding Scheme is selected at eNB according to the CQI reported by a specific user

which reduce the Bit Error Rate (BER) [KHH+12]. CQI is also used in the data link

layer as a parameter in scheduling schemes. More resource blocks are allocated as a com-

pensation of bad channel quality so as to achieve fair throughput and low delay. It can

also be used in another way such as maximizing the overall throughput by giving priority

to UEs with good channel quality. Research work [ZNSH12] exploits the average arrival

rate, service rate and delay via packet flow model of queue theory and the numerical

results in [CL13] show the trade off between the Channel State Information (CSI) and

the average queuing delay. It can be seen that research work at MAC layer has begun to

consider the effect of queuing in cellular networks. In conclusion, quite a lot receiver-side

mechanism focusing on the TCP flows, however many real time application traffic does

not use TCP and such traffic are often with high QoE requirement. The existing AQMs

or just modifications to TCP are not enough.

More and more functions are integrated on mobile devices and with the rapid increase of

smart devices such as smart watches, monitors, sensors together with phones and tablets,

mobile traffic will be inflated obviously. Cellular networks are becoming an increasingly

important technology to access the Internet.

As pointed out by [AGG+13], wireless networks have become an integral part of day-to-

day-life and suffer the most from performance issues, while there minimal work done so

far. Even though a whole variety of AQMs and variation exist, most of these focus on

wired networks such as adaptive RED (ARED) [SJS16], flow-queue CoDel (fq-CoDel)

[HJMT+14]. Evaluations and tests have also been done in wireless networks such as in

[HJHB15], [JBT14] and [SJS14] but none of them considers the effect of wireless features.

Existing AQMs are primarily based on the status of the queue (queue size or the delay

each packet suffers in the queue). Hence, it is truly significant and timely to focus on

buffer de-bloating in wireless environments.
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2.5 Summary

This chapter summarize existing technology against Bufferbloat phenomenon. TCP

and its variants try to control congestion at the end point by adjusting the sending

rate. AQMs control congestion at the point congestion happens by pro-actively dropping

packets before the queue is full. Table 2-A summarize the state of the arts. It is worth

mentioning that it is not possible to improve all the metrics (goodput, delay, loss and

fairness) at the same time. This thesis focuses on reducing queuing delay by AQMs and

maintain similar throughput and fairness among different users. The link utilization and

resource allocation are beyond the thesis.

Table 2-A: Summary of State of the Arts

Networks
Scenarios

Methods
Modifications of TCP AQMs

Wired [KA17], [Pos03], [SHIK12],
[ASAB17], [CR15],
[Cer14], [SK], [FRHB13],
[ZDZ+17], [PFAB14],
[TSZS06], [BOP94],
[Nag84], [Jac88], [HP92],
[BP95], [VS94], [HRX08]

[SVM16], [JK14],
[KAB16], [MVSA13],
[ALLY01], [PZR02],
[KRB+17], [AOAL17],
[Kli17], [JK17], [IKVF15],
[KKFR15], [RAT13],
[KLM14], [AL18], [TT17],
[Cha17], [LZGS84],
[TSH+18], [FKSS01],
[FSKS02], [LM97],
[KSC91], [DKS89], [SV95],
[ACA96], [FJ93], [NJ12],
[FGS+01], [HK04], [DK13],
[FHXC15], [HJMT+14],
[Whi15]

Wireless [AG16], [LL15], [CBHB16],
[ZMZ+16], [CT14],
[FODA14], [HXT+10],
[ZMZ+16], [ZMZ+17],
[CGM+02], [JWLR12],
[SCHW01], [WWZH11],
[JWLR12], [CT14],
[CLG+13], [AGG+13],
[SV15], [IJLB16],
[JWLR16]

[KNAB17], [BNPF17],
[FSKN17], [YLLL18],
[FODA14], [GQC+16],
[HKT+17], [GPKC17],
[TGWTG11], [AC17],
[CL13], [TWTGG11],
[HJKT+17], [SLMP03],
[JBT14], [SJS14], [Tan09],
[HJHB15], [PKTH16],
[AEN16], [LHG15]



Chapter 3

Performance Evaluation of Active

Queue Management on Wi-Fi

Access Networks

3.1 Introduction

Wireless access networks are divided into two categories according to the technology used.

Wi-Fi is commonly seen at home or a limited size of area (e.g.within a building). Wi-Fi

uses a router to provide Internet access to the devices connected to it. Cellular networks

are usually used in a larger area (e.g. within a city). A base station has more powerful

antennas compared with a router and hence covers lager areas. Wi-Fi is an important

way for mobile users to connect to the Internet. Wi-Fi is more convenient for users to

join the networks compared with wired networks. And compared with cellular networks,

Wi-Fi provides stable and fast connection with lower cost when downloading files or

making VoIP call compared with cellular networks and it helps to save the energy of

you devices. Traditional AQMs design for wired networks are tested in wired connection

and have not been fully study in Wi-Fi networks. To study the performance of AQMs

36
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in wireless access networks, this will work start with evaluating existing AQMs in Wi-Fi

networks. Evaluations of new proposed AQMs, i.e., CoDel and PIE, have been done in

wired networks in [RAT13][JK14][SVM16]. The results of these research works show that

comparing with PIE, RED and variants of RED, CoDel maintains lowers queuing delay

and the link utilization is higher. Meanwhile, CoDel has fewer parameters compared

with PIE and RED. Therefore, CoDel is chosen as the baseline through this research

work. In this chapter, we evaluate CoDel under heavy traffic load with different traffic

types. We focus on the delay and the drop probability. The load of the traffic, number

of different traffic flows and the effect of different parameter of CoDel are tested to give

a insight into the performance of CoDel.

3.2 Background of Traffic Pattern

VoIP traffic is used in Chapter 3, Chapter 4 and Chapter 5, which is generated using

ON-OFF traffic generator. This section introduces the the principle and the validation

of VoIP traffic.

ON-OFF model is used to model traffic in the Internet [ML97]. As shown in Figure 3.1,

ON-OFF traffic source sends packets with a static rate during “ON” period and keep

silence during “OFF” period. The time of “ON” period and “OFF” period can be fixed

values or random values with certain distribution. The mean arrival rate is calculated

Figure 3.1: ON-OFF Traffic Source.

by Eq 3.1, where λon is the packet generate rate during “ON” period. Ton and Toff are
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the length of “ON” period and “OFF” period.

λ =
λonTon

Ton + Toff
(3.1)

The network load of a single ON-OFF source is given by Eq 3.2, where C is the bandwidth

of the bottleneck link.

ρ =
λ

µ
=

λonTon

C(Ton + Toff)
(3.2)

The queue length for bursty traffic consists of two parts. The first part is packet-

scale queuing, which is Poisson distributed, and the second part is bursty scale queuing,

which is exponentially distributed, as shown in Figure 3.2. The schematic picture of the

Figure 3.2: Bursty Traffic Queuing

distribution of packet-scale queuing is shown in Figure 3.3. According to [PS01], the

Figure 3.3: Packet Traffic Queuing
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probability of n packets in the queuing system is given as Eq 3.3 for Poisson traffic.

P (n) =



1− ρ, n = 0

(1− ρ)(eρ − 1), n = 1

(1− ρ)

n∑
i=1

(iρ+ n− i)eiρ(iρ)n−i+1(−1)n−i

(n− 1)!
n > 1

(3.3)

For bursty traffic, the average queue length in the packet-scale queuing is given by Eq 3.4,

where Cp is packet-scale decay constant. η is packet-scale decay rate and it is given by

Eq 3.5.

q(x) = Cp ∗ ηpn (3.4)

η =
ρeρ − eρ − ρ2 + ρ+ e−ρ

ρ− 1 + e−ρ
(3.5)

For burst-scale queuing, the average queue length is given in Eq 3.6, where ηb is the

burst-scale decay rate and can be approximated as Eq 3.7. Ton is the on period in the

ON-OFF application to simulate the burst traffic; ρ is the utilization of the queue or the

load of the link. µ is the service rate of the queue and λon is the service rate during the

on period.

q(x) = Cb ∗ ηxb (3.6)

ηb = 1− (1 +
ρTonλ

2
on

µ(1− ρ)2
)−1 (3.7)

Figure 3.4 shows an arrival process of a random distribution. If the inter-arrival times of

Figure 3.4: Poisson Arrival Process Illustration.

a process (such as t2− t1, t3− t2 and t4− t3) are independent and identically distributed

(IID) and exponential distributed, then it is called Poisson process. Poisson processes

are often used to model the number of arrivals over a given time interval, e.g. number of
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packets arriving at a queue. Traffic following a Poisson process is called Poisson traffic.

Thus, the probability of k packets arriving during interval t is given by Eq 3.8.

Pt =
(λt)k

k!
e−λt (3.8)

The well-known property of Poisson process is that the merging of multiple Poisson

process is also a Poisson process. The number of arrivals in a unit time is called the

mean arrival rate and for the new merging Poisson process, the mean arrival rate is given

by Eq 3.9, where λi is the arrival rate for the ith Poisson process. This property is used

throughout the work.

λ =

N∑
i=1

λi (3.9)

3.2.1 Validation of Traffic Pattern

3.2.1.1 Simulation Set Up in NS3

The topology used in single source validation is shown in Figure 3.5. Packets are gener-

ated from the server to the client using ON-OFF application. The bandwidth from the

server to the router is 100 Mbps and the link between the router to client is 10 Mbps.

The queue in the router is checked periodically (every 0.01 seconds) and the queue state

Figure 3.5: Topology for single source validation.

is recorded. The parameter used in the ON-OFF application is as shown in Table 3-A.

