81 research outputs found

    Learning Interpretable Rules for Multi-label Classification

    Full text link
    Multi-label classification (MLC) is a supervised learning problem in which, contrary to standard multiclass classification, an instance can be associated with several class labels simultaneously. In this chapter, we advocate a rule-based approach to multi-label classification. Rule learning algorithms are often employed when one is not only interested in accurate predictions, but also requires an interpretable theory that can be understood, analyzed, and qualitatively evaluated by domain experts. Ideally, by revealing patterns and regularities contained in the data, a rule-based theory yields new insights in the application domain. Recently, several authors have started to investigate how rule-based models can be used for modeling multi-label data. Discussing this task in detail, we highlight some of the problems that make rule learning considerably more challenging for MLC than for conventional classification. While mainly focusing on our own previous work, we also provide a short overview of related work in this area.Comment: Preprint version. To appear in: Explainable and Interpretable Models in Computer Vision and Machine Learning. The Springer Series on Challenges in Machine Learning. Springer (2018). See http://www.ke.tu-darmstadt.de/bibtex/publications/show/3077 for further informatio

    Semi-supervised Predictive Clustering Trees for (Hierarchical) Multi-label Classification

    Full text link
    Semi-supervised learning (SSL) is a common approach to learning predictive models using not only labeled examples, but also unlabeled examples. While SSL for the simple tasks of classification and regression has received a lot of attention from the research community, this is not properly investigated for complex prediction tasks with structurally dependent variables. This is the case of multi-label classification and hierarchical multi-label classification tasks, which may require additional information, possibly coming from the underlying distribution in the descriptive space provided by unlabeled examples, to better face the challenging task of predicting simultaneously multiple class labels. In this paper, we investigate this aspect and propose a (hierarchical) multi-label classification method based on semi-supervised learning of predictive clustering trees. We also extend the method towards ensemble learning and propose a method based on the random forest approach. Extensive experimental evaluation conducted on 23 datasets shows significant advantages of the proposed method and its extension with respect to their supervised counterparts. Moreover, the method preserves interpretability and reduces the time complexity of classical tree-based models

    Exploiting Anti-monotonicity of Multi-label Evaluation Measures for Inducing Multi-label Rules

    Full text link
    Exploiting dependencies between labels is considered to be crucial for multi-label classification. Rules are able to expose label dependencies such as implications, subsumptions or exclusions in a human-comprehensible and interpretable manner. However, the induction of rules with multiple labels in the head is particularly challenging, as the number of label combinations which must be taken into account for each rule grows exponentially with the number of available labels. To overcome this limitation, algorithms for exhaustive rule mining typically use properties such as anti-monotonicity or decomposability in order to prune the search space. In the present paper, we examine whether commonly used multi-label evaluation metrics satisfy these properties and therefore are suited to prune the search space for multi-label heads.Comment: Preprint version. To appear in: Proceedings of the Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD) 2018. See http://www.ke.tu-darmstadt.de/bibtex/publications/show/3074 for further information. arXiv admin note: text overlap with arXiv:1812.0005

    Automated Machine Learning for Multi-Label Classification

    Get PDF

    Active Learning from Knowledge-Rich Data

    Get PDF
    With the ever-increasing demand for the quality and quantity of the training samples, it is difficult to replicate the success of modern machine learning models in knowledge-rich domains, where the labeled data for training is scarce and labeling new data is expensive. While machine learning and AI have achieved significant progress in many common domains, the lack of large-scale labeled data samples poses a grand challenge for the wide application of advanced statistical learning models in key knowledge-rich domains, such as medicine, biology, physical science, and more. Active learning (AL) offers a promising and powerful learning paradigm that can significantly reduce the data-annotation stress by allowing the model to only sample the informative objects to learn from human experts. Previous AL models leverage simple criteria to explore the data space and achieve fast convergence of AL. However, those active sampling methods are less effective in exploring knowledge-rich data spaces and result in slow convergence of AL. In this thesis, we propose novel AL methods to address knowledge-rich data exploration challenges with respect to different types of machine learning tasks. Specifically, for multi-class tasks, we propose three approaches that leverage different types of sparse kernel machines to better capture the data covariance and use them to guide effective data exploration in a complex feature space. For multi-label tasks, it is essential to capture label correlations, and we model them in three different approaches to guide effective data exploration in a large and correlated label space. For data exploration in a very high-dimension feature space, we present novel uncertainty measures to better control the exploration behavior of deep learning models and leverage a uniquely designed regularizer to achieve effective exploration in high-dimension space. Our proposed models not only exhibit a good behavior of exploration for different types of knowledge-rich data but also manage to achieve an optimal exploration-exploitation balance with strong theoretical underpinnings. In the end, we study active learning in a more realistic scenario where human annotators provide noisy labels. We propose a re-sampling paradigm that leverages the machine\u27s awareness to reduce the noise rate. We theoretically prove the effectiveness of the re-sampling paradigm and design a novel spatial-temporal active re-sampling function by leveraging the critical spatial and temporal properties of the maximum-margin kernel classifiers

