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Zusammenfassung

Multi-Label-Klassifizierung (MLC) bezeichnet die Aufgabe, eine Menge von Labels fiir eine
gegebene Instanz vorherzusagen. Eine zentrale Herausforderung bei MLC ist die Erfassung
der zugrundeliegenden Strukturen im Labelraum. Aufgrund der Komplexitit des Lernens
aus allen moglichen Labelkombinationen ist es bei grofen MLC Datensédtzen von entschei-
dender Bedeutung, sowohl Skalierbarkeit als auch Vorhersagequalitdt zu beriicksichtigen. Ein
weiteres Problem, das bei der Erstellung von MLC-Systemen auftritt, ist die Frage nach dem
Evaluationsmafl, welches fiir den Vergleich der Vorhersagequalitidt herangezogen werden soll.
Im Gegensatz zur traditionellen Multi-Klassen-Klassifizierung werden in MLC héufig mehre-
re Evaluationsmafse gemeinsam eingesetzt, da jedes Maf ein anderes MLC-System préferiert.
Mit anderen Worten, es ist entscheidend, die Eigenschaften der verschiedenen MLC Evalua-
tionsmake zu verstehen, um ein System zu erstellen, das gut in Bezug auf die Mafe ist, an
denen wir besonders interessiert sind.

In dieser Arbeit entwickeln wir Architekturen von Neuronalen Netzwerken (NN), die La-
belstrukturen in groken MLC-Problemen effizient und effektiv beziiglich eines bestimmten
Evaluationsmafes ausnutzen. Obwohl NNs, die aus paarweisen Labelbeziehungen lernen,
bereits langer in der Literatur verwendet werden, schlagen wir eine vergleichsweise simple
Architektur vor, die eine Verlustfunktion verwendet, die Label-Abhéngigkeiten ignoriert.
Wir zeigen, dass unser Ansatz besser funktioniert als komplexere neuronale Netze beziiglich
des Rank-Loss-Mafses, welches explizit die Anzahl der durch das Verfahren falsch sortierten
Labelpaare beriicksichtigt.

Ein weiteres Evaluationsmaf, das tiblicherweise beachtet wird, ist Subset 0/1-Loss. Der
Classifier-Chain-Ansatz (CC) ist ein erfolgreiches, aktuelles Verfahren um dieses Mafs zu
optimieren. Dies geschieht dadurch, dass das urspriingliche Problem in ein sequentielles
Vorhersageproblem umgewandelt wird, sodass die Aufgabe darauthin darin besteht, eine
Sequenz von Binédrwerten fiir die Labels vorherzusagen. Im Gegensatz zur eben genannten
NN-Architektur, die Labelstrukturen ignoriert, setzen wir rekurrente neuronale Netze (RNN)
ein, um Sequenzstrukturen in den Labelketten auszunutzen. Die vorgeschlagenen RNNs er-
weisen sich gegeniiber CCs als vorteilhaft bei Problemen mit einer groffen Anzahl an Labels
wegen Parameter-Sharing-Effekten bei RNNs und bei Problemen mit langen Labelsequenzen.

Zusétzlich zu den NNs, die auf Labelsequenzen gelernt werden, stellen wir zwei weite-
re neuartige NN-basierte Methoden vor. Diese Methoden projizieren sowohl Instanzen als
auch Labels auf eine Art und Weise in einen gemeinsamen niedrig-dimensionalen Raum,
welche die Distanz zwischen einer Instanz und ihren relevanten Labels in diesem Raum
reduziert. Wahrend das Ziel beider Lernmethoden gleich ist, ndmlich das Projizieren von
Instanzen und Labels in einen gemeinsamen Raum, verwenden sie unterschiedliche Zusatz-
informationen iiber die Labelrdume: Das erste vorgeschlagene Verfahren nutzt hierarchische
Strukturen aus und kann insbesondere niitzlich sein, wenn solche Stukturen von Experten zur
Verfiigung gestellt werden. Die zweite Methode nutzt latente Labelrdume aus, die von den
textuellen Beschreibungen der Labels gelernt werden, sodass wir das Verfahren auf allgemei-
nere MLC-Probleme anwenden kénnen, fiir die keine expliziten Labelstrukturen vorhanden




sind. Ungeachtet der Unterschiede ermoglichen uns beide Verfahren, Vorhersagen iiber La-
bels zu treffen, die wiahrend des Trainings nicht gesehen wurden. Auferdem zeigen wir, dass
beide Verfahren in der Lage sind, durch Ausnutzung der Zusatzinformationen insgesamt eine
bessere Vorhersagequalitét zu erreichen.




Abstract

Multi-label classification (MLC) is the task of predicting a set of labels for a given input
instance. A key challenge in MLC is how to capture underlying structures in label spaces.
Due to the computational cost of learning from all possible label combinations, it is crucial
to take into account scalability as well as predictive performance when we deal with large-
scale MLC problems. Another problem that arises when building MLC systems is which
evaluation measures need to be used for performance comparison. Unlike traditional multi-
class classification, several evaluation measures are often used together in MLC because
each measure prefers a different MLC system. In other words, we need to understand the
properties of MLC evaluation measures and build a system which performs well in terms of
those evaluation measures in which we are particularly interested.

In this thesis, we develop neural network architectures that efficiently and effectively utilize
underlying label structures in large-scale MLC problems. In the literature, neural networks
(NNs) that learn from pairwise relationships between labels have been used, but they do not
scale well on large-scale label spaces. Thus, we propose a comparably simple NN architecture
that uses a loss function which ignores label dependencies. We demonstrate that simpler NNs
using cross-entropy per label works better than more complex NNs, particularly in terms of
rank loss, an evaluation measure that takes into account the number of incorrectly ranked
label pairs.

Another commonly considered evaluation measure is subset 0/1 loss. Classifier chains
(CCs) have shown state-of-the-art performance in terms of that measure because the joint
probability of labels is optimized explicitly. CCs essentially convert the problem of learning
the joint probability into a sequential prediction problem. Then, the task is to predict a
sequence of binary values for labels. Contrary to the aforementioned NN architecture which
ignores label structures, we study recurrent neural networks (RNNs) so as to make use
of sequential structures on label chains. The proposed RNNs are advantageous over CC
approaches when dealing with a large number of labels due to parameter sharing effects
in RNNs and their abilities to learn from long sequences. Our experimental results also
confirm that their superior performance on very large label spaces.

In addition to NNs that learn from label sequences, we present two novel NN-based meth-
ods that learn a joint space of instances and labels efficiently while exploiting label structures.
The proposed joint space learning methods project both instances and labels into a lower
dimensional space in a way that minimizes the distance between an instance and its relevant
labels in that space. While the goal of both joint space learning methods is same, they use
different additional information on label spaces during training: One approach makes use of
hierarchical structures of labels and can be useful when such label structures are given by
human experts. The other uses latent label spaces learned from textual label descriptions
so that we can apply it to more general MLC problems where no explicit label structures
are available. Notwithstanding the difference between the two approaches, both approaches
allow us to make predictions with respect to labels that have not been seen during training.
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1 Introduction

Classifying instances has been a vital task in machine learning for several decades. In the
straightforward setting, the type of responses is binary for classification systems, that is,
the expected answer is either yes or no. A possible extension of the binary classification
problem is multi-class classification, where the task is to choose the most probable out of
multiple choices. Many multi-class classification problems have been studied widely and
extensively across all sub-areas of artificial intelligence such as natural language processing,
speech recognition, computer vision, etc. A central goal in learning classification models is
to identify relationships between instances and possible responses and then to choose the
best mapping function from instances into responses. Although more than two choices are
available in multi-class classification, the number of correct answers is always one same as
in binary classification. However, in real-world settings, classification systems often need
to choose multiple correct answers out of multiple possible options. A wikipedia article as
a sample document associated with multiple labels is shown in Figure 1.1. The wikipedia
article explains an emerging field of study, which has been a long-standing goal of computer
science, namely artificial intelligence, with a few lines of sentences. For the indexing purpose,
multiple descriptors assigned to the article are chosen out of tens of thousands of descriptors.
Such a small group of descriptors consists of highly related ones and each descriptor explains
a certain aspect of the content being discussed.

Multi-label classification (MLC) is the problem of classifying instances into multiple correct
responses. Recently, MLC methods have received a great deal of attention in machine
learning because the need of predicting multiple class labels per instance arises in many real-
world problems. As a group of labels is associated with an instance, it is crucial to exploit
label dependencies as well as the relationship between instances and labels in MLC. In most
cases, no label dependency information is available explicitly in the problem of interest. One
often assumes some underlying label dependency structures, and makes use of the structures
during learning. Otherwise, MLC methods work with purely statistical patterns between
instances and labels.