The topology used in multi-source validation is shown as Figure 3.6, i.e. 1 ON-OFF

application is installed on each server shown on the left. Packets are generated from

these sources and sent to the server shown on the right. The queue in the router is

checked using the same method and queue state in recorded. The parameters used is
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Load λon(pps) Ton(s) Toff (s) Packet Size(Byte)
0.6 300 0.000033 0.00164 1250
0.7 300 0.000033 0.00140 1250
0.8 300 0.000033 0.00122 1250
0.9 300 0.000033 0.00108 1250
0.95 300 0.000033 0.00102 1250

Table 3-A: Parameters of the ON-OFF source for single source validation over
UDP

Figure 3.6: Topology for multiple source validation.

shown in Table 3-B and Table 3-C. To validate the VoIP traffic. 10 ON-OFF sources

Load λon(pps) Ton(s) Toff (s) Packet Size(Byte)
0.6 300 0.000033 0.0033 1250
0.7 300 0.000033 0.0029 1250
0.8 300 0.000033 0.0025 1250
0.9 300 0.000033 0.0022 1250
0.95 300 0.000033 0.0021 1250

Table 3-B: Parameters of the ON-OFF source for two source validation over
UDP

Load λon(pps) Ton(s) Toff (s) Packet Size(Byte)
0.6 300 0.000033 0.0083 1250
0.7 300 0.000033 0.0071 1250
0.8 300 0.000033 0.0062 1250
0.9 300 0.000033 0.0055 1250
0.95 300 0.000033 0.0052 1250

Table 3-C: Parameters of the ON-OFF source for five source validation over
UDP

are installed in the server in Figure 3.5. The queue state is checked and recorded using

the same method. The parameters of 10 ON-OFF sources are shown in Table 3-D.
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Load Service Rate (Mbps) λon(pps) Ton(s) Toff (s) Packet Size(Byte)
0.6 1.80 0.1075 0.96 1.69 218
0.7 1.54 0.1075 0.96 1.69 218
0.8 1.35 0.1075 0.96 1.69 218
0.9 1.20 0.1075 0.96 1.69 218
0.95 1.14 0.1075 0.96 1.69 218

Table 3-D: Parameters of the ON-OFF source for validation of VoIP Traffic

3.2.1.2 Validation Results

The validation results of Poisson traffic from a single traffic source are shown in Fig-

ure 3.7. The queue states measured from simulation match well with the theoretical

Figure 3.7: Single Source Validation over UDP.

values.

The multiple sources Poisson traffic validation is done by extending the topology in

Figure 3.6. 2 sources and 5 sources are created respectively. The results are shown in

Figure 3.8 and Figure 3.9. The multiple validation results shows that simulation results

match well with the theoretical results.

Figure 3.10, 3.11, 3.12, 3.13, 3.14 compares the simulation results of VoIP traffic with

the theoretical values. Figure 3.10 to 3.11 show that the simulation results go above the

theoretical value with same decay rates for burst scale. Figure 3.13 and 3.14 show that

the simulation results go below the theoretical values with same decay rates for burst
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Figure 3.8: Two Sources Validation over UDP.

Figure 3.9: Five Sources Validation over UDP.

scale. Figures above are considered to be validated to the acceptable extent. Figure 3.12

shows that the simulation results matches with the theoretical values for burst scale.

From all the results of Poisson and VoIP traffic validation, it implies that the simulation

tool and traffic model implementation and simulation topology are validated.
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Figure 3.10: VoIP Traffic Validation (Load=0.6).

Figure 3.11: VoIP Traffic Validation (Load=0.7).

Figure 3.12: VoIP Traffic Validation (Load=0.8).
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Figure 3.13: VoIP Traffic Validation (Load=0.9).

Figure 3.14: VoIP Traffic Validation (Load=0.95).

3.3 Evaluation Design

Existing work only test AQMs with FTP traffic, which is not sensitive to delay. In this

chapter, I evaluate performance of two prevalent AQM algorithms, CoDel and RED,

in Wi-Fi networks using two different kind of traffic scenarios. Traffic scenario one is

dominated by FTP traffic with single VoIP flow and Traffic scenario two is dominated

by VoIP flow with single FTP traffic. Then, conduct a thorough performance analysis

on CoDel under different network scenarios.

The topology used in the simulation is shown in Figure 3.15. Ten clients are connected
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to the gateway over a wireless connection. The gateway is connected to the server over

a wired link. The wired connection is set to be the bottleneck in the simulation and the

speed of it is set depending on the load needed. The speed of the wireless access network

is higher and is related to the protocol used in the MAC layer. As 802.11a is used in

the simulation, the theoretical speed is up to 54 Mbps. Two traffic scenarios are used in

10Mbps

Figure 3.15: Simulation Topology.

the simulation experiments. The details of the parameters in each scenario are shown in

Table 3-E. To simulate large file transfers, the FTP application will keep sending data

trying to utilize the bandwidth and the sending rate is limited by the sliding window

size in TCP. A standard On-OFF traffic model is used to simulate the VoIP traffic.

Experiments are carried out with three different queue disciplines, i.e. DropTail, CoDel

Table 3-E: Parameters in Simulation
Scenario I Scenario II

No. of FTP Flows 10 1
No. of VoIP Flows 1 10
Mean On Time 0.96s 0.96s
Mean Off Time 1.69s 1.69s
Load of VoIP 4% 48%

Bottleneck link speed 10Mbps 2.6Mbps
VoIP Packet Size 218B 218B
FTP Packet Size 1000B 1000B



Chapter 3. Performance Evaluation of Active Queue Management on Wi-Fi Access
Networks 47

and RED. For each traffic scenario, the length of the queue, the waiting time of the

packets in the queue, the loss rate and the goodput are monitored. The physical queue

limit is set to 1000 packets (default value in Linux) for all the three cases. The default

target value of CoDel is commonly set to 5 ms for wired access networks. To fit the

wireless scenario in the simulation, the target is set to 50 ms [JBT14] The minimum

threshold and maximum threshold of the RED queue are set to 50 packets and 100

packets respectively.

3.4 Simulation Results and Discussion

3.4.1 Traffic Scenario I (10 FTP Flows and 1 VoIP Flow)

Figure 3.16 shows the cumulative distribution of the queue states. With DropTail, pack-

ets are accumulated in the buffer and the queue can be as long as 1000 packets which

means the buffer is physically full. The mean queue length is 91% shorter with CoDel
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Figure 3.16: CDF of Queue State with Different Queue Management Tech-
niques in Traffic scenario I.

and is 88% shorter with RED. It can be seen that the performance of CoDel is similar
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to RED from the perspective of queue depth.

Figure 3.17 shows the waiting time experienced by packets belonging to FTP and VoIP

flow with different queue management techniques. As shown in Figure 3.17, it can be
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Figure 3.17: CDF of Delay of FTP and VoIP Flow with different Queue Tech-
nique.

seen that, for most of the packets, the waiting time with DropTail can be over 500 ms;

however, with CoDel, the delay of packets in the queue is reduced to around 150 ms

on average. However, RED is not always better than CoDel. The drop probability is

shown in Table 3-F. It can be seen that CoDel drops more packets to maintain a shorter

queue. DropTail queue has to drop some packets because it is physically full. To fur-

Table 3-F: Drop Rate in Traffic Scenario I
DropTail CoDel (50 ms) RED

FTP 0.0279% 0.9498% 0.8120%
VoIP 0.0563% 1.1507% 1.110%

ther explore the effects of the target value, CoDel with other target values, such as 100

ms and 150 ms, are also tested, as shown in Figure 3.20. The performance of CoDel

with differet target will be discussed later. It is true that different performance level of

RED can be achieved by tuning the parameter of RED and sometimes it can provide

good performance. As discussed in Section II, although a lot of effort has been made to
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enhance the performance of RED, properly tuning RED is challenging. CoDel, on the

contrary, can be easily tuned by different requirement of Quality of Service (QoS), as

the only metric concerned is delay rather than minimum/maximum threshold, which is

much more promising.

3.4.2 Traffic Scenario II (10 VoIP Flows and 1 FTP Flow)

The queue length CDF is shown in Figure 3.18. It can be seen that the behavior of
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Figure 3.18: CDF of Queue State with Different Queue Management Tech-
niques in Traffic scenario II

queue techniques is quite different (except for RED) compared with that in Figure 3.16.

The reason RED provides similar performance from the queue depth aspect is that it

counts the queue by packet. As the maximum threshold is set to 100 packets, it will

drop all the coming packets when the queue depth reaches the threshold. CoDel is less

affected by the queue size as it is based mainly on waiting time. Although the target

value remains the same (take 50 ms target for example), CoDel can accept more packets

as the proportion of small packet is increased. This is why CoDel (50 ms target) and

RED are crossed. Figure 3.19 shows the delay of FTP and VoIP flows. CoDel (50 ms



Chapter 3. Performance Evaluation of Active Queue Management on Wi-Fi Access
Networks 50

target) provides the shortest waiting time. Considering drop rate, as shown in TABLE
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Figure 3.19: CDF of Delay of FTP Flow and VoIP Flow with differnt Queue
Techniques.

3-G, it can be seen that CoDel (50 ms target) outperforms RED and DropTail overall

as it provides lower delay for VoIP packets compared with DropTail and lower drop rate

compared with RED. Among the 3 cases shown in TABLE 3-G, RED has the highest

drop rate for both FTP flows and VoIP flows. For VoIP flows, the drop rate with RED

for VoIP flows is 8 times, 2.5 times, compared with that of DropTail and CoDel (50 ms)

respectively and it gives the lowest goodput.