    Fuzzy-Granular Based Data Mining for Effective Decision Support in Biomedical Applications

    Get PDF
    Due to complexity of biomedical problems, adaptive and intelligent knowledge discovery and data mining systems are highly needed to help humans to understand the inherent mechanism of diseases. For biomedical classification problems, typically it is impossible to build a perfect classifier with 100% prediction accuracy. Hence a more realistic target is to build an effective Decision Support System (DSS). In this dissertation, a novel adaptive Fuzzy Association Rules (FARs) mining algorithm, named FARM-DS, is proposed to build such a DSS for binary classification problems in the biomedical domain. Empirical studies show that FARM-DS is competitive to state-of-the-art classifiers in terms of prediction accuracy. More importantly, FARs can provide strong decision support on disease diagnoses due to their easy interpretability. This dissertation also proposes a fuzzy-granular method to select informative and discriminative genes from huge microarray gene expression data. With fuzzy granulation, information loss in the process of gene selection is decreased. As a result, more informative genes for cancer classification are selected and more accurate classifiers can be modeled. Empirical studies show that the proposed method is more accurate than traditional algorithms for cancer classification. And hence we expect that genes being selected can be more helpful for further biological studies

    Learning Label Structures with Neural Networks for Multi-label Classification

    Get PDF
    Multi-label classification (MLC) is the task of predicting a set of labels for a given input instance. A key challenge in MLC is how to capture underlying structures in label spaces. Due to the computational cost of learning from all possible label combinations, it is crucial to take into account scalability as well as predictive performance when we deal with large scale MLC problems. Another problem that arises when building MLC systems is which evaluation measures need to be used for performance comparison. Unlike traditional multi-class classification, several evaluation measures are often used together in MLC because each measure prefers a different MLC system. In other words, we need to understand the properties of MLC evaluation measures and build a system which performs well in terms of those evaluation measures in which we are particularly interested. In this thesis, we develop neural network architectures that efficiently and effectively utilize underlying label structures in large-scale MLC problems. In the literature, neural networks (NNs) that learn from pairwise relationships between labels have been used, but they do not scale well on large-scale label spaces. Thus, we propose a comparably simple NN architecture that uses a loss function which ignores label dependencies. We demonstrate that simpler NNs using cross-entropy per label works better than more complex NNs, particularly in terms of rank loss, an evaluation measure that takes into account the number of incorrectly ranked label pairs. Another commonly considered evaluation measure is subset 0/1 loss. Classifier chains (CCs) have shown state-of-the-art performance in terms of that measure because the joint probability of labels is optimized explicitly. CCs essentially convert the problem of learning the joint probability into a sequential prediction problem. Then, the task is to predict a sequence of binary values for labels. Contrary to the aforementioned NN architecture which ignores label structures, we study recurrent neural networks (RNNs) so as to make use of sequential structures on label chains. The proposed RNNs are advantageous over CC approaches when dealing with a large number of labels due to parameter sharing effects in RNNs and their abilities to learn from long sequences. Our experimental results also confirm that their superior performance on very large label spaces. In addition to NNs that learn from label sequences, we present two novel NN-based methods that learn a joint space of instances and labels efficiently while exploiting label structures. The proposed joint space learning methods project both instances and labels into a lower dimensional space in a way that minimizes the distance between an instance and its relevant labels in that space. While the goal of both joint space learning methods is same, they use different additional information on label spaces during training: One approach makes use of hierarchical structures of labels and can be useful when such label structures are given by human experts. The other uses latent label spaces learned from textual label descriptions so that we can apply it to more general MLC problems where no explicit label structures are available. Notwithstanding the difference between the two approaches, both approaches allow us to make predictions with respect to labels that have not been seen during training