Exploiting label dependence. A simple method that ignores the label dependence entirely
can also solve MLC problems by taking advantage of traditional classification algorithms
that have been studied extensively over the last few past decades, but it leads to a subop-
timal solution. Another group of approaches enumerate all possible interactions of labels
and exhaustively search for the best label combination for a given instance. Such naive
approaches will work on only very small scale problems. It is worth noting that exploiting
label dependence is computationally demanding in general, and its complexity grows in the
number of possible choices. In recent years, there has been a rapid growth of interest in large
scale MLC problems that have a large number of labels as well as instances.! Therefore, the
key to developing MLC algorithms is how to exploit label dependence efficiently.

1 http://manikvarma.org/downloads/XC/XMLRepository.html
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Artificial intelligence

From Wikipedia, the free encyclopedia

"Al" redirects here. For other uses, see Al (disambiguation) and Atrtificial intelligence (disambiguation).

Artificial intelligence (Al, also machine intelligence, M) is Intelligence displayed by machines, in contrast
with the natural intelligence (NI) displayed by humans and other animals. In computer science Al research is
defined as the study of "intelligent agents": any device that perceives its environment and takes actions that
maximize its chance of success at some goal.['l Colloquially, the term "artificial intelligence" is applied when a
machine mimics "cognitive" functions that humans associate with other human minds, such as "learning" and
"problem solving".[2]

(a) Wikipedia article about “Artificial Intelligence”

Categories: Artificial intelligence | Cybernetics | Formal sciences | Technology in society
Computational neuroscience | Emerging technologies | Unsolved problems in computer science
Computational fields of study

(b) Relevant labels

Figure 1.1: A real-world example of multi-label data. From Wikipedia, https://en.wikipedia.
org/wiki/Artificial_intelligence, 08 Nov. 2017.

Before going into the details of existing MLC approaches, we need to discuss the impor-
tance of evaluation measures taking into consideration when building new MLC algorithms.
The most widely used measure in conventional classification problems is accuracy which
calculates how many times the predictions generated by a learned classifier are correct ac-
cording to their expected answers. If some labels appear much more frequently than other
labels in the training data, another evaluation measure such as F} measure would be more
appropriate as a measure of interest. In contrast to multi-class classification, we have many
more evaluation measures in MLC that show various characteristics of system outputs in
different ways, which we discuss in Section 2.2.1. Thus, MLC methods need to set their goal
of learning depending on the evaluation measure of interest. Once the learning objective of a
classification method is determined, the next step is to choose the best algorithmic architec-
ture for achieving that goal. A most simple, yet effective method is logistic regression (LR),
which learns the conditional probability distribution of a label space for a given instance and
constructs a linear decision function. Note that while LR has been used for conventional
classification problems, it is even applicable to MLC as well without any modifications when
MLC problems meet some conditions, e.g., a small number of labels. Because of its effec-
tiveness and soundness in modeling the conditional probability, complicated MLC methods
often consider LR as a base component to build a more powerful classification function. A
neural network (NN) is a family of computational learning systems inspired by biological
neural circuits in a human brain. NNs without cyclic connections between nodes, namely
feed-forward neural network (FNN), are used for building non-linear classifiers. Thus, NNs
learn more complex decision boundaries than LR models.

Recently, tremendous efforts have been devoted to improving the performance of neural
networks with multiple layers of abstraction, which lead to many successful applications in
a variety of areas for solving complex problems in artificial intelligence. The first successful
examples of deep neural network (DNN) have been built by iteratively stacking multiple
single layer NNs in a greedy fashion (Bengio et al., 2007; Hinton and Salakhutdinov, 2006).
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More complex NNs that exploit spatial or temporal structures in data have been also very
successful in learning representations of inputs from data as well as parametric classifiers
(Krizhevsky et al., 2012; Sutskever et al., 2014). Massively parallel computing architectures
such as graphics processing units (GPUs) and many large-scale datasets have proliferated
this research field even further over the last years.

Despite their effectiveness in learning complex functions such as classifiers, NNs have re-
ceived less attention in MLC. A well-known NN-based MLC architecture (Zhang and Zhou,
2006), backpropagation for multi-label learning (BP-MLL), is problematic because it is com-
putationally demanding to make use of label dependency patterns on large-scale datasets.
Modeling pairwise label dependencies in NNs explicitly makes it difficult for us to build
more powerful neural architectures, which learn meaningful intermediate representations
from data.

Exploiting additional information on label spaces. In a general workflow, MLC methods
learn from only a set of training examples, where the association patterns of instances and
labels are available. While training MLC models on the patterns, we expect that they are
able to uncover underlying relationships between labels once training is done. The learned
information during the training phase helps us make better predictions on unseen instances,
where the label space on which MLC models are trained remains the same at prediction
time. As an extreme case, one can assume we may receive unseen instances associated with
unseen labels as well as seen labels. In other words, some labels in a set of candidate labels
to be predicted have no training instances, so that it is crucial to exploit label dependence
if we want to make predictions over label spaces including unseen labels. Figure 1.2 shows
the difference between traditional classification and zero-shot learning (ZSL). Traditional
classification tasks aim at learning mapping functions from training instances to the set of
labels in the training set, and then test (unseen) instances are mapped the same set of labels
observed during the training time (solid line). In contrast to the conventional setting of
classification, we seek a function that maps test instances to a set of unseen labels (dotted
line) for ZSL. The underlying assumption in ZSL is that the disjoint label sets, i.e., seen and
unseen labels, share some information explicitly or implicitly.

When building MLC systems that have the capability to predict unseen labels, a major
issue is the limited information problem of the relationships between seen and unseen labels,
which we cannot access in a given training dataset. To bridge the gap between the problem of
interest and the information available, one may consider external resources, e.g., knowledge
bases, that human experts have organized. The central idea is that label relationships can
be extracted if we can find mappings from labels to entities in external resources. This line
of research has recently emerged in the machine learning community and is referred to as
ZSL. In the literature, there have been several ZSL approaches that take advantage of the
recent advancements in learning DNNs. Given side information that describes class labels
with human curated annotations, we can exploit it to transfer information between seen
and unseen labels (Lampert et al., 2009). This approach assumes that high-level semantic
attributes for class labels are predefined by human experts, but it is also possible to utilize
textual information on the web for building automatic ZSL systems (Frome et al., 2013).

The key property on which ZSL methods rely is the label dependence. Once learned shared
information on seen labels, a ZSL classifier is able to transfer knowledge to predict unseen
labels. As noted, it is also important for MLC methods to exploit the label dependence as
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Figure 1.2: lllustration of zero-shot learning.

in ZSL. This implies that the basic ideas for ZSL can be adopted to MLC methods, and it
may bring us better predictive MLC systems in practice.

A problem may arise when taking label dependencies even between seen and unseen labels
on MLC datasets with many labels into account due to the cost of preparing the information
by human experts. Therefore, it is highly desirable to learn shared information between
labels in an automatic way as in (Socher et al., 2013) for MLC.

1.1 Summary of Contributions

Given the aforementioned challenges, the goal of this thesis is to present neural network
based extensions to existing approaches for the multi-label classification problems in the
following;:

e New insights on neural network architectures for multi-label classification are provided
based on recent theoretical analyses in terms of consistency.

e Efficient neural network models on large-scale text datasets with many labels are pre-
sented.

e We propose how to exploit the label dependence with neural networks.

e Towards predicting unseen labels, we present neural networks that make use of addi-
tional information on label spaces.

1.2 Thesis Outline

The rest of the thesis is structured in the following way. After providing fundamentals
of MLC and NNs in Chapter 2, we present our contributions in the subsequent chapters.
Chapter 3 proposes a simple, yet effective NN architecture that minimizes the number of
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incorrect pairwise rankings between relevant and irrelevant labels. Subsequently, in Chap-
ter 4 we propose recurrent neural networks (RNNs) as a replacement of probabilistic classifier
chain (PCC) approaches that maximizes the probability of predicting label subsets correctly.
We, then, demonstrate the use of label structures represented as a graph for unseen label
prediction in Chapter 5. In Chapter 6 we use label descriptions as a source of additional
information for ZSL. Our goal is not only to obtain better zero-shot predictions, but also
to improve generalization performance to seen labels. Lastly, we conclude our contributions
and discuss future work for MLC in Chapter 7.

In the following, we provide an overview of the remaining chapters.

Background. MLC is the generalized problem of classifying instances into multiple classes,
where more than one label may need to be assigned to each instance. We build a general
framework for MLC in a theoretical point of view, followed by reviews of prior work that
have been successfully applied in the literature. Generally, MLC methods are evaluated
in terms of several aspects of their performance because different group of approaches often
have different objectives to be optimized. Therefore, we discuss multiple evaluation measures
commonly used in MLC.

Then, we cover fundamentals of NNs, on which all methods proposed in this thesis will be
based.

Efficient neural networks for large-scale multi-label classification. A key objective of
MLC is to capture label dependencies so as to make better predictions for unseen instances,
and many successful MLC methods rely on computationally expensive operations to achieve
the goal. In particular, it is difficult to apply this type of approach on problems which have
a larger number of labels because the complexity grows in terms of the number of labels.
Although there have been proposed NN architectures that capture label dependencies ex-
plicitly on the output layer, we found that FNNs outperform more complex NNs on several
text benchmark datasets in terms of ranking measures Nam et al. (2014). We show its the-
oretical background and provide empirical analysis that suggests effective NN architectures
for multi-label text classification (MLTC) in Chapter 3.