Table 3-G: Drop Rate in Traffic Scenario II
DropTail CoDel (50 ms) RED

FTP 0.0345% 0.2092% 0.3288%
VoIP 0.3469 % 0.9594% 2.4499%

3.4.3 CoDel with Different Target

In this section, CoDel with different target values, i.e. 50 ms, 100 ms and 150 ms are

tested. Figure 3.20 shows the CDF of queue depth of CoDel with different target val-

ues. As expected, the higher the target is, the longer the queue is, which also gives a
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larger queuing delay. In Scenario I, the maximum queue depth of CoDel with different
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Figure 3.20: CDF of Queue State of CoDel with Different Target in Traffic
Scenario I

targets can reach 100, 150 and 200 packets respectively, as shown in Figure 3.20 while

in Scenario II, the maximum queue depth of CoDel with different targets can reach 200,

300 and 400 respectively. Different traffic type can lead to different maximum queue

length is because the packet size of VoIP is smaller than FTP, as shown in Figure 3.21.

And due to the different traffic mix, the proportion of VoIP packets increases. As the

key metric of CoDel is the waiting time, it can keep the waiting time of an enqueued

packet around the target value regardless of the number of packets in the queue and the

size of the packet, as shown in Figure 3.22 and Figure 3.23. With regards to drop rate,

the higher the target is, the fewer packets are dropped, as can be seen from TABLE

3-H and TABLE 3-J. Considering the goodput, when traffic is dominated by TCP flows

such as in Scenario I, CoDel with a smaller target value will drop packets earlier and

hence prevent TCP flows from increasing their sending rate too much, which works well

for delay-sensitive applications: this is why VoIP flow has higher goodput, as shown

in Table3-I, when the target is set to 50 ms. It’s also worth mentioning that although

increasing the target value of CoDel can decrease the drop rate, the goodput for VoIP

application is decreased three times with target of 100 ms and 150 ms compared with
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Figure 3.21: CDF of Queue State of CoDel with Different Target in Traffic
Scenario II

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.05  0.1  0.15  0.2  0.25  0.3

P
ro

b
ab

il
it

y

Delay (Seconds)

CoDel (50ms)
CoDel (100ms)
CoDel (150ms)

Figure 3.22: CDF of Delay of CoDel with Different Target in Traffic Scenario
I

that with target of 50 ms. It is because that FTP takes most of the buffer and when

VoIP traffic arrives at the buffer, CoDel already enters the drop state. It can be seen that

short bursty traffic has a poor share of the bandwidth. In this chapter, we evaluated

the performance of the prevalent AQMs (CoDel and RED) in Wi-Fi access networks.

Two traffic scenarios are tested. Scenario I is dominated by TCP traffic, which contain



Chapter 3. Performance Evaluation of Active Queue Management on Wi-Fi Access
Networks 53

Table 3-H: Drop Rates in Traffic Scenario I
CoDel (50 ms) CoDel (100 ms) CoDel (150 ms)

FTP 0.9498% 0.3978% 0.2020%
VoIP 1.1507% 0.5072% 0.2827%

Table 3-I: Goodput in Traffic Scenario I
CoDel (50 ms) CoDel (100 ms) CoDel (150 ms)

FTP (Mbps) 9.3939 9.3802 9.3913
VoIP (Mbps) 0.3806 0.1184 0.1186
Total (Mbps) 9.7745 9.4986 9.5099
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Figure 3.23: CDF of Delay of CoDel with Different Target in Traffic Scenario
II

Table 3-J: Drop Rate in Traffic Scenario II
CoDel (50 ms) CoDel (100 ms) CoDel (150 ms)

FTP 0.2092% 0.1124% 0.0745%
VoIP 0.9594% 0.6789% 0.5013%

10 FTP flows and 1 VoIP flow. Scenario II has a higher proportion (nearly 50%) of

traffic from delay-sensitive applications, which contains 10 VoIP flows and 1 FTP flow.

Simulation results show that no matter which traffic is dominating, all AQMs can effec-

tively control the queue length around the respective threshold or target values and thus
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reduce the delays experienced by packets. However, the trade-off is that more packets

are lost. It can be seen that for the scenario with a higher proportion of TCP flows,

the drop rate with CoDel (50 ms) for VoIP packets is nearly 1% as shown in TABLE

3-G while the drop rate with RED for VoIP packets can be as high as 2.45%. And the

drop probability with RED for FTP packets is around 0.33% while it is 0.21% for FTP

packets with CoDel (50 ms). As the delay metric is quite straightforward, tuning CoDel

is easier than tuning RED.

For the scenario dominated by TCP traffic, it can be seen from TABLE 3-F that the drop

rate with CoDel (50 ms) is higher than that of RED, which is due to the greedy charac-

teristic of TCP flows. An AQM with adaptive drop probability can allow the congestion

window of TCP to increase further although congestion has already occurred. Compared

with DropTail, CoDel provides some packet loss to signal congestion but allows the con-

gestion become more serious especially when there are long-lived TCP flows. On the

contrary, RED has a hard limit which stops the congestion window increasing further

and hence drops less packets than CoDel. When bursty traffic compete for bandwidth

with long-lived TCP flows, performance will be degraded if AQMs do not tune properly,

such as lowering the goodput for VoIP flows.

3.5 Summary

The target environment for this chapter is Wi-Fi access networks where the performance

of DropTail, RED and CoDel (with different target values) are evaluated. A deep insight

on how CoDel performs when facing the Bufferbloat phenomenon is revealed based on

a thorough performance evaluation under different traffic scenarios. Simulation results

shows that AQMs help prevent long standing queues thereby mitigating the “Bufferbloat”

phenomenon although at the expense of higher packet drop rates. CoDel is more friendly

to VoIP traffic when the traffic is dominated by VoIP traffic. On the contrary, RED drop

2.45% of VoIP packets which is very high for VoIP services. Moreover, although CoDel
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claims to be parameterless, there are actually 2 parameters, target and interval, that can

be adjusted. A larger target value decreases the drop probability for both FTP and VoIP

traffic in both traffic scenarios. However, the goodput decrease with the increase of target

value when the traffic is dominated by FTP applications. It shows that dropping packets

not only help to reduce queuing delay, but also helps to improve the goodput. Based on

the evaluation results of this chapter, CoDel is chosen as the benchmark in the following

research work. Mobile devices are more and more powerful and integrated with multiple

functions. With the expansion of mobile networks, people can have access to Internet

almost everywhere. Little work has so far been done in addressing the Bufferbloat issue

in cellular networks via AQMs. In next chapter, an channel quality aware AQM is

proposed.



Chapter 4

Channel Quality Aware Active

Queue Management in Cellular

Networks

This chapter proposes a novel AQM algorithm tailored to cellular networks, mainly by

utilizing the Channel Quality Indicator (CQI) periodically reported by user equipment, in

order to mitigate Buffer bloat and maintain acceptable levels of performance. Simulation

results show that the proposed algorithm reduces the average queuing delay of packets

for each user by 40% with TCP traffic compared with the CoDel algorithm. Meanwhile,

the goodput is minimally affected.

4.1 Introduction

The emergence of powerful smart devices and their integration in people’s daily lives

place huge strains on networks. As forecast by Cisco [cic17], global mobile traffic will

increase eight folds by 2020 and the link speed will increase by three fold. Since 4G,

cellular networks have been all IP-based while widely used by applications such as video

56
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streaming, gaming and online chatting. A cellular communication system is shown in

Figure 4.1. Although link speed of the last hop has increased with the advance of tech-

Core 
Network

Web Server

FTP Server

APP Server

BS

BS

Base Station (BS)

User Equipment (UE)

Figure 4.1: Cellular Network Structure

nology, the access networks are still considered as the bottleneck as there large number

of UEs sharing the bandwidth, while other links within the core network and the link

between servers and the core network is fast. The idea of the proposed algorithm is

straightforward. In cellular networks, unique features of the underlying cellular net-

works such as the channel conditions can have a considerate impact on the behaviour of

the queue. The time-varying channel is affected by the mobility of users, the density of

users in one cell etc. Good channel conditions mean advanced MCS are chosen, and so

users can achieve faster Internet connections. And with poor channel conditions, lower

rate MCSs are chosen, which results in slow Internet connections in order to achieve

reliable transmission. A faster connection will transmit the packets in the queue faster
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while a slower connection means extra queuing delays occur. The channel condition can

be easily obtained as UEs will measure it and report to the eNB every Transmission

Time Interval (TTI). Each UE has a unique buffer in the eNB and the respective UE

can only transmit data when resource blocks are allocated to it. With the increasing

number of devices and much more powerful devices, the competition of wireless resource

is fierce. The number of mobile devices will keep increasing at a CAGR of 8% between

2016-2021 [cic17]. Increasing the capacity of served UEs or allocating more resources to

UEs will not solve the issue of congestion in the buffer. In the proposed algorithm, UEs

with poor channel quality may drop more packets compared with the ones with good

channel quality. We also take delay into consideration as UEs with bad channel quality

is more likely to suffer from large queuing delays.

In this Chapter, a CQI-aware AQM algorithm is proposed which is light-weight but can

effectively control the delay. Section 4.2 describes how CoDel is tailored to cellular net-

works. Section 4.3 gives the details of the proposed algorithm. Section 4.5 gives the

simulation results and discussion. Section 4.6 gives the conclusion.

4.2 Implementation of CoDel in RLC Layer

CoDel makes the decision about whether to drop a dequeuing packet periodically. If the

waiting time of a dequeuing packet goes over the minimum allowed value (target), it

starts to count certain time period which is called interval. During this interval, if the

waiting time of all the dequeuing packets goes over the target, it will drop one packet

when the interval ends.