    Multi-label Rule Learning

    Get PDF
    Research on multi-label classification is concerned with developing and evaluating algorithms that learn a predictive model for the automatic assignment of data points to a subset of predefined class labels. This is in contrast to traditional classification settings, where individual data points cannot be assigned to more than a single class. As many practical use cases demand a flexible categorization of data, where classes must not necessarily be mutually exclusive, multi-label classification has become an established topic of machine learning research. Nowadays, it is used for the assignment of keywords to text documents, the annotation of multimedia files, such as images, videos, or audio recordings, as well as for diverse applications in biology, chemistry, social network analysis, or marketing. During the past decade, increasing interest in the topic has resulted in a wide variety of different multi-label classification methods. Following the principles of supervised learning, they derive a model from labeled training data, which can afterward be used to obtain predictions for yet unseen data. Besides complex statistical methods, such as artificial neural networks, symbolic learning approaches have not only been shown to provide state-of-the-art performance in many applications but are also a common choice in safety-critical domains that demand human-interpretable and verifiable machine learning models. In particular, rule learning algorithms have a long history of active research in the scientific community. They are often argued to meet the requirements of interpretable machine learning due to the human-legible representation of learned knowledge in terms of logical statements. This work presents a modular framework for implementing multi-label rule learning methods. It does not only provide a unified view of existing rule-based approaches to multi-label classification, but also facilitates the development of new learning algorithms. Two novel instantiations of the framework are investigated to demonstrate its flexibility. Whereas the first one relies on traditional rule learning techniques and focuses on interpretability, the second one is based on a generalization of the gradient boosting framework and focuses on predictive performance rather than the simplicity of models. Motivated by the increasing demand for highly scalable learning algorithms that are capable of processing large amounts of training data, this work also includes an extensive discussion of algorithmic optimizations and approximation techniques for the efficient induction of rules. As the novel multi-label classification methods that are presented in this work can be viewed as instantiations of the same framework, they can both benefit from most of these principles. Their effectiveness and efficiency are compared to existing baselines experimentally

    Cost-Sensitive Boosting for Classification of Imbalanced Data

    Get PDF
    The classification of data with imbalanced class distributions has posed a significant drawback in the performance attainable by most well-developed classification systems, which assume relatively balanced class distributions. This problem is especially crucial in many application domains, such as medical diagnosis, fraud detection, network intrusion, etc., which are of great importance in machine learning and data mining. This thesis explores meta-techniques which are applicable to most classifier learning algorithms, with the aim to advance the classification of imbalanced data. Boosting is a powerful meta-technique to learn an ensemble of weak models with a promise of improving the classification accuracy. AdaBoost has been taken as the most successful boosting algorithm. This thesis starts with applying AdaBoost to an associative classifier for both learning time reduction and accuracy improvement. However, the promise of accuracy improvement is trivial in the context of the class imbalance problem, where accuracy is less meaningful. The insight gained from a comprehensive analysis on the boosting strategy of AdaBoost leads to the investigation of cost-sensitive boosting algorithms, which are developed by introducing cost items into the learning framework of AdaBoost. The cost items are used to denote the uneven identification importance among classes, such that the boosting strategies can intentionally bias the learning towards classes associated with higher identification importance and eventually improve the identification performance on them. Given an application domain, cost values with respect to different types of samples are usually unavailable for applying the proposed cost-sensitive boosting algorithms. To set up the effective cost values, empirical methods are used for bi-class applications and heuristic searching of the Genetic Algorithm is employed for multi-class applications. This thesis also covers the implementation of the proposed cost-sensitive boosting algorithms. It ends with a discussion on the experimental results of classification of real-world imbalanced data. Compared with existing algorithms, the new algorithms this thesis presents are superior in achieving better measurements regarding the learning objectives
    corecore