Estimating joint probabilities of label subsets using label sequences. In contrast to MLC
methods that optimize the ranking objectives, where a ranked list of labels generated by MLC
systems is compared to a true ranking of labels, another type of methods focus on building
a classifier that produces a set of binary predictions. One of the most successful methods in
this direction is PCC, which constructs a chain of independent classifiers per label and yields
the final predictions. After the success of PCC, many MLC algorithms have been proposed
to address its major limitations such as the computational complexity of searching over a
label space that grows exponentially in labels.

However, another drawback of PCC is often disregarded: its performance decreases as
the chain length gets longer. Using the fact that the average number of labels assigned
to instances is much less than the total number of labels in general, we propose a RNN
architecture for solving MLC problems as an alternative of PCC (Nam et al., 2017). Our ex-
perimental results on three multi-label textual datasets demonstrate that RNNs are effective
multi-label classifiers particularly when we have a large number of labels.




Learning from label hierarchies. Identifying relationship among labels from statistical pat-
terns of them available in data is crucial to build MLC systems because the performance of
predictive systems depends usually on the availability of training data and its quality. In
both of the previous chapters (Chapter 3 and 4), we mainly discuss the way to make use of
the label patterns only and the effectiveness of NNs. One can also consider training MLC
systems in which the data is scarce or even it is completely unavailable for certain labels. For
example, given a database of scientific articles, new articles could be added to the database
at a certain time interval, and we want to annotate them with MLC algorithms which is
trained on the database previously. In this case, there is a chance that some of new articles
may deal with something new which cannot be annotated by any of existing labels used at
training time.

In Chapter 5, we propose an algorithm that has the capability to rank labels including
ones that do not have training information (Nam et al., 2015). We take advantage of label
relationships in a graph structure given as additional information, thereby achieving better
label rankings if unseen labels are taken into account at test time.

Discovering latent structures from label descriptions. Label relationships as additional
information are useful for a certain type of problem as discussed in Chapter 5. However, it
is not always possible to obtain the label relationships as part of the training information.
One can make use of another indirect information from which label relationships can be
derived implicitly, and a label description in text is a good alternative for this purpose (Nam
et al., 2016). Assuming that we are given textual descriptions for unseen labels, it might be
possible to predict on unseen documents with respect to even unseen labels if we can leverage
the fact that similar labels often have similar word usage patterns in the descriptions. For
example, assuming an organization as a label, we can easily find a textual description of the
organization on the web, e.g., Wikipedia (Roth, 2017).




2 Background

In this chapter, we will provide the definition of multi-label classification (MLC) as an area
of machine learning. Let us start with binary classification to formulate the learning problem
in a statistical way and then extend it to multi-label classification.

2.1 Binary Classification and Risk Minimization

Binary classification is the task of classifying instances into two groups. In other words, we
seek a function f that returns predicted outputs ¢ € {0,1} of inputs z, ie., f: X =Y
or § = f(z). Given a loss function ¢ : (y, ) — R which measures the discrepancy between
true targets y and predictions ¢, let us define the expected loss of a function f over data
samples from an underlying probability distribution P(X,Y) as expected or true risk R:

R(f) =Exy [((Y, f(X))]. (2.1)

The quality of a mapping function can be determined by comparing the risk of the function to
that of other functions, for example, a function f is better than ¢ if R(f) < R(g) (Vapnik,
1999). One can find the best function which achieves the smallest risk over all possible
functions. Formally, let us define minimum risk or Bayes risk as follows

R*= inf R(f) (2.2)

where Fy;; denotes a set of all possible measurable functions mapping inputs X to outputs

Y. A function that satisfies R* = R(f) is called as a Bayes classifier. Assuming that we

have perfect knowledge on P(X,Y), the Bayes classifier for binary classification problems
can be defined as follows

. 1 fPY=1X=2)>1

() = { ? (2.3)

0 otherwise

where P(Y = 1|X = z) is the conditional probability that an instance x is classified as
positive. Please note that Eq. (2.3) can be generalized to multi-class classification. As the
underlying distribution P(X,Y’) is unknown in general, it is impossible to calculate the
Bayes classifier. Given a function class such that F C JF,; and a set of N training data
D = {(x1,11),(Z2,y2), -+, (xn,yn)} sampled from the underlying distribution, one can
select a function fy € F and calculate its empirical risk given by

N
1
Remp fN = NZ yn;fN xn (2'4)




The objective of selecting fn € F given the data is to achieve minimum empirical risk while
keeping the difference between the empirical risk and true risk, e.g., |R(fn) — Remp(fN)|;
small. Please note that the function space F may or may not include the target function,
i.e., the Bayes classifier. If the loss is viewed as a random variable that maps predicted
outputs fy(z) to real numbers, i.e., error rates with respect to true targets, the empirical
risk converges to the true risk as the number of samples N goes to infinity by the law of
large numbers:

Remp(fn) = R(fn) when N — oo. (2.5)

The next question is a way to measure how close the empirical risk of any (fixed) clas-
sifier f to its true risk. Note that for its simplicity we assume that f does not de-
pend on data samples. Hoeffding’s inequality provides an upper bound of the probability
that the difference between the sample average of random variables and its true expec-
tation is smaller than some arbitrary number. Without loss of generality, suppose that
Z1 = L, f(z1)), -+, Zn = L(yn, f(zN)) are i.i.d. random variables bounded in the
range [0, 1], which allows us to rewrite the difference between two risks as follows

N
1
Remp(f) = R(f) = & z Zn—E[Z]. (2.6)
Then, for all € > 0, we have
1 N
2
P( N;Zn ~E[Z]| > e) < 2exp(—2Neé?). (2.7)

If we denote the r.h.s. of Eq. (2.7) by 6, ie., 0§ = 2exp(—2Ne?), it tells us that with

probability at least 1 — ¢ the difference between the empirical risk % ij:l U yn, f(z))
and the true risk Exy [((Y, f(X))] is within a certain constant e. We can interpret &
as a significance level or 100 x (1 — )% as confidence where its confidence interval is
[E[Z] — €,E[Z] + €]. To be more precise, we can rewrite Eq. (2.7) as follows

%iZn—]E[Z]

n=1

<e€ (2.8)

which holds with probability at least 1 — §. We can interpret € as accuracy of the empirical
risk with respect to the true risk. Furthermore, we can derive an interesting relationship
between the number of samples N and the two parameters of Hoeffding’s inequality 9, €:

2
5
As expected, Eq. (2.9) shows that to increase the accuracy e and significance 9§, we need
more training samples. Rearranging N and € in Eq. (2.9) and plugging it into Eq. (2.8), we
have the following relationship between the true risk and empirical risk of any classifier f:

1

R(f) < Remp(f) + \| == log —. (2.10)

Note that this bound holds only if we use an arbitrary but fixed classifier f that does not
change depending on training samples.
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Figure 2.1: lllustration of the regret decomposition.

Consistency We now have an upper bound of the empirical risk. Given a set of train-
ing examples D = {(mn,yn)}ﬁ;l following a fized (but unknown) probability distribution
P(X,Y), let A be a learning algorithm that chooses a function (i.e., classifier) fy from a
set of measurable functions F.! If the risk of fy, i.e., R(fy), approaches the Bayes risk
R* with high probability as the number of training examples gets large, A is called Bayes
consistent with respect to the probability distribution P(X,Y") and a loss function ¢ used
for calculating the risk:

P(R(fn) —R(f*) >€) -0 as N — oo,Ve> 0. (2.11)

Note that we can interpret R(fy) as a random variable that measures fx estimated by A
on given a finite number of sample data D. The difference between the risk of fy and the
Bayes classifier f* is often referred to as excess risk or regret

regret, p(fn) = R{fx) — R(f*) (2.12)

which can be decomposed into two terms:

R(fy) = R(F) = (RUfw) = mER(D) + (WER(N - R(). (219

The first term is called the estimation error and the second one is the approrimation error.
The estimation error measures how much the function fy is close to the best possible function
in the function space F while the approximation error measures the discrepancy between the
optimal error in F and the Bayes risk. The error decomposition is illustrated in Figure 2.1.
When a larger function space is considered for A, the approximation error decreases while
the estimation error may increase. On the other hand, a smaller function space F allows to
decrease the estimation error, but this may result in higher approximation error depending
on F. There is a tradeoff between both errors, which is also known as the bias-variance
trade-off. Usually it is hard to estimate the approximation error since it requires knowledge
about the target such as P(Y|X). In machine learning we make assumptions on the optimal
functions fr so as to minimize the estimation error.