The enqueuing algorithm is the same as standard algorithm. When a packet is received

by RLC layer, RLC layer will add a timestamp to the packet. The enqueue algorithm is

shown in Algorithm 1 However, the dequeue algorithm needs to be chagend a bit from

the original version. Drop from head makes CoDel not suitable for cellular networks
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Algorithm 1 CoDel in the Base Station - Enqueue
1: On the arrival of each packet:
2: if qlencurrent < qlenlimit then
3: Add timestamp, Tin to the packet
4: Enqueue the packet
5: else
6: Drop the packet
7: end if

due to the limitations from MAC layer. The HOL packets might be segmented and the

remaining part will be returned to the queue, as shown in Figure 4.2. If the returned

Figure 4.2: RLC Packet Segmentation

part is dropped, it will influence to entire flow as no retransmission mechanisms can

help to recover the missing part. Hence, a change is needed for CoDel to work properly

in cellular networks. Instead of examining the HOL packet in the buffer, CoDel will

examine the second packet, every time the HOL packet is about to dequeue. In this way,

CoDel is tailored for cellular networks. Details are given in Algorithm 2.

4.3 CQI-Aware Queue Management

One of the main differences between cellular network and Wi-Fi is that the channel con-

dition in cellular networks is much more complex. For Wi-Fi networks, it often aims to

server a closed space, such as in a house or a room. The number of equipment accessed is

small and the strength of interference is low compared to the signal from wireless routers.

However, for the cellular scenario, the eNB servers an open space. There will be blocks

of buildings standing in the path of the of communication, crowded people moving in or

out, strong interference from other equipment and etc.
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Algorithm 2 CoDel in the Base Station - Dequeue
1: On the depature of each packet:
2: Calculate the sojourn time of the pakcet as:
3: dqueuing = Tcurrent − Tin

4: if dropping_state == 1 then
5: if dqueuing < target OR qlen < MTU then
6: Forward the packet
7: Leave dropping state
8: dropping_state = 0
9: else

10: while dequeue_time ≥ next_drop_time do
11: if pktStatus == FULL then
12: Drop the pakcet
13: else
14: if qlen > 2 then
15: Drop the second packet from the head
16: count+ = 1
17: Update nextdroptime as next_drop_time+ = interval√

count
18: else
19: Leave dropping state
20: dropping_state = 0
21: end if
22: end if
23: end while
24: end if
25: else
26: if dropping_state == 0 AND
27: dqueuing ≥ target AND
28: firstAboveTarget == false then
29: Drop the packet
30: Enter dropping state
31: dropping_state = 1
32: else
33: Forward the packet
34: end if
35: end if

CQI [ETS] is the control message used between the UE and eNB. CQI is detailed illus-

trated in Table 4-A. CQI contains information to indicate the (MCS) value. UE assesses

the CQI and send it to the eNB by Physical Uplink Control Channel (PUCCH) if there

are no data transmission or by Physical Uplink Share Channel (PUSCH) if there are data

transmission. Higher CQI value means better channel quality and hence can use higher

modulation scheme. Packets are transmitted by resource blocks in cellular networks. A
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CQI Index Modulation Code Rate * 1024 Efficiency
1 QPSK 78 0.1523
2 QPSK 120 0.2344
3 QPSK 193 0.3770
4 QPSK 308 0.6061
5 QPSK 449 0.8770
6 QPSK 602 1.1758
7 16QAM 378 1.4766
8 16QAM 490 1.9141
9 16QAM 616 2.4063
10 64QAM 466 2.7305
11 64QAM 567 3.3223
12 64QAM 666 3.9023
13 64QAM 772 4.5234
14 64QAM 873 5.1152
15 64QAM 948 5.5547

Table 4-A: 4-bit CQI Table [ETS]

resource block is the smallest unit of resource that can be allocated to a user. User with

a high CQI can transmit more data in each resource block.

The proposed algorithm keeps tracking the HOL delay of each packet. When a packet

arrives at the queue, a timestamp is added to the packet and when it leaves the queue,

the waiting time experienced by the packet is calculated. The random dropping decision

for next incoming packet is made according to channel quality of the user i.e. CQI, and

the delay experienced by the packet about to leave the queue. The dropping probability

is controlled by Eq (4.1), when dmin ≤ diqueuing ≤ dmax. dqueuing is the HOL delay of

each packet, and dmax is the maximum queuing delay.

P i
drop = −β ∗ (dmax − diqueuing) ∗ k3i + 1 (4.1)

dmax can be preset and when diqueuing reaches dmax, the drop probability equals to 1.

When diqueuing is below dmin, the drop probability will be 0, as shown in Eq (4.2).

P i
drop =

0, if diqueuing ≤ dmin

1, if diqueuing ≥ dmax

(4.2)
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ki is the CQI index reported by the ith UE to the BS. diqueuing can range from tens

of milliseconds to hundreds of milliseconds, hence the cube of CQI is adopted in the

formula. β is the index normalization coefficient, as shown in Eq (4.3) where kimax is

the maximum CQI value can be achieved.

β =
1

(dmax − dmin) ∗ k3imax

(4.3)

The range of the drop probability is shown in Figure 4.3. With the increase of the
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Figure 4.3: Dropping probability function of the proposed method.

queuing delay, the drop probability increases, which can help reduce the waiting time of

each packet. Different UEs may experience different channel qualities and the CQI value

determines the transmission rate. For the UEs with low CQI value, the queue will build

up quickly as the depletion rate is low. Hence, UEs with low CQI value has a higher

drop probability.

UEs with different CQI can suffer different delay, so we have to input these parameters

into the algorithm that calculates the drop probability in order to give a quick response

to congestion. The algorithm examines the waiting time for each packet. UEs with poor
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CQI drops more packets. And even though the channel quality of the UEs are good,

UEs suffering larger delay can drop more packets. In both cases, deploying the proposed

algorithm will prevent the queue from further growth. Details of the proposed algorithm

are shown in Algorithm 3.

Algorithm 3 CQI Aware Active Queue Management
1:
2: Calculate the HOL queuing delay of the ith UE
3:
4: for each pkt arrives at the RLC of the ith UE do
5: Add a timestamp Tin

6: end for
7: for each pkt leaves RLC do
8: Record the current time Tcurrent

9: diqueuing = Tcurrent − Tin

10: end for
11:
12: Packet dropping decision of the ith UE
13:
14: if dmin < diqueuing < dmax then
15: P i

drop = −β ∗ (dmax − diqueuing) ∗ k3i + 1
16: else if diqueuing ≤ dmin then
17: P i

drop = 0
18: else
19: P i

drop = 1
20:
21: end if

4.4 Simulation Setup

The proposed algorithm is implemented in Network Simulator (NS) 3. The topology

used in the simulation is shown as Figure 4.4. The UEs are randomly distributed within

2500 meters to 5000 meters. The number of UEs varies from 2 to 10. The Buffer at

the RLC layer is set to 100 packets and TCP Cubic is used. The propagation delay is

set to 50 ms and link rate is 10 Mbps for the connection between the core network and

the server. Each Base Station (BS) has 15 resource blocks. According to the quality

settings, Guaranteed Bit Rate (GBR) video traffic is generated from the server and sent
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Core Network

Remote Host

BS

Base Station (BS)

User Equipment (UE)

Figure 4.4: Simulation Topology.

to each UE.

The channel quality of a user can change rapidly. For example, a moving obstacle, such

as a big truck stops in the way between the UE and the BS for several seconds. To make

the simulation more realistic, a random movement model is applied to each UE. When

the simulation starts, each UE will randomly choose a direction and a speed uniformly

distributed from 50m/s to 100m/s. When they arrive at the edge of the cell, they will

stop and choose a new direction and speed. In this way, the CQI of the UE changes with

the movement of UE.

The sending rate of TCP traffic changes according to the congestion level of the networks.

It will increase when an ACK is received and decrease when the ACK is lost or delayed

(depending on different algorithms). Parameter used are listed in Table 4-B.

4.5 Results and Discussion

The performance of the proposed algorithm is evaluated in terms of the queuing delay, the

average goodput and the loss probability given by the algorithm. The drop probability
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Parameters Value
Random Distribute Model UniformRandomVariable
Server BulkSendApplication Mean Ton = 0.96, Toff = 1.69

Client PacketSink TCPSocketFactory
Path Loss Model FriisPropagationLossModel

Scheduling Algorithm PfFfMacScheduler
Number of UE 2, 4, 6, 8, 10

Distance to Base Station 2500 to 5000 meters
Server Bandwidth 10 Mbps

Table 4-B: Parameters in Simulation

is determined by both the queuing delay and the channel conditions i.e. CQI. When

the queuing delay exceeds lower threshold, i.e. dmin, the drop probability is calculated

by Eq 4.1. The next enqueue a packet will be randomly dropped accordingly. Average

end-to-end delay is shown in Figure 4.5. It can be seen from the figure that the average

Figure 4.5: Average Queuing Delay at RLC Layer with Increasing Number of
UEs.

end-to-end delay decreases when the number of users increases from 2 to 4. It is because

the AQMs. When there are more packets waiting in the queue, AQMs drops more packets
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as shown in Figure 4.6. When the number of users increases from 4 to 8, the queuing

delay increases because the resource blocks at MAC layer are shared by all the users.

When there are more users, each user needs to wait to be scheduled and at the same time,

the packets are also waiting in the queue. When the number of users increases to 10, the

queuing delay goes down as more packets are dropped by the proposed AQM due to the

increase of waiting time. Deploying AQM at the RLC layer helps reduce the average end-

to-end delay, especially when there are more users in the system. Compared with CoDel,

the proposed algorithm has better performance from the aspect of average end-to-end

delay. Lower average end-to-end delay is achieved by dropping more packets reasonably.

The drop probability is shown in Figure 4.6. As traditional cellular networks do not

Figure 4.6: Drop Probability

actively drop packets during the transmission, only two curves are shown. Compared

with CoDel, the drop probability of proposed algorithm is a bit higher.

Deploying AQM helps to increase the average goodput. As shown in Figure 4.7, both the

proposed algorithm and CoDel have higher goodput compared with the scenario without
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AQM deployed. Actively dropping a packet gives a signal to the sender that congestion
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Figure 4.7: Goodput with Increasing Number of UEs.

happens. The sender will stop increasing the sending rate. In this way, AQM algorithms

alleviate the congestion of the whole system.