2.2 Multi-label Classification

Multi-label classification (MLC) is the task of learning a function f that maps inputs to
subsets of a label set £ = {1,2,---, L}. Consider a set of N samples D = {(z,,y,,)}"

n=1’

1 Informally, a function is measurable if its outcome is not infinitely sensitive to small changes in input.
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Figure 2.2: The estimation error and approximation error vary according to the complexity of the
function space F.

Table 2.1: An example of multi-label instances

features labels
T T2 T3 Ty Ts Tg T Ty Y Y2 Ys Y4
—1.5 0.0 1.8 0.4 0.7 1.0 —-14 04(1 0 1 0
Training 1.9 09 -0.1 0.8 0.8 1.1 —-0.9 05({0 0 1 1
dataset —0.8 0.1 01 -23 0.7 —-14 08 —-13|1 1 0 1
D 0.9 0.0 1.1 02 -01 -04 —-12 =010 0 1 O
—-1.3 -1.3 0.2 1.3 -14 -17 —-11 —-03]0 1 0 O
—-09 -—-14 0.8 —0.2 0.1 1.3 00 =031 1 1 O
Test —05 —14 o9 -09 -06 -08 —-02 =277 7 7 7
dataset 0.3 0.8 —-03 —-05 —-0.6 0.5 02 -09|°? ? 7 7
DY —08 —-14 1.0 -1.1 0.6 —-2.0 0.9 o872 72 7 7

each of which consists of an input  and its target y. The pairs (z,,y,,) are assumed to be
i.i.d. random variables following an unknown distribution P(X,Y").We let T,, = |y,,| denote
the size of the label set associated to x,, and C' = % 25:1 T, the cardinality of D, which
is usually much smaller than L. Often, it is convenient to view the target y not as a subset
of £ but as a binary vector of size L, i.e., y € {0,1}. Let us denote a set of N;; unseen
instances by D" = {(z¥, y¥) 1]—;[51 following the same unknown distribution P(X,Y). Once
the function f is learned from D, at test time, we use f to make predictions " for given z".
The goal of learning f is to minimize the expected loss of instances following the underlying
distribution P:

tin By p (¢ (9. /(@) (2.14)

Table 2.1 shows exemplary training and test instances. We have 6 training instances repre-
sented in 8 features and each instance is associated with 4 dimensional binary vector. The
label vectors y contain multiple elements of 1. Given the training instances, we want to find
the most probable label vectors y € {0, 1}4 for the given input features of 3 test instances.

In a probabilistic point of view, MLC can be understood as a task of estimating the
underlying distribution P(X,Y’) from the training dataset D. Since in MLC instances x
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are available, it would be easier to estimate the conditional distribution of labels Y given an
instance , i.e., P(Y|X = z), than the complete joint distribution P(X,Y).
Assigning a subset of labels to an instance is equivalent to predicting the most probable

label subset out of a label powerset Sp, = {0, {1},{2},---,{1,2,---,L}}. To achieve the
goal, ideally, we need to calculate the joint probability of labels for a given instance:

P (y|z) = P (y1, 92, - ,ylz) (2.15)

where y € {0,1}. Then, a label subset which yields the maximum value is chosen as
an output. As the computational complexity of finding the maximum value of the joint
probability of labels grows exponentially in the number of labels, i.c., |Sy| = 2F, one can
come up with a simpler solution by estimating the marginal probability of each label based
on the strong assumption that labels are independent conditional on 2. That is, the joint
probability of labels can be factorized as

L
P(ylz) = | P(yi = 1]x) (2.16)
i=1
where y; = 1 denotes label ¢ is associated with a given instance x. Although such an

assumption allows us to reduce the complexity from O(2%) to O(L), it yields a suboptimal
solution to estimating the joint probability of labels.

Let us explain why the joint probability is needed for choosing the most relevant label
subset with a concrete example. Let Y = {Y7,Y52} be a label space and Y; be binary
random variables. Table 2.2 shows an example of the joint probability P(Y = y|x) and the
marginal probabilities P(Y; = yi|®) and P(Ys = yo|).

Table 2.2: An example of the joint probability of labels Y = {7, Y5>} given an instance z.

P(Y|a) |51 P(ale)

0 [[00]04 0.4
Y2 11037103 0.6

| PMz) [[03]07] 1

*

Let us denote by g5, . = {yj*oint 1 Yioint ,} the mode of the joint probability of labels and

yri1o) the set of the mode of the marginal probabilities. In this
ginal,

yrrlarginal - {yrtlarginal,l’
example, the mode of the joint probability of labels is yjfkoint = {1,0} where we have the
foing @) = 0.4. By summing P (Y3, Y2|z) for all possible
values of Y;, we obtain the marginal probabilities P(Y7|z) and P(Y2|x). As can be seen in
Table 2.2, we have y* = {1, 1} and it does not match the mode of the joint probability

marginal
of labels:

maximum joint probability P(Y =y

* *
yjoint # ymarginal

Although there are few exceptions where the relationship between y;‘oint and y:‘narginal does
not hold (which shall be discussed shortly), in general, one needs to take the joint probability
of labels into account when building a MLC system (Dembczynski et al., 2010). Hence, the
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Table 2.3: Example-based evaluation

Target labels Predicted labels Subset accuracy
Yi Y2 Ys Ys o U1 U2 Uz Ua ((y,9y)
1 0 1 0 0 1 1 0 0
o 0 1 1 1 0 1 0 0
1 1 0 1 1 1 0 1 1
0 0 1 0 0 0 1 0 1
0 1 0 O 1 0 0 0 0
1 1 1 0 1 1 0 1 0
0.33

key issue of MLC is how to design classification systems estimating the joint probability
of labels under some constraints related to problem domains, the scale of the problem, the
availability of resources, etc.

An obvious way of evaluating MLC systems is to count how many times the systems
predict a subset of labels correctly with respect to the target label subset. Depending on the
goals of MLC systems, however, we are interested in different aspects of system outputs to
get a better understanding of problems and results of our design choices. In the next section,
we will discuss several evaluation measures that are widely used in the literature.

2.2.1 Evaluation Measures for Multi-label Classification

MLC algorithms can be evaluated with multiple measures which capture different aspects
of the problem. We evaluate all methods in terms of both example-based and label-based
measures.

Example-based measures are defined by comparing, for each example, the target vector
¥y ={v1,y2, -+ ,yr} to the prediction vector §y = {91, 92, - ,yr} for a given example, and
averaging the results over all examples.

Subset accuracy (ACC) checks whether a predicted label vector y matches its target exactly
or not as follows

ACC (y,y) =Ty = 9] (2.17)

where I[-] returns 1 if its argument is true otherwise 0. It is very strict to incorrectly
predicted labels in that it does not allow any deviation in the predicted label set.
Hamming accuracy (HA) computes how many labels are correctly predicted in y:

HA (y,y) =

el

1 L
PRITESNE (2.18)
j=1

Both, ACC and HA can be used for datasets with moderate label set sizes L. If the label
cardinality of a dataset is higher, entirely correct predictions become increasingly unlikely,
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and therefore ACC often approaches 0. In this case, the example-based Fy-measure (ebF7)
can be considered as a good compromise:

L .
223‘:1 Y5Y;

L L .

Zj:l Yj + Zj:l Yj

A concrete example of example-based evaluation using ACC is shown in Table 2.3.
MLC also can be viewed as a ranking problem. In order to evaluate the quality of a ranked

ebF’l (y7 il) =

(2.19)

list, we consider several ranking measures (Schapire and Singer, 2000). Given an instance
x and associated label information gy, consider a multi-label learner fy(z) that is able to
produce scores for each label. These scores, then, can be sorted in descending order. Let
r(y) be the rank of a label y in the sorted list of labels. The most intuitive objective for MLC
is to minimize the number of misorderings between a pair of relevant label and irrelevant

label. This is called the rank loss (RL):

RL (4.5) = w(y) > 10 > i) + 51 = i) (2.20)

Yi<Yj

where w(y) is a normalization factor, I(+) is the indicator function.
One error (1-err) evaluates whether the top most ranked label with the highest score is a
positive label or not:

lerr (y,9) =I(r (1) ¢ y) (2.21)

where 7~ 1(1) indicates the index of a label positioning on the first place in the sorted list of
predicted labels 4.

Coverage (Cov) measures on average how far one needs to go down the ranked list of labels
to achieve recall of 100%:

Cov (y,y) = maxr(y;) — 1 (2.22)
Yi€y

Awverage precision (AvgP) measures the average fraction of labels preceding relevant labels
in the ranked list of labels:

Zl{ygeyh"( yi) < r(yi)}

AvgP (y,9)
|y| = (yi)

(2.23)

Label-based measures are based on treating each label y; as a separate two-class prediction
problem, and computing the number of true positives (tp;), false positives (fp;) and false
negatives (fn;) for this label as follows

tpj = > Llynj = 1 Adinj = 1]

n=1
fpj = Z Lynj = 1A gnj = 0] (2.24)
n=1
= > Tlynj = 0 Adinj = 1]
n=1
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Table 2.4: Label-based evaluation

Target labels Predicted labels Macro-averaged Fj
y tp _fp In
y1/1 0 1 0 0 1 0110 1 1 2 2 1
|0 0 1 0 1 1 1 01 0 0 1 2 1 1 0.68
y3 |1 1 0 1 0 1 1101 0 0 3 0 O ‘
Y40 1 1 0 0 O 0 01 0 0 1 1 1 1

We consider two label-based measures, micro-averaged Fy (miF})

L
wir (v.¥) = 202
1 5 = )
Zle 2tp; + fo; + f;

and macro-averaged Fy (maF7)

mal; (Y Y) = li 2tpj
LA L &4 2tp; + fp; + fn;

where Y is the N X L matrix where y,; correspond to the true label j of the n-th instance

Z,, and Y is the matrix of predictions ¢y,;.

While miF} favors a system yielding good predictions on majority labels, higher maF}
scores are usually attributed to superior performance on minority labels. Table 2.4 shows how
to calculate mafF} on the same pairs of the target and predicted label vectors as Table 2.3.

2.2.2 Risk Minimization for Multi-label Classification

We have discussed several evaluation measures commonly used in the context of MLC in the
previous section. Although we want to build MLC systems that perform well across multiple
measures, it is a very challenging objective to achieve the goal in general. In other words, it is
likely that a system yielding good performance in terms of a certain evaluation measure may
perform worse in another measure. In this section we will discuss the relationship between
different models, each of which is trained to minimize different loss functions.

The goal of MLC is to find an optimal function f* that minimizes the expected loss on
an unknown sample drawn from P(X,Y):

= arg;nin Exy [((Y, f(X))]

= arg;nin Ex [Eyx [((Y, f(X))]]. (2.25)

While the expected risk minimization over P(X,Y’) is intractable, for a given observation
Z it can be simplified to

f(z) = afg;HiHEnX (Y, f(z))]

(2.26)
= arg;ninj (Y, f(z))dP(Y|X = z).
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Let us consider two evaluation measures: HA and ACC. Whereas HA calculates the pre-
diction accuracy per label independently, ACC favors only prediction results ¢ that match
their targets y exactly. Since we want to minimize risk, let ¢, (y,y) and /5 (y,y) be the
Hamming loss and subset 0/1 loss, respectively, as follows

L

b (w3) = 7 1l # ) (2.27)
j=1

o (,9) = Tly # ] (2.29

where both y and y are L-dimensional binary vectors. Using the loss functions, let us denote
the optimal functions in terms of the Hamming loss and subset 0/1 loss given by

fr(x) = arg;nin Eyx [¢n (Y, f (z))] (2.29)

fi(z) = arg;nin By x [l (Y, f (2))] (2.30)

where f;(x) and f;(z) denote Bayes classifiers in terms of the Hamming loss and subset
0/1 loss, respectively.

Let us begin with calculating the Bayes classifier with respect to the subset 0/1 loss. Since
both targets y and predictions y are defined as binary (discrete) vectors, we can calculate
the expected loss of predictions g that a function f returns for given x as follows

Eyix [l (Y. )] = Y l(y. ) P(Y =y|X = z)
=D (1-Ily=g)PY =y|X = 2) (2.31)

=D PY=yX=2)- > Iy=4/P(Y =y|X =z).

In fact, the second term on the r.h.s. of Eq. (2.31) is calculated by a summation over 2
label configurations. We also know that the function output ¢ is fixed given a function,
which enables us to factorize the second term into two parts. One is the joint probability
of y which is equal to y. The other is the sum of the joint probabilities of the rest of label
combinations, which is equal to zero. More precisely, we can rewrite the second term on the
r.h.s. of Eq. (2.31) as follows

DIly=9P(Y =y X =2)=P(Y =§|X =)
Y

+ O Iy =9PY =ylX =2) (232
g#@

J

=0 because of I[y=y]=0,Vy in the sum

=PY =yl X =2). (2.33)
Plugging Eq. (2.33) into Eq. (2.31), we have

Eyvix [l (Y. 9)]=1-PY =y

X = z2). (2.34)
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Thus, the expected risk minimization in terms of the subset 0/1 loss is equivalent to finding
a mode of the joint probability of labels Y given instances & and the Bayes classifier is given
by
fi(z) =argmax P(Y = 9| X = z). (2.35)
f

Similarly, we can also calculate the Bayes classifier in terms of the Hamming loss. Let us
rewrite the expected risk in terms of the Hamming loss using definition of the loss function
as follows

Eyx [(n (Y th (y,9) P(Y =y|X = 2)
1 0 L . (2.36)
-1 Z (6 (w1, 91) + -+ 05 (yr, 90)) P(Y = y|X = 2)
Y1,Y2, YL
yj€{071}

where E{l (yj,jj) =1 [yj #+ j]] As the hamming loss treats each label independently that
allows us to assume labels y; are conditionally independent, we can factorize the summation
on the r.h.s. of Eq. (2.36) as follows

Y1,Y2, YL
yj€{071}

— Z (1=1I[y1 =) PY1r=wn|X =x)

yle{ovl}
+ D, (1=T[y =) P(Ya = 1o X = x) (2.37)
yZE{Ovl}
tot > (= Ty = i) PV = yrl X = 2)
yLe{Ovl}

=L- > P(Y; =X =x).

In turn, substitution of Eq. (2.36) with Eq. (2.37) gives

b« |

L
Eyx [n (Y, 9)] = Z X =ug). (2.38)

The expected risk minimization in terms of the hamming loss is equivalent to finding L
marginal modes of Y} given instances Z independently, and the Bayes classifier is given by

fi(x) = {argmax P(Y; = 1| X = x),--- ,argmax P(Y, = g | X = x)}. (2.39)
f1 fr

In contrast to that the Bayes classifier for the subset 0/1 loss fX() requires the joint
probability distribution of labels, we can obtain the Bayes classifier for the hamming loss
f7(x) only needs marginal distributions of individual labels.
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Table 2.5: The Bayes classifiers for the Hamming loss and subset 0/1 loss are identical if (a) labels
are conditionally independent or (b) the joint mode of labels are greater than or equal to 0.5.

(a) (b)
N Y1
P(Y|z) \—5 1 P(Ys|z) P(Y|z) |—5 I P(Ys|z)
0 [[0.12]0.18 0.3 0 [[06]0.1 0.7
Y2 1028 1042 07 21 10102 0.3
oo oa oo 1] PO o051

As shown already in Table 2.2, the mode of the joint distribution of labels may differ
from a set of marginal modes of individual labels except for two conditions where the Bayes
classifiers for the subset 0/1 loss and hamming loss coincide. Assuming that all labels are
conditionally independent given instances such that P(Yy,Ys, - Yp|2) = l_[f:1 P(Yj|z),
fr(x) and f(x) are same. When a probability assigned to a single label configuration is
greater or equal to 0.5, i.e., P(Y = fi(x)|X = x) > 0.5, f(z) and f}(z) also return the
same function output. Table 2.5 shows two examples of such a probability distribution of
labels.

We have discussed that the hamming loss and subset 0/1 loss lead us to different optimal
functions. One can be obtained by ignoring label dependence completely, but the other
seeks a label configuration that yields the highest probability over the entire label space.
Due to the difference, it is unable to find a universal classifier that performs well across all
measures. For example, Dembczynski et al. (2012b) have analyzed that the regret in terms
of the subset 0/1 loss for the hamming loss is quite high and vice versa.

To be more specific, let us consider the regret of the Bayes classifier for the hamming loss
in terms of the subset 0/1 loss. In other words, we compare the performance of f; and f;
using the subset 0/1 loss. The upper bound of the regret is given by

By x[ls(Y, f (2))] — Eyix [(s (Y, f5 (z))] <0.5. (2.40)

Please note that the risk of f and fJ in terms of the subset 0/1 loss are identical when
P(Y = f;(x)|X = x) > 0.5, so that the risk of f is greater than 0.5 if f differs from f7.
It is also worth noting that the risk of any classifier f is bounded by [0, 1].

The regret of fI in terms of the hamming loss has the following upper bound for L > 3:

L—-2

Eyx [(n (Y, f5 ()] — By x[(n(Y, f5(2))] < 12 (2.41)

For more details, please refer to (Dembczyniski et al., 2012b).

In this section, we have shown that an optimal function for a certain evaluation measure
may perform worse in terms of another measure. Hence, it is crucial to determine which
evaluation measure will be optimized and to make sure the objective of a MLC system is
consistent with respect to the measure of interest.

2.2.3 Multi-label Learning Algorithms

In this section, we discuss various existing approaches for MLC. The most straightforward
way to tackle MLC is binary relevance (BR); it constructs L binary classifiers, which are
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trained on the L labels independently. Thus, the prediction of the label set is composed
of independent predictions for individual labels. Its predictive performance highly depends
on a base learner. Support vector machines (SVMs), logistic regression (LR) and neural
networks (NNs) are most commonly used in the literature for BR. The major drawback of
BR is that the label dependence is ignored, so that we cannot make use of the interesting
characteristics in MLC problems, namely that the presence of a specific label may suppress
or exhibit the likelihood of other labels.