Jain’s fairness index is used to rate the fairness in a network when there are multiple

users in the system [JCH84]. The Jain’s fairness index is shown in Figure 4.8. The UEs

are randomly distributed, hence when there only 2 users in the system and they are with

different CQI, the fairness index of the proposed algorithm will be lower compared with

CoDel. However, better fairness is achieved with the increasing number of UEs, which

shows that the proposed algorithm is suitable for multi user scenarios.

4.6 Conclusions

In this Chapter, a CQI aware AQM algorithm is proposed for cellular networks with

the goal of mitigating Bufferbloat and improving performance. This algorithm is imple-

mented in the base station where all the connected UEs have a dedicated buffer. The
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Figure 4.8: Jain’s Fairness Index

proposed algorithm considers the channel quality of each user and actively drops pack-

ets in order to minimize overall delay and maximize goodput. The drop probability is

determined by both the HOL queuing delay and the channel quality. Simulation results

show that the proposed algorithm is able to control the delay regardless of the number

of UEs in the system and does not harm the other metrics, such as fairness. Meanwhile,

it improves the average goodput. It is able to achieve this performance due to the con-

sideration of a specific wireless feature, i.e. CQI, unlike existing AQM algorithms which

only consider network layer parameters. Nowadays, the radio environment is complex

because of different types of interferences. CQI has a considerable effect on the higher

layers hence need to be considered for an AQM to be successful in the cellular environ-

ment. The proposed algorithm can also be used in future generations of cellular networks

as the CQI still plays an important role in cellular networks in general. In addition to

CQI, other parameters such as Buffer State Report (BSR) and Discontinuous Reception

(DRX) can also influence network delays and these will be considered in the future work

in order to further fine-tune the proposed algorithm.



Chapter 5

User Experience Aware Active

Queue Management in Cellular

Networks

In Chapter 4, an CQI aware AQM algorithm tailored to cellular network is proposed

to reduce the delay of packets. CQI is involved in the proposed algorithm to assist in

the dropping decision. The performance is evaluated according to QoS metrics, such as

delay, drop and goodput. However, to what extent the improvement means to a user? In

this chapter, a novel AQM algorithm tailored to VoIP application in cellular networks is

proposed, mainly by utilizing QoE metric in order to mitigate Bufferbloat. Simulation

results show that the proposed algorithm provides a good balance between drops and

delay hence successfully maintains expected levels of service.

5.1 Introduction

Wireless networks allow users to access the Internet at any time from any places around

the world. In the past few decades, cellular networks have evolved rapidly. Nowadays, the

69
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cellular networks are IP based and billions of population use mobile phones everyday.

The deployment of cellular networks and the expansion of Wi-Fi networks offer the

facility of making VoIP calls. VoIP is a technology that allows people to make phone

calls over packet switched networks (IP) instead of circuit switched networks, i.e., Public

Switched Telephone Network (PSTN). Improving the performance of VoIP applications

has drawn an increasing attention by research community. QoE and QoS are important

metrics to quantify the performance of VoIP application. [JS17] evaluate the QoS over

LTE networks. This work compares the Mean Opinion of Source (MOS), end-to-end

delay, packet loss rate and jitter in three different scenario and points out the mobility of

the UE is a key factor affecting the performance of VoIP. When the speed of UE changes

from 0 to 100 km/h, the QoE value drops from 4.3 to 3.3. This work only considers several

UE in the simulations which is not the case in real world. [HHS17] and [AB14] evaluate

the performance of VoIP calls over MANET networks with a testbed and simulations.

They conclude that different voice codecs affects the performance of VoIP and voice codec

G.711 gives the best performance. [DYYL14] evaluates the performance of different voice

codecs over Ad Hoc Networks in underground mines. Because of the change of networks

and environment, this work gives the conclusion that voice codec G.723 gives the best

performance. In Vehicular Ad Hoc Networks (VANETs), [EBBEBB13] shows that voice

codec G.723 gives the best performance. Few research work focus on the cellular networks

and the effects of AQM are not considered. Thus the user experience aware AQM is

proposed aiming to improve the QoE of VoIP in cellular networks. In this chapter,

G.711 is used as it gives the best performance in mobile networks as pointed in [HHS17]

and [AB14].
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5.2 QoE Estimation

5.2.1 Kingman Formula

The waiting line or queue management can be seen everywhere in our daily life. Bus

stations have customers in line to get on the buses and customers queue up for seat in the

restaurant. Wherever there is contest of resources, there are queues. In telecommunica-

tion systems, packets from different sources compete for the chance to be transmitted.

The packets wait in the buffer and they can be described as a queue of customer wait-

ing to be served. A general queuing system is shown in Fig. 5.1. Understanding the

Figure 5.1: Queuing System [PS01]

behaviour of queuing is essential to improve the performance of networks. There are

different types of queues and Kendall’s notation is used to describe them. A queuing

system can be described as A/B/X/Y/Z and the meaning of parameters are shown

in Table 5-A. There are four types of distribution can be take and they are listed in
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A Distribution of inter-arrival times of customers
B Distribution of service time
X Number of servers
Y Capacity of the queue
Z Queue Discipline (e.g., FIFO)

Table 5-A: Parameters in Kendall’s Notation

Table 5-B. Developed by John Kingman, the Kingman formula (also known as Kingman

M Markovian (Memoryless)
D Deterministic Distribution
Ek Erlang Distribution (k: shape parameter)
G General Distribution

Table 5-B: Distribution Types

approximation) describes the waiting time of a packet in the G/G/1 queue shown in

Figure 5.2. Kingman formula monitors the utilization and variance of the queue and the

equation is as shown in Eq 5.1.

Figure 5.2: G/G/1 Queue

E(Wq) ≈
ρ

1− ρ

C2
a + C2

s

2
τ (5.1)

The parameters are explained in Table 5-C and ρ is calculated by Eq 5.2.

ρ =
µa

µs
(5.2)
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E(Wq) The estimated waiting time
µa The inter-arrival time of packets
σa The standard deviation of the µa

µs The service time of each packet
σs The standard deviation of the µs

ρ Utilization
Ca The coefficient of variation for the arrival
Cs The coefficient of variation for the service

Table 5-C: Parameter in G/G/1 Queue and Kingman Formula

5.2.2 IP Multimedia Subsystem

The IP Multimedia Subsystem (IMS) is used to deliver multimedia content over IP net-

works. IMS is established based on the Session Initiation Protocol (SIP) [RSC+10] which

is a communication protocol for signaling and control Internet telephony. IMS is origi-

nally designed by 3GPP aiming to provide the access of multimedia and voice application

from wireless and wired terminals. IMS applies to UMTS, WiMAX, WLAN, LTE and

5G networks as well as fixed networks. The IMS structure is shown in Figure 5.3. The

application servers are applications themselves such as VoIP. The Call Session Control

Function (CSCF) acts as SIP proxy. According to the functions, there are three types

of CSCF, the Proxy CSCF (P-CSCF), the Interrogating CSCF (I-CSCF) and Serving

CSCF (S-CSCF). The P-CSCF will decided the I-CSCF according to the domain name

provided by the IMS terminal, i.e., the UE and forward the request of SIP registration

from UE to the I-CSCF. The I-CSCF will query the Home Subscriber Server (HSS) to

get the address of the user and forward the message from P-CSCF to S-CSCF. S-CSCF

accepts the request forward by P-CSCF and cooperate with HSS to authorize UEs and

provide the multimedia service. According to information provided by P-CSCF, the

control plane will create new IP-bearers for that application. An Evolved Packet System

(EPS) Bearer is a connection-oriented network which looks like a virtual tunnel. The

structure of an eps bearer is shown in Figure 5.4. The end-to-end bearer is composed
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Figure 5.3: IP Multimedia Subsystem

Figure 5.4: Structure of EPS Bearer

of several different bearers. The external bearer is responsible for the data transmission

between the Packet Gateway (PGW) to the Packet Data Network (PDN). The EPS

Bearer is responsible for the data transmission from PGW to the UE. The EPS Bearer
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has 2 parts, E-Radio Access Bearer (E-RAB) and S5/S8 Bearer. The S5/S8 Bearer for-

wards packets between Service Gateway (SGW) and the PGW. The E-RAB forwards

packets between the SGW and UEs. The E-RAB is composed of the Radio Bearer and S1

Bearer. The Radio Bearer is responsible for the data transmission of the access networks

(between the UE and eNB) and S1 Bearer transmits date between eNBs and SGWs.

5.2.3 QoE for VoIP

The QoE metric is reflected by the MOS score which is recommend by ITU. Normally,

the MOS score is the average opinion of quality given by people who are evaluating

the content. The QoE level is given by excellent, good, fair, poor and bad. However,

obtaining the QoE level by asking people is time-consuming and cannot help to improve

the quality of VoIP service in real-time. Hence, the E-model [CR01] is proposed to assess

the QoE of VoIP directly. In the E-model, ration factor, R, for G.711 is calculated by

Eq 5.3, where d is the end-to-end delay and e is the loss rate of packets. R ranges from

100 (desirable) to 0 (unacceptable). The relationship between the R factor and the MOS

score is shown in Eq 5.4

R = 94.2− 0.024d− 0.11(d− 177.3)H(d− 177.3)− 30ln(1 + 15e) (5.3)

MOS = 1 + 0.035R+ 7 ∗ 106R(R− 60)(100−R) (5.4)
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5.3 Design of QoE Based Active Queue Management

5.3.1 Estimating the Queuing Delay

The proposed algorithm keeps track of the inter-arrival rate (λ) and service rate (µ)

over a window of 10 packets, which means that it updates the monitored values every 10

packets. The average queuing delay is given by Eq 5.1. The load and mean service time

are given by Eq 5.5 and Eq 5.6, where λ̄ and µ̄ are the average value over 10 packets

window. The square of coefficient of variation of the inter-arrival rate and service time

are given by Eq 5.7 and Eq 5.8 respectively.

ρ =
λ̄

µ̄
(5.5)

τ =
1

µ̄
(5.6)

C2
a = V ar(

1

λ̄
)λ̄2 (5.7)

C2
s = V ar(

1

µ̄
)µ̄2 (5.8)

5.3.2 Dropping Policy

The proposed algorithm tracks the drops at RLC layer. Estimated queuing delay and

packet loss probability are applied into Eq 5.3 in order to obtain the R factor, while the

MOS score is given by Eq 5.4. According to [CR01] , the MOS score and the rating of

service for VoIP traffic is as shown in Table 5-D. According to the required QoE level,

Quality of Voice Rating MOS
Best 4.34 - 4.50
High 4.03 - 4.34

Medium 3.60 - 4.03
Low 3.10 - 3.60
Poor 2.58 - 3.10

Table 5-D: Quality Ratings and Associated MOS Score
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the decision of whether to drop a packet is made. We assume that when there is no

congestion, users will get at least a “high” level of service. When congestion happens,

the QOE level starts to degrade due to increasing delay and drop of packets. When it

drops below upper bound (4.03), the proposed algorithm checks the MOS score on the

arrival of each packets. If the MOS score is still below the upper bound, it will drop

1 packet from the head of queue. If the MOS score drops below the lower bound, the

algorithm stops dropping packets on realization that the congestion cannot be solved

by actively dropping packets. The degradation of performance may be due to other

reasons such as overloading of the network. To guarantee the connection, packets should

be kept in the buffer instead of being discarded. Details of the algorithm are shown in

Algorithm 4.

Algorithm 4 QoE Aware AQM for VoIP
1: On the arrival of every 10 packet:
2: Update ρ = λ̄

µ̄ , τ = 1
µ̄

3: Calculate the square of coefficient of variation:
4: C2

a = V ar( 1
λ̄
)λ̄2

5: C2
s = V ar( 1µ̄)µ̄

2

6: Calculate the MOS value by:
7: R = 94.2− 0.024d− 0.11(d− 177.3)H(d− 177.3)− 30ln(1 + 15e) [CR01]
8: MOS = 1 + 0.035R+ 7 ∗ 106R(R− 60)(100−R) [CR01]
9: if 3.60 < MOS < 4.03 then

10: Drop 1 packet from the head of queue
11: end if

5.4 Simulation Results and Discussions

5.4.1 Simulation Setup

The proposed algorithm is implemented in NS3. To keep consistent with the previous

work in Chapter 4, the same topology is used and it is shown in Figure 5.5. The UEs are

randomly distributed within 500 meters to 5000 meters by the “ns3::UniformRandomVariable”

model. The number of UEs varies from 42 to 50 which is a typical value seen in one cell
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Core Network

Remote Host

BS

Base Station (BS)

User Equipment (UE)

Figure 5.5: Simulation Topology.

in practice. The buffer at the RLC layer is set to 50 packets. The propagation delay is

set to 50 ms and link rate is 100Mbps between the server and the core network. VoIP

traffic is generated from the server to UE using ON-OFF traffic generator, with on time

0.96 seconds and off time 1.69 seconds. Parameters are listed in Table 5-E

Parameters Value
Random Distribution Model UniformRandomVariable
Server OnOffApplication Mean Ton = 0.96, Toff = 1.69

Client PacketSink UdpSocketFactory
Path Loss Model FriisPropagationLossModel

Scheduling Algorithm PfFfMacScheduler
Number of UE 42, 44, 46, 48, 50

Distance to Base Station 500 to 5000 meters
Server Bandwidth 10 Mbps

Table 5-E: Parameters in Simulation

5.4.2 Simulation Results

The performance of the proposed algorithm is evaluated in terms of the MOS score. As

the MOS score is related to delay and loss, these two metrics are also evaluated. As

shown in Figure 5.6, compared with CoDel, the average end-to-end delay is decreased

by around 80%. However, this does come at the expense of increasing drops by around
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Figure 5.6: Average End-to-end Delay with Increasing Number of UEs.

70% as shown in Figure 5.7. There is a trade off between delay and loss; the MOS factor
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Figure 5.7: Drop Probability

plays an important role in balancing these two metrics. As shown in Figure 5.8, it can

be seen that with the increasing number of UEs, the system becomes more congested as
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delay and loss both increase. And MOS value decreases for both the propsed algorithm

and CoDel. The horizontal line is the lower bound of the medium level service. When

there are more than 44 users, CoDel fails to keep the service level. However, the proposed

algorithm successfully guarantees the service quality. Jain’s fairness index is used to rate
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Figure 5.8: QoE Level

the fairness in a network when there are multiple uses [JCH84]. The Jain’s fairness index

results are shown in Figure 4.8. It can be seen that the proposed algorithm maintains

similar fairness to that of CoDel. The strength of the proposed algorithm is summarized

below.

• It monitors the real time inter-arrival and service time hence it is adaptive and can

fit the fast-changing environment in cellular networks.

• The estimation of the queuing delay is solidly based on the classical queuing theory,

i.e., G/G/1 queue.

• It has only one parameter to be set, i.e., the expected QoE level. With help of
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Figure 5.9: Jain’s Fairness Index

QoE metric, delay and loss are automatically balanced. No complicated parameter

settings are required.

• The proposed algorithm protects the connection when the system is heavily con-

gested. Real time traffic flows are mostly based on UDP traffic which will not

respond to drop of packets. Using other metrics will cause unnecessary drops

which has no contribution to improve the QoE

5.5 Conclusions

In this chapter, a novel user experience based AQM is proposed aiming to improve the

QoE of VoIP traffic. The proposed algorithm monitors QoE level instead of queuing delay

or average queue length compared with traditional queue length. For VoIP traffic, the

QoE is decided by both end-to-end delay and packet loss ratio. Compared with queuing

delay, processing, proportionate and transmission delay can be ignored, hence reducing
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queuing delay can improve the QoE. Traditional AQMs reduce queuing delay by actively

dropping packets which will increase the packet loss ratio and the overall QoE are not

improved and can be even worse. As shown in Figure 5.8, although CoDel provides

lower drop probability, but it cannot provide a better QoE compared with the proposed

algorithm. The advantage of using the QoE metrics is that it can make a balance

between the drop probability and the queuing delay. From the simulation results, it can

be seen the QoE providing by CoDel decreases with the increasing number of users and

it cannot maintain above the baseline. The QoE provides by the proposed algorithms

also decreases a bit with the increasing number of users as the network is becoming more

congested, but it still maintains above the baseline. However, the proposed algorithm is

not as fair as CoDel as Jain’s Fairness Index is based on the goodput. Dropping more

packets can achieve higher QoE sometimes. Different users drop different number of

packets to achieve better QoE and it is why the proposed algorithm is not as fair as

CoDel. However, the Jain’s Fairness Index still remains over 95% which is also good

from the fairness perspective. Hence the proposed algorithm outperforms CoDel when

the networks is congested by VoIP traffic.



Chapter 6

Active Queue Management for

Dynamic Adaptive Video

Streaming over HTTP

According to the forecast by Cisco [cic17], Video traffic through mobile networks will

increase at a Compound Annual Growth Rate (CAGR) of 55% from 3660 to 33173

Petabytes (PB) per month. Video traffic, with no doubt, is already the dominated traffic

in the Internet. As discussed in previous chapters, cellular access networks have high

link rate with significant variations. To fit into the network scenario and assure user

experience, Dynamic Adaptive video Streaming over HTTP (DASH) has been widely

adopted by video service providers such as YouTube and NetFlix.

6.1 Introduction to DASH

Before turning to DASH, traditional real time video streaming uses Real-Time Streaming

Protocol (RTSP) [SRL98]. RTSP is a stateful protocol and once the connection between

the server and the client is established, the server will keep track of the state of the client

83
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until the end of the connection. The video content can be sent over TCP or UDP. If

the video is not real time, another choice is progressive download which creates a copy

of the video in the local host. Compared with stateful protocol, servers can give a quick

response to HTTP requests, hence servers respond to DASH request quicker. Progres-

sive download has several weaknesses. First it wastes bandwidth as the users may lose

interest after watching a few frames. Secondly, it is not rate adaptive hence cannot fit

into today’s heterogeneous networks.

DASH [Sto11], is proposed by Moving Picture Experts Group (MPEG), also called

MPEG DASH. It is a technology used to transmit video streaming with dynamic bit

rate. An architecture is shown in Figure 6.1. A video content is splited into several

Figure 6.1: DASH Architecture

segments and each segment contains part of the video content. A video segment has

several copies of different sizes in the sever representing different resolutions.

Media Presentation is defined in [ETS11] which is a structured collection of the media

content. A media presentation contains Periods, Representations and Segments. The

model of media presentation is shown in Figure 6.2.

• Period is the top level of media presentation. It describes a part of media content

with the start time.
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Figure 6.2: Media Presentation Model

• Representation contains same content in different codecs. Different representation

contains same media content but in different resolutions. It allows users to request

content with different quality that they can play without wasting bandwidth on

extra pixels, e.g., a 1080p TV doesn’t need 4k video.

• Segment is the media segments that actually being played by users. Segments

locations and start time is described inside, as shown in Figure 6.2.

A media presentation is described in Media Presentation Description (MPD) which is

stored in the sever together with the video segments. The MPD is the description file

of all the video segments including timing, URL, bit rates and video resolution. DASH

clients send requirements for next data segment according to the networks conditions.

DASH is agnostic to application layer protocols and it is able to cooperate with any

protocols.

6.2 Design and Implementation of AQM for DASH

According to the principle of DASH and state-of-the-art work, the requirements of design-

ing an AQM for DASH are summarized here.