Learning from pairwise label dependencies. Instead of training L independent classifiers
in which label correlations are ignored, several approaches exploit the label dependence di-
rectly in a single learning framework. A straightforward extension is to consider pairwise
relationships between two labels. Elisseeff and Weston (2001) present a large-margin clas-
sifier, RankSVM, that minimizes a ranking loss by penalizing incorrectly ordered pairs of
labels. This setting can be used for MLC by assuming that the ranking algorithm has to rank
each relevant label before each irrelevant label. In order to make a prediction, the ranking
has to be calibrated (Fiirnkranz et al., 2008), i.e., a threshold has to be found that splits the
ranking into relevant and irrelevant labels. Similarly, Zhang and Zhou (2006) introduced a
framework that learns pairwise ranking errors in NNs, backpropagation for multi-label learn-
ing (BP-MLL). Pairwise label dependencies are also used in graphical models for maximizing
subset accuracy (Ghamrawi and McCallum, 2005).

The methods based on pairwise comparisons have several limitations although they achieve
competitive performance on the standard MLC benchmark datasets. Obviously, the total
number of pairwise label dependencies affects the computational complexity, which grows
quadratically in L. Thus, pairwise comparison based approaches do not scale on large
data sets, specifically in the number of labels. Another limitation is the inability of learning
higher-order dependencies which large-scale real-world datasets may contain more frequently
than small benchmark datasets.

Subset accuracy maximization. To capture higher-order relationships among labels, there
has been a family of approaches that attempt to classify a set of labels correctly instead
of individual labels independently as in BR. The simplest approach in this direction, often
referred to as subset accuracy maximization, is label powerset (LP). It reduces multi-label
classification into multi-class classification. In other words, LP assigns a unique class index
to each subset of labels. While LP is appealing because most methods well studied in
multi-class classification can be used, training LP models becomes intractable for large-scale
problems with an increasing number of labels. Even if the number of labels L is small
enough, the problem is still prone to suffer from data scarcity because each label subset in
LP will in general only have a few training instances. An effective solution to these problems
is to build an ensemble of LP models learning from randomly constructed small label subset
spaces (Tsoumakas et al., 2011).

An alternative approach is to learn the joint probability of labels, which is again pro-
hibitively expensive due to 2” label configurations. To address this problem, Dembczynski
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et al. (2010) have proposed probabilistic classifier chain (PCC) which decomposes the joint
probability into L conditional probabilities:

L
Pyt y2,- - ,yLlz) = l_[P(yz-lyQ-,x) (2.42)
=1
where y_; = {y1,---,yi—1} denotes a set of labels that precede a label y; in computing

conditional probabilities, and y; = @ if ¢ = 1. For training PCCs, L functions need
to be learned independently to construct a probability tree with 2% leaf nodes. In other
words, PCCs construct a perfect binary tree of height L in which every node except the
root node corresponds to a binary classifier. Therefore, obtaining the exact solution of such
a probabilistic tree requires to find an optimal path from the root to a leaf node. A naive
approach for doing so requires 2 path evaluations in the inference step, and is therefore also
intractable. However, several approaches have been proposed to reduce the computational
complexity (Dembezynski et al., 2012; Kumar et al., 2013; Mena et al., 2015; Read et al.,
2014).

Apart from the computational issue, PCCs have also a few fundamental problems. One
of them is a cascadation of errors as the length of a chain gets longer (Senge et al., 2014).
During training, the classifiers f; in the chain are trained to reduce the errors £(y;, 3;) by
enriching the input vectors & with the corresponding previous true targets y_; as additional
features. In contrast, at test time, f; generates samples y; or estimates P(¢;|z,y;) where
Y; are obtained from the preceding classifiers fi,--- , fi_1.

Another key limitation of PCCs is that the classifiers f; are trained independently accord-
ing to a fixed label order, so that each classifier is only able to make predictions with respect
to a single label in a chain of labels. Regardless of the order of labels, the product of condi-
tional probabilities in Equation (2.15) represents the joint probability of labels by the chain
rule, but in practice the label order in a chain has an impact on estimating the conditional
probabilities. This issue was addressed in the past by ensemble averaging (Dembczynski
et al., 2010; Read et al., 2011), ensemble pruning (Li and Zhou, 2013) or by a previous
analysis of the label dependencies, e.g., by Bayes nets (Sucar et al., 2014), and selecting the
ordering accordingly. Similar methods learning a global order over the labels have been pro-
posed by Kumar et al. (2013), who use kernel target alignment to order the chain according
to the difficulty of the single-label problems, and by Liu and Tsang (2015), who formulate
the problem of finding the globally optimal label order as a dynamic programming problem.

Subset accuracy maximization has been also addressed by graphical models which extend
conditional random field (CRF) to MLC. Similar to CRFs, Ghamrawi and McCallum (2005)
propose collective multi-label classifier (CML) and collective multi-label with feature classifier
(CMLF) that define feature functions over pairs of label and input, and over pairwise label
sets. The joint probability of labels given instances is then computed by the sum of all
feature functions, followed by normalization. CML and CMLF have also the increasing
complexity with respect to the possible number of label pairs. Li et al. (2016) introduce
conditional Bernoulli miztures (CBMs), which are an extension of Bernoulli mixtures used
for multivariate density estimation in order to learn the joint distribution of labels in MLC.
CBM learns a mixture of conditional binary label distributions, each of which represents the
probability of a label given an instance. In contrast to CML and CMLF, CBM’s complexity
grows linearly in L because it does not rely on label pairs to estimate the joint probability.
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Exploiting label structures. In hierarchical multi-label classification (HMLC) labels are
explicitly organized in a tree usually denoting a is-a or composed-of relation. Several ap-
proaches to HMLC have been proposed which replicate this structure with a hierarchy of
classifiers which predict the paths to the correct labels (Cesa-Bianchi et al., 2006; Vens et al.,
2008; Zimek et al., 2010). Although there is evidence that exploiting the hierarchical struc-
ture in this way has advantages over the flat approach (Bi and Kwok, 2011; Cesa-Bianchi
et al., 2006; Vens et al., 2008), some authors unexpectedly found that ignoring the hierarchi-
cal structure gives better results. For example, in (Zimek et al., 2010) it is claimed that if a
strong flat classification algorithm is used the lead vanishes. Similarly, in (Vens et al., 2008)
it was found that learning a single decision tree which predicts probability distributions at
the leaves outperforms a hierarchy of decision trees. One of the reasons may be that hier-
archical relations in the output space are often not in accordance with the input space, as
claimed by Fiirnkranz and Sima (2010) and Zimek et al. (2010).

Lower dimensional label spaces. One of the most challenging problems in MLC is how to
build systems that have the capability to handle a large number of unique labels efficiently.
Given that the number of relevant labels per instance on average is much smaller than L,
possibly, we need only a few key underlying factors that explain the original label combina-
tions. Dimensionality reduction is a way of reducing the number of variables in an original
problem space by ignoring uninformative variance in data. The key objective of dimension-
ality reduction is to find projections under the assumption that data can be represented by
the weighted sum of the projections. As dimensionality reduction enables us to extract key
lower dimensional factors from data, prediction models, which project the high dimensional
data into the lower dimensional space, often achieve better predictive performance.

In MLC, several approaches have been proposed to tackle the high-dimensional label space
problems. Tai and Lin (2012) propose a simple approach, called principal label space trans-
formation (PLST), that projects the original label vectors onto the lower dimensional space
by using a small number of principal components, say K, obtained by singular value decom-
position (SVD). The projections are K-dimensional real-valued vectors whereas the original
label vectors are L-dimensional binary vectors {0, 1}¥. It solves, in turn, a multidimensional
regression problem to learn the relationship between inputs and the projected label vectors.
At test time, PLST predicts K responses for a given input, then converts the estimated label
projection to the original label space. Compressed sensing (CS) by Hsu et al. (2009) aims
to reduce the dimensionality of label spaces, but takes a different approach from PLST. CS
projects the original label vectors by a random projection matrix unlike PLST, which uses
a projection matrix obtained by SVD. CS, then, recovers the original label vectors from the
projections which minimize prediction errors while taking the sparsity on the original label
space into account.

Both CS and PLST consist of two disjoint components; one transforms the label vectors
into a lower dimensional space and the other learns multiple regressors to predict the label
projections from inputs, where the two components yield the encoding error and the pre-
diction error, respectively. Another limitation is that only label relationships are considered
when they project labels into the lower dimensional space.

Kapoor et al. (2012) propose an extension of CS in a Bayesian framework which allows us
to minimize the label compression error and prediction error jointly. Furthermore, it enables
to handle missing labels. Conditional principal label space transformation (CPLST) by Chen
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and Lin (2012) exploits relationships between features and labels as well as between labels
in computing label subspaces unlike PLST. Chen and Lin (2012) show also CPLST with
kernel regression that significantly outperforms CPLST with linear regression. Label space
dimensionality reduction (LSDR) approaches usually define a label transformation matrix
explicitly, but Lin et al. (2014) propose a LSDR method, called feature-aware implicit label
space encoding (FalE), which enables to obtain lower dimensional label representations even
without such a transformation matrix.

LSDR methods only project high-dimensional label spaces into lower dimensional sub-
spaces. Although CPLST and FalE take inputs into consideration when computing lower
dimensional label representations, no mapping functions from inputs to such a lower dimen-
sional space are learned.

To leverage input-label relationships more explicitly, one may consider canonical correla-
tion analysis (CCA) (Hotelling, 1936) that finds a pair of transformation matrices {W;, Wa}
such that input projections by W; are maximally correlated with label projections by Ws. In
other words, both inputs and label vectors can be projected onto a shared subspace, where
an input projection and its corresponding label projection have maximum correlation with
each other. Several CCA extensions for MLC including sparse CCA were proposed by Sun
et al. (2011), where it is shown that CCA can be formulated as a least square problem. Zhang
and Schneider (2011) also use CCA to compute a transformation matrix of label vectors in
an error-correcting output code framework for MLC. The directions resulted from vanilla
CCA are, in principle, linear transformations which cannot capture complex correlations,
i.e., nonlinear relationships, between inputs and labels. Canonical-correlated autoencoder
(C2AE) (Yeh et al., 2017) extends CCA by using deep neural networks (DNNs) as nonlinear
functions to project both inputs and labels into a subspace jointly.

Extreme classification. In the literature, some multi-label datasets have more than a mil-
lion labels. Extreme multi-label classification (XMLC) is the problem of learning a multi-label
classifier on datasets with extremely many labels. XMLC datasets may have labeling noise
or missing labels because of the large number of possible labels. LSDR approaches, in princi-
ple, are employed to address XMLC problems, but the aforementioned methods cannot deal
with missing labels. A general framework considering missing labels, referred to as low-rank
risk minimization for multi-label learning (LEML), was proposed by Yu et al. (2014) based
on the low-rank assumption on a linear transformation from inputs to labels.

XMLC datasets often have a few number of frequent labels while the majority of labels
have a small number of training instances, called infrequent or tail labels. The low-rank ap-
proximation violates on such a label matrix, so that tail labels cannot be well approximated.
In (Xu et al., 2016), robust extreme multi-label learning (REML) focuses on modeling tail
labels as well as learning the low-rank matrix, where tail labels are treated as outliers and a
label sparsity constraint is used. REML works better than LEML at predicting rare labels.
Another approach to the tail label problem is to exploit neighborhood information on a label
space. Bhatia et al. (2015) propose a method for learning local label embeddings, referred
to as sparse local embeddings for extreme multi-label classification (SLEEC), by preserving
pairwise distances between labels in a local neighborhood.

For faster learning and inference, one may consider tree-based approaches which allow
to build XMLC models with the logarithmic complexity in terms of the number of labels
and/or instances. A decision tree based approach, called FastXML (Prabhu and Varma,
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Figure 2.3: Directed graph representing a simple artificial neural network

2014), constructs an ensemble of decision trees, where internal nodes are associated with
linear classifiers and trained to maximize top-k ranking of labels. Another tree based ap-
proach (Jasinska et al., 2016) makes use probabilistic label tree (PLT). Unlike FastXML that
learns tree structures during training, PLTs create a fixed full binary tree and all nodes in
the tree are associated with a linear classifier which decides whether instances are passed
down toward the leaves or not. Leaf nodes in PLT correspond to labels.

2.3 Fundamentals of Neural Networks

An artificial neural network (ANN) is a computational model that can be represented by a
directed graph in which two nodes are connected by a directed edge. In such a graph, all edges
have weights that represent the strength of the connections between nodes. As an example,
let us consider a directed graph with 4 nodes where three nodes {1, x2, z3} have directed
edges to a node y as shown in Fig. 2.3. This can be interpreted as the information that
{1, 9,3} have flows to y with the corresponding weights {wy, ws, w3}. The information
y has can be calculated by the weighted sum of all incoming information from {z1, 2, 3},
followed by some activation function f, e.g., sigmoid function f(z) = m, denoted
by y = f (w121 + waxg + wsxs). The output of f is often referred to as activation. ANNs
have multiple groups of nodes, called layers, and inter-connections between layers while no
intra-connections between nodes in the same layer.

2.3.1 Feed-forward Neural Networks

One of the simplest ANNs is a feed-forward neural network (FNN), or called multi-layer
perceptron (MLP), which has no cyclic connections. For solving a classification problem
with three mutually exclusive classes, let us consider a FNN which consists of one input,
hidden and output layer with two sets of edges, called weights {W(l),W(2)}, illustrated
in Figure 2.4. The goal of the problem is to classify instances into the most probable class
correctly. The input layer and hidden layer are connected with WO e Ro*4, Similarly, the
other set of weights W@ e R3*5 connects the hidden layer to the output layer. Please note
that we initialize the weights with arbitrary values. The input layer receives 4-dimensional
vectors such that x = [ml,xg,atg,x4]T. Subsequently, the activations in the hidden layer
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Figure 2.4: A feed-forward neural network with 4 input dimensions, 5 hidden units and 3 outputs.

are calculated by the weighted sum of inputs x, followed by the sigmoid function to obtain
non-linear outputs in terms of inputs:

2 = w! )ZEd (2.43)

hj = f(z) (2.44)
where w(? is an element of the weight matrix W) at row 7 and column k, and f denotes
the sigmoid function. Please note that we ignore bias terms throughout this thesis for
notational convenience. Given the hidden activations h, the activations in the output layer
can be computed in a similar way as follows

H
0= wh;. (2.45)
j=1

The probability of each class ¢ being predicted given instances is, then, calculated by the
softmaz function as follows

exp(o;
pi = Plys = 1jx) = <o)

e oxp(ox)

which satisfies 0 < p; < 1 and Zz p; = 1. In turn, the most probable class label ¢ is chosen
by taking the index of the class that has the highest probability among all possible classes:

(2.46)

U = arg max p;. (2.47)
(2

The performance of the network can be evaluated by, for instance, counting how many
times the network predictions ¢ match correctly the actual targets y on a dataset. Since we
initialized W) and W@ with arbitrary values, the predictions § will be rather random

initially.
The goal of learning the FNN in Fig. 2.4 is to find the optimal set of weights denoted
by W* and W®* that allow to make correct predictions. In other words, our goal is to
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minimize misclassification rate by tuning the model parameters, i.e., {W® W@}, given
the training dataset D = {(x,, yn)}g:1 where x,, is the D-dimensional vector and y,, is the
L-dimensional one-hot vector. Let us define the objective function of the FNN in Figure 2.4
at a given training data point (x,y) by using the cross entropy loss as follows

L
LW, WEix,y) = >y, log(ps). (248)

To find a local minimum of the objective function in Eq. (2.48), one can use gradient descent
which is a first-order optimization method that uses the first derivatives of a function. Note
that E(W(l),W(Q);X, y) is a function of two variables W), W) and that the output
probability p = [p1,p2, - ,pL]T results from the composition of multiple functions of x
given the weights {W(l), W(Q)}. For the sake of simplicity, we denote the loss function by
L in the following derivations. The update rule of gradient descent for the parameters is

given by
oL
(32 ) (32 : )] (2.49)
8wij
oL
g(}i) — wj(d) 1 (2.50)
8wjd

where 17 € R denotes a step size in gradient descent, and wj(.ii) and wl.(]?)

are elements of W)
and W(Q), respectively. By applying the chain rule to Eq. (2.48), the partial derivative of

the loss function with respect to w(z) is given by

oL L Do,
ow® — 00i gy

(2.51)

Let us calculate the second term of the right hand side in Eq. (2.51). The gradient of the
(2)

network’s output at node ¢ in the output layer with respect to output weights w; i can be
calculated as
(2)
8w.2 o 2) Zw i
ij
= hj. (2.52)
Given Egs. (2.46) and (2.48), the next term 0L/0o; can be represented as follows
oL o
iy (2.53)
801 8pk 00;

As the prediction probabilities p; are obtained by the softmaxz function in Eq. (2.46) which
requires all network outputs o;, we have the right hand side of Eq. (2.53) as follows

oL 0L Op; Z oL Opy,
do;  Op; Do, Opi, 00;

(2.54)
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Let us take the derivative of the loss function with respect to its inputs, i.e., the prediction
probabilities p;:

L
= —yi log(pr)
apz Di kz

S (2.55)

pz‘

The derivative dpy/do; of the prediction probability py with respect to the network output
0; can be calculated as follows

0 (1 —p; if k=1
Opr _ | pi(1—pi) ik =i (2.56)
00; —DkDi if k=1
Replacing Eq. (2.54) with Eq. (2.55) and Eq. (2.56), we have
oL
a_ p2<1 — Di +Z__ pkpz) (257)
0; Di =z D
= —yi(1—pi) + D ykps (2.58)
ki
= —Vi T Dl +pz‘zyk (2.59)
ki
=Di— Yi (2.60)

By substituting the right hand side of Eq. (2.51) with Eq. (2.60) and Eq. (2.52), we then
have

oL AL Do,

= (pi — ¥i)h; (2.61)

The resulting partial derivative 9L/ 8w§;) in Eq. (2.61) indicates that weights wZ(JQ) will be
updated in a way to reduce the errors p; — y; proportional to hidden activations h;.