• Low latency. Reduce the latency of packet will reduce the initial delay which is a

Key Performance Indicator (KPI) in DASH.
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• Low Loss. Loss of packets will trigger the transition of resolution from high to low.

Previous work suggests using flow queuing to provide good isolation for DASH from other

flows. In cellular networks, flow queuing is not necessary as flow isolation is guaranteed

by the EPS bearer, mentioned in Chapter 5. Hence, the design of the AQM is focused

on how to reduce latency and loss of packets. Previous AQMs normally monitor the

queue at the network layer which is not suitable for cellular due to different network

structures. [HKT+17] suggests deploying AQMs at MAC layer in Wi-Fi networks and

use airtime fairness instead of Jain’s Fairness Index. The airtime fairness will give each

user same time slot to transmit data which seems fair. However, users with poor channel

conditions will suffer a very low throughput. Inspired by [HKT+17], Bufferbloat issues

can be controlled at other layers. For DASH, the latency can be controlled at the

application layers by deploying an AQM. The benefits are listed below.

• Enough information. DASH clients communicate with the player directly hence it

knows how many contents are waiting in the player’s buffer.

• Avoid dropping. Existing AQM algorithms normally drop packets to reduce latency

as routers and base stations are only responsible for forwarding packets. Deploying

an AQM at application layer can control the requests from clients to servers.

• Work independently. DASH is based on TCP and there are works trying to control

RWND [MVSA13] or block requests back to server [IJLB16]. Making a modifica-

tion to TCP will affect other applications based on TCP and face a fairness issue

competing with other TCP variant.

The architecture of DASH on the client node is shown in Figure 6.3. The received

media content will be buffered and after all the segments are received, DASH client will

requests new media content from the server. The duration that received contents can play

is monitored by the dash client. The main idea of the proposed algorithm is to monitor

the play out buffer by tracking the length of content received and played. Then a user

can set a threshold to the play out buffer according to users’ experience. The operation
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Figure 6.3: Dash Architecture on a Node

is the same one as a user can choose the quality of video when watching YouTube. If the

buffer level reaches the threshold, the DASH client will back off a random time before

sending the request to the server. The algorithm is shown in Algorithm 5. Today’s

Algorithm 5 Random Back Off AQM for DASH Video
1: On the arrival of each packet:
2: Track the length of content in the arriving packet: tbuffered
3: Track the length of content in the packet forwarded to the player: tplayed
4: bufferDelay+ = tbuffered − tplayed
5: if bufferDelay > Threshold then
6: tbackOff = U(0, 1)
7: trequest = trequest + tbackOff

8: end if

cellular networks have a large bandwidth but if all the users request data together, the

buffer in the base station will be filled quickly and thus bring the Bufferbloat issue. The

content buffered in the base station will be downloaded by the clients gradually, hence,

waiting a short period of time will not incur stalling.
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6.3 Simulations and Results

The proposed algorithm is implemented and tested in NS3 using a single cell topology. To

keep consistent with previous work, the topology used here is the same as that in Chapter

4, as shown in Figure 6.4. To evaluate the performance of the proposed algorithm, the

Core Network

Remote Host

BS

Base Station (BS)

User Equipment (UE)

Figure 6.4: Simulation Topology

algorithm is tested in different scenarios. Common parameters used in all scenarios are

shown in Table6-A.

Parameters Value
Random Distribute Model UniformRandomVariable
Server Application Model DASH Server [VMS+16]
Client Application Model DASH Client [VMS+16]

Path Loss Model FriisPropagationLossModel
Scheduling Algorithm PfFfMacScheduler
Server Bandwidth 10 Mbps

Table 6-A: Parameters in all Scenarios

6.3.1 Scenario I

In scenario I, UEs have same CQI value. Two sets of results are shown here. The CQI

value of theses two sets are 15 and 8 respectively. A UE with CQI 15 means that the

channel condition is very good and CQI 8 means the channel condition is medium. CQI is
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controlled by adjusting the distance between UEs and the base station. Detailed param-

eters are shown in Table 6-B and Table 6-C. For CQI 15, UEs are randomly allocated

Parameters Value
Distance to Base Station 500 to 1000 meters

Number of UE 10, 20, 30, 40, 50

Table 6-B: Scenario I Parameters (CQI 15)

Parameters Value
Distance to Base Station 9000 to 9500 meters

Number of UE 10, 20, 30, 40, 50

Table 6-C: Scenario I Parameters (CQI 8)

from 500 to 1000 meters. For CQI 8, UEs are randomly allocated from 9000 to 9500m,

according to 1.

Figure 6.6 - 6.7 show the simulation results when all UEs have CQI 15. Figure 6.5 shows

the average goodput of each flow. CoDel has the highest goodput when the number of

10 15 20 25 30 35 40 45 50

Number of UE

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v
e

ra
g

e
 G

o
o

d
p

u
t 

o
f 

e
a

c
h

 F
lo

w
 (

M
b

p
s
)

proposed 3s

proposed 5s

CoDel

Figure 6.5: Average Goodput of each Flow with Increasing Number of UE
(CQI 15)

UE is small. The proposed algorithm has similar goodput with threshold 3 seconds and

5 seconds. With the increasing number of UE, the goodput of each flow reduces as each
1The LTE signals can cover up to 100km [TIM+13].
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UE needs to compete for the bandwidth.

Figure 6.6 shows the average end-to-end delay of each packet. From Figure 6.6, when
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Figure 6.6: Average End-to-end Delay with Increasing Number of UE (CQI
15)

the threshold is set to different values, the proposed algorithm provides different per-

formance. When there are 10 UEs, the average end-to-end delay is the lowest when

the threshold of the play out buffer is set to 5 seconds. When there are 20 UEs, the

average end-to-end delay with a threshold of 5 seconds becomes higher than that with

the threshold of 3 seconds. With the increasing number of UEs, the average end-to-end

delay keeps increasing until there are 40 UEs. When the number UEs increases to 50,

the average end-to-end delay decreases compared with that when there are 40 UEs, if

the threshold of the play out buffer is set to 5 seconds. When the threshold is set to 3

seconds, the average end-to-end delay increases compared with that when there are 40

UEs. CoDel gives similar performance to the proposed algorithm with 5 seconds buffer

threshold regarding to average end-to-end delay. When there are more than 40 UEs,

CoDel maintains a lower delay. When there are 10 UEs, CoDel maintains a lower delay

compared to the proposed algorithm with 3 seconds target. From 40 UEs to 50 UEs,

the average end-to-end delay decreases when CoDel and 5 seconds threshold is chosen.

While the average end-to-end delay increases when 3 seconds threshold is chosen. The
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abnormal behaviours will be discussed later.

Figure 6.7 shows Jain’s Fairness Index. When there are 10 and 20 UEs, both the pro-
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Figure 6.7: Jain’s Fairness Index with Increasing Number of UE (CQI 15)

posed algorithm and CoDel are not fair. With the increasing number of UE, the proposed

algorithm and CoDel becomes more and more fair. The reason of unfairness will be dis-

cussed later.

Figure 6.9 - Figure 6.10 show the simulation results when all UEs have CQI 8. Figure 6.8

shows the average goodput of each flow. CoDel has the highest goodput but the differ-

ence is very small when the number of UE is less 30. When the number of UE is over 30,

the proposed algorithm with threshold of 3 seconds is a bit lower compared to that with

threshold of 5 seconds and CoDel. The goodput of each flow reduces with the increasing

number of UE as the bandwidth is shared by all UEs. Figure 6.9 shows the average

end-to-end delay of each packet. When there are 10 UEs, the average end-to-end delay

is similar. When there are 20 and 30 UEs, the proposed algorithm with 3 seconds delay

gives much lower delay compared to that with 5 seconds and CoDel. Compared with

20 UEs, if the proposed algorithm with threshold of 3 seconds, the average end-to-end

delay keeps increasing when there are 30 and 40 UEs. The results of average end-to-end
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Figure 6.8: Average Goodput of each Flow with Increasing Number of UE
(CQI 8)
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Figure 6.9: Average End-to-end Delay with Increasing Number of UE (CQI 8)

delay are quite similar when the number of UE is larger than 40. When there are enough

RBs for all the UEs, the queuing delay of packets in the eNB is only because the link

is saturated. When the RBs are not enough, the UEs in the system need wait for the
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RBs to be scheduled, which adds additional queuing delay. When the number of UEs is

increased to 20 from 10, the goodput of each UE decreases. And as the channel quality

is not good, the server will not receive as many ACK as that in Figure 6.5. The pack-

ets in-flight are actually decreased so the average end-to-end delay is decreased. When

the number of UEs continue to increase, although the packets in-flight are reduced, the

queuing delay mainly comes from the time waiting to be scheduled for the RBs. It is

why the average end-to-end delay increase again when the number of UEs is over 20.

Insight discussion will be given later. Figure 6.10 shows Jain’s Fairness Index. Different
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Figure 6.10: Jain’s Fairness Index with Increasing Number of UE (CQI 8)

from the results of CQI 15, all the algorithms are very fair to each flow.

6.3.2 Scenario II

In Scenario I, all UEs in the simulation have same CQI. In the real world, cellular network

users experience variable CQI. In this scenario, a realistic scenario is considered. The

parameters are listed in Table 6-D. The number of UEs in this scenario is chosen from

42 to 50 and the step is 2 UEs. The UEs in the simulation have different CQI values and
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Parameters Value
Number of UE 42-50

Distance to Base Station 500 to 5000 meters
Server Bandwidth 10 Mbps

Table 6-D: Scenario II parameters (variant CQI)

the CQI values are controlled by changing the distance between the UEs and the base

stations. Figure 6.11 shows the results of average end-to-end delay. The performance of
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Figure 6.11: Average End-to-end Delay with Increasing Number of UE

the proposed algorithm with 5 seconds threshold is very similar compared with CoDel.

With the increasing number of UEs, the average end-to-end delay gradually increases.

When the threshold of the proposed algorithm is set to 3 seconds, the average end-to-

end delay is reduced by around 100 milliseconds. Figure 6.12 shows the average goodput

of each flow. The goodput reduces when the number of UEs increases. The average

goodput of each flows is similar but CoDel provides the highest one. Figure 6.13 shows

the results of Jain’s Fairness Index. Although the UEs has different CQI values, but the

goodput among them are fair.



Chapter 6. Active Queue Management for Dynamic Adaptive Video Streaming over
HTTP 95

42 43 44 45 46 47 48 49 50
0.1

0.15

0.2

0.25

A
v
e
ra

g
e
 G

o
o
d
p
u
t 
o
f 
e
a
c
h
 F

lo
w

 (
M

b
p
s
)

proposed 3s

proposed 5s

CoDel

Figure 6.12: Average Goodput
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Figure 6.13: Jain’s Fairness Index

6.4 Discussion

In this section, insight discussions focus on the proposed algorithm are given to illustrate

the simulation results.

When there are 10 UEs, the average end-to-end delay in Figure 6.6 is different from that
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in Figure 6.9. The differences are more clear in Figure 6.14. The average end-to-end
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Figure 6.14: Average End-to-end Delay of the Proposed Algorithm with dif-
ferent Thresholds

delay with CQI 15 is lower compared to that with CQI 8. Figure 6.7 and Figure 6.10

show Jain’s Fairness Index. When CQI is 15, the fairness index is getting higher with

the increasing number of UEs. While when CQI is 8, the fairness index is high regardless

of the number of UEs. From Figure 6.5 and Figure 6.8, it can be seen that the average

goodput of each flow with CQI 15 is twice as much as that with CQI 8 and the goodput

of each flow is negative related to the number of UEs in the system. When the UEs

have higher CQI, the Jain’s Fairness Index is worse compared to UEs with lower CQI.

All the flows are transmitted using TCP. When a flow is punished by AQM, it will stop

increasing the sending rate. In a single server topology with multiple TCP flows, the

other flows have advantages in competing the bandwidth of the server. As a result, there

are fairness issues. When the server have enough bandwidth, the fairness issue will be

gone. Figure 6.15 shows Jain’s Fairness Index when the bandwidth of the server is set

to 100 Mbps. The other parameters in the simulation maintains the same value. It can

be seen from Figure 6.15 that the goodput of each flow is fair regardless of the number

of UEs. Figure 6.16 shows the average goodput of each flow when the server bandwidth
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Figure 6.15: Jain’s Fairness Index (server with 100 Mbps bandwidth)

increase to 100 Mbps. The average goodput of each flow is quite similar with previous

results when the server bandwidth is set to 10 Mbps. It indicates that when there are

10 UEs in the system the maximum goodput is around 0.8 Mbps with the proposed

algorithm. Figure 6.17 shows the average end-to-end delay of each packet when the
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Figure 6.16: Average Goodput of each flow (server with 100 Mbps bandwidth)
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server bandwidth is set to 100 Mbps. Compared with Figure 6.6, it can be seen the the

average end-to-end delay is higher when the bandwidth of the server is 100 Mbps. It is

because each flow has similar share of the bandwidth at the server side, as mentioned

before. Each UE has similar amount of traffic waiting to be transmitted at the access

network and the resource blocks in the base station need to be scheduled to server each

UE.

When the number of UEs in the system increases to 20, the average end-to-end delay
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Figure 6.17: Average End-to-end Delay (server with 100 Mbps bandwidth)

decreases when the threshold is set to 3 seconds and the CQI is 8. Compared with

the purple line in Figure 6.14, the average end-to-end delay is lower when the threshold

is set to 3 seconds. It is because the proposed algorithm reacts quickly with a lower

threshold. The proposed algorithm gives similar goodput with different threshold, as

shown in Figure 6.8. When the CQI is 15, it is a bit of complex as fairness issues are

seen, shown in Figure 6.7. Although the average goodput of each flow is the same with

different threshold, the goodput of each flow varies a lot.

Figure 6.18 shows the average end-to-end delay when the bandwidth of the server is

different. When there are small numbers of UEs in the system and the server has 100
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Mbps bandwidth, there are more packets in flight which results in higher average end-to-

end delay. However, with the increasing number of UEs, the in-flight packets continues

to trigger the proposed algorithm. As a results, the average end-to-end delay decreases

with the increasing number of UEs. While when the threshold is set to 5 seconds, the

number of in-flight packet is not enough to trigger the proposed algorithm, which leads

to the increase of average end-to-end delay if the UEs in the systems are over 40, as seen

in Figure 6.17. When the CQI is 8 and there are more than 40 UEs in the system, the

proposed algorithm is not frequently triggered, shown in Figure 6.14. That is why the

yellow line and the purple line are overlapped
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Figure 6.18: Average End-to-end Delay (server with different bandwidth)

6.5 Conclusions

This chapter introduces the character of DASH algorithm and the design principle to

design an AQM for DASH in cellular networks. An AQM for DASH traffic is proposed

and tested using NS3 simulator. It is worth mentioning that the proposed algorithm also
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works in wired scenarios. The reason to focus in cellular networks is because there are

many users with in a single cell watching DASH contents and hence results in experi-

encing large queuing delay. In wired networks scenarios, there are fewer users and large

bandwidth for each user.

There are actually 3 scenarios tested. In scenario I, the effect of CQI is analysed. In

scenario II, UEs are with different CQI values and the effect of the bandwidth at the

server side is also tested. Simulation results show that the proposed algorithm has bet-

ter performance in controlling the average end-to-end delay. It is true that streaming

videos are not sensitive to delay as long as no interruptions are seen. However, lower

average end-to-end delay means lower initial delay when watching a video and the initial

delay is related to the QoE of users. And if there are other users in the system browsing

web page or playing games, the average end-to-end delay is also reduced. The proposed

algorithm reduced the average end-to-end delay by controls the request to the server

instead of dropping packets, it avoids retransmission. Traditional AQMs monitors the

buffer at routers or base stations. Neither queue length or queuing delay is meaningful

to a video user. The proposed algorithm monitors the play out buffer. If a user don’t

want to buffer extra contents and wants to speed up the response of the network, the

user can set the threshold easily.



Chapter 7

Conclusions and future work

7.1 Summary

Bufferbloat issues have been proved to be existing in all kinds networks. Large queuing

delay incurred by excessive buffering results in degraded performance for real time appli-

cations such as (VoIP and DASH videos). New type of entertainment, such as live show

broadcast by phone, and new online games, such as PlayerUnknown’s Battlegrounds,

keep emerging. Buffering is necessary prevent the loss of packet and to absorb burst

traffic. However, without carefully management, buffering will incur unwanted delay.

This work mitigates the bufferbloat issue in cellular networks using AQM algorithms.

Tradition AQMs using either length of the queue or waiting time of packets in the queue

as the metric to making dropping decisions. This work considers CQI which are unique

in mobile broadband (MBB) networks. Involving CQI can differentiate UEs with differ-

ent channel quality. It protect the UEs with worse channel.

Even through CQI is involved and it gives better performance from the perspective of

average end-to-end delay, end-to-end delay is obscure to a user. AQMs reduces the

queuing delay by actively dropping packets. To balance the drop and the delay, the QoE

metric is involved in the AQM for VoIP traffic. This AQM assumes that a user has the

101
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QoE above Medium when there is no congestion. When the QoE drops below High level,

the algorithm start dropping packets in order to reduce the delay.

Different applications have different requirement of QoE. DASH video is widely used in

today’s Internet however evaluating the QoE of dash video is complex. To reduce the

delay brought by DASH packets, a new AQM using random back off algorithm is pro-

posed. It monitors the play out buffer and when the content buffered reaches threshold,

the AQM will hold the request for next packets for a random time. It avoids dropping

packets and the retransmission due to drop of packets. The proposed algorithm outper-

forms CoDel in reducing the average end-to-end delay and meanwhile maintains similar

goodput.

7.2 Key contributions

The major contributions in this thesis are detailed below.

• Cross layer design is involved. The Channel quality aware AQM use CQI. Using

CQI is to protect UEs with poor channel quality and meanwhile, the proposed

algorithm reduced latency in the network.

• QoE metric is involved. The AQM for VoIP involves QoE in making the dropping

decisions. Compared with existing AQMs, it automatically makes the balance

between drop and delay.

• Indirect control of latency. For specific type of traffic such as DASH, it is hard

to control the delay directly where it happens due to lack of information. In such

occasions, the AQM can be deployed at other layer to indirectly reduce the latency.

Deploying AQMs can control the queuing delay. Different AQMs have different advan-

tages and disadvantages. An AQM controlled by queue length is not sensitive to queuing

delay. An AQM controlled by queuing delay gives good performance from the respective

of delay but not all the packets requires low queuing delay. For specific user scenarios,
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clear recommendations can be given.

7.3 Future work

Bufferbloat is vast topic involving different type of traffic, different traffic control tech-

nologies and protocols. Next Generation Networks (NGN) has larger bandwidth and

interactive application keeps increasing. Mitigating bufferbloat need carefully manage

the buffer which requires correct and precise modelling of traffic going through the net-

work. Machine learning provides a new aspect of modelling traffic and mapping between

network performances with QoE.

Cellular networks have been an important port in our daily life and it is more complex

compared with wired and Wi-Fi networks. The number of users in one cell is changing

and the wireless channel is time variant. It will be more challenging when users in mul-

tiple cells are considered. A general model to further reduce latency in cellular networks

still needs to be revealed. The cooperation of different layers in dealing with bufferbloat

need to be further investigated.
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