(1 )

Similarly, the partial derivative of the loss function with respect to w; is given by

oL oL oh; 0z
ow'H) a Ohj 0z; gypV)
jd jd

(2.62)

Let us calculate the first term 0L/0h; of the right hand side in Eq. (2.62). Note that the
activation of unit j in the hidden layer, namely h;, contributes to all units in the output

layer weighted by w(] ), Thus, the partial derivative of £ with respect to the hidden unit

activation hj can be written as

OL < AL Do;
= i . 2.
8hj ; 801' ahj ( 63)
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We have already obtained 0L/do; when calculating 0L/ 8wj(.ll), so the right term in the
summation needs to be calculated.

Do 0 <H (o
7 2
= — ‘ 2.64
oh; ahjzl:% u (2.64)

=w? (2.65)

Plugging Eq. (2.60) and Eq. (2.65) into Eq. (2.63) results in the following partial derivative
of £ with respect to hidden activations h;:

L

oL
o = 2w (2.66)
J i=1

The second term of algorithm 1 is the partial derivative of hidden activations h; with re-
spect to pre-activations z;. As we use the sigmoid function to apply non-linearity to z;, its
derivative can be calculated simply as follows

ah]’ . 8f<23) . i 1
8zj N (92’]' N 8zj 1+e %

= hy(1 - hy). (2.67)

(1)

Then, the derivative of z; with respect to weights w;, can be easily obtained by

8Zj

e8]
3wjd

= Xq. (2.68)

Now, replacing Eq. (2.62) with Eqs. (2.66) to (2.68) gives the following 8£/3w](.;):

L
- (Z(pi - yz‘)wg)) hj(L = hyj)zq. (2.69)

o
awjd =1

In summary, the partial derivatives of the loss function with respect to w'Y and w? are:

jd ij
9 O W N @
(l)ﬁ(W ,WEx y) = Z(pl —yi)w;;” | hi(1 = hj)za (2.70)
6wjd =1
0
E(W(l),W(Q);X, y) = (pi — yi>hj- (271)
ouw?
ij

All of the aforementioned operations in the forward and backward passes can be written in
the form of matrix-matrix multiplication. For the sake of notational convenience, we define

errors 8, € RE*! at the output layer given by

bo=P-Yy (2.72)
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where each element §; € 8, corresponds to the difference between a prediction probability
and its actual target value for each output unit. We, then, can re-write Eq. (2.71) in a vector
form as follows

Vwo L (WO WP x y)=§,h" (2.73)

where Vy(2) denotes the gradient operator with respect to W@, In a similar fashion, we
have an updated error vector 8, € R”*! for the hidden layer:

6n = (WEAT§) 0 f'(2) (2.74)

where ® denotes element-wise multiplication. Once we have the error term, we can obtain
the gradient of £ with respect to W) using the same rule as Eq. (2.73) given by

Vwn £ (WO, W2 x y) = §,x". (2.75)

We will use the matrix form of gradient computation in later parts of this chapter.

2.3.2 Neural Language Modeling

FNNs are often used for classification because they have the capability to learn the prob-
ability distribution over labels given instances. In natural language processing and speech
recognition, A language model (LM) estimates a probability distribution over a sequence of
words:

P(wl, W, W3, * - - ,wT) (2.76)

where w; denotes a word at position 7 in the sequence of length 7. The joint probability of
words can be approximated by n-gram language models as follows

T
P(wy, wy,ws, -+ ,wp) = l_[ P(w; | wi—(n—1y, Wi—(n—2), "+ ,Wi—1) (2.77)
i=1
where n is the length of truncated word sequences. Traditionally, each conditional probability
in Eq. (2.77) has been often modeled by word counts. To overcome the data sparsity problem
in count-based LMs, Bengio et al. (2003) have introduced a neural network based language
modeling approach, also known as neural language model (NLM), which learns continuous
vectors representing words. A conditional probability of predicting a word w; given its
context w¢, namely w{ = {w;_(p,—1), Wi—(n—2), "+ ,Wi—1}, can be represented by a FNN
that takes vector representations for context words as inputs and predicts the next word
in a word vocabulary V. To be more specific, let us define a matrix of word vectors by
U = [ul, ug, -, u|v|] € RP*VI where D is the dimensionality of word vectors. Such word
vectors are also referred to as word embeddings in the literature so that the terms will be
used interchangeably in this thesis. Given the context w{ and the word embeddings U, the
following input vector is fed into a FNN:

X = [uwi_(n_l); W, ()i QUwifJ (2.78)
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Figure 2.5: Given a target word w; = B at position 7 in a sequence of words and a binary tree whose
leaf nodes correspond to words V = {A, B,C, D, E, F, G, H}, the hierarchical softmax computes
the probability of choosing the path from the root v to the target node B, i.e., ]_[l(B P(cx(B) |
w¢), instead of the probabilities over 8-way decisions P(y = B | w¢).

where x is a (n — 1)D dimensional vector. The target associated with x is w;, an index
of the n-th word in n-grams. The position of the target word is not necessarily to be the
very last word in n-grams depending on an application of interest. Another way of learning
word embeddings is to predict a word given its context that surrounds the target word. In
other words, the position of a word to be predicted can be also in the middle of n-grams,
where the context of w; is w§ = {w;_|n 2], -+, Wi—1, Wiy1,"* , Wiy |n/2)}. Given the type
of context, word embeddings encode different information.

The objective of neural language modeling is to maximize the average of the conditional
log probabilities

T

ZogPy—wZ\w) (2.79)
=1

This can be also seen as a |V|-way classification problem. As the size of the word vocabulary
V for language modeling is very large in general, the computational cost at the output layer
is a bottleneck of learning such an architecture because of the matrix multiplication steps
involved in Eqs. (2.73) and (2.74) when L is greater than tens or hundreds of thousands.
As mentioned above, the most expensive computation for training a language model with
NNs is to compute probabilities at the output layer that require normalization over all
words. Instead of the vanilla softmax, one can consider a tree-based softmax (Morin and
Bengio, 2005). This reduces the computational complexity from O(L) to O(logy L) if the
tree of labels is balanced. The hierarchical softmax builds a tree of labels where leaf nodes
correspond to labels, illustrated in Figure 2.5. The probability predicting a target word w;
given its context wy is reformulated as the probability of choosing the path from the root in
the tree to the leaf node corresponding to the target word. Non-terminal nodes in the tree
have their own parameters denoted by U = [ﬁvo, Uy, ,ﬁvL_l], where each column u,
is a H-dimensional vector. While visiting all non-terminal nodes on a path from the root
to a leaf node, we compute multiple binary decision probabilities. To be more specific, we
have a context vector x € RP(—1)x1 resulting from concatenation of D-dimensional Vectors
for n — 1 words in w¢. A path can be represented by a bit vector ¢ = {0, 1}!(®#) where
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[(w;) denotes the length of the path to the leaf node corresponding to w; and 1 in the bit
vector stands for moving to the left subtree. The probability of moving to the left subtree
at position k over a path of length I(w;) is computed by

P(cp(wi) | wf) = o ([ex(wi) = 0Ta” F(WX + Wpa(u, k) (2.80)

where ci(w;) denotes the k-th element in the bit vector for word wj;, pa(w;, k) denotes the
k-th non-terminal node index on the path to w;, [-] is 1 if its argument is true and —1
otherwise, f is a non-linear function, and W € RH#*P (n=1) and a € R¥*! are parameters.
By replacing the conditional probabilities by the regular softmax in Eq. (2.79) with the
probabilities by the hierarchical softmax in Eq. (2.80), we have

T (w;)
—ZlogPy-wa ZZlogP (cx(w;) | wS). (2.81)
i=1 i=1 k=0

The average path length from the root to a leaf node of a binary tree is logy(|V|) if the
tree is balanced, so that the number of matrix multiplications required for the hierarchical
softmax is much less than ones for the vanilla softmax.

In addition to the use of the hierarchical softmax, Mnih and Hinton (2009) and Mikolov
et al. (2013a) have proposed even more efficient neural language modeling approaches. Al-
though the hierarchical softmax greatly reduces the number of operations at the output layer
from O(|V|) to O(logy(|V|)), computing the hidden activations f(Wx + @,) in Eq. (2.80)
is still expensive and we need to evaluate them log,(|V]) times per target word. To reduce
the computational cost, we can simplify the network architecture. Consider a NN that has a
linear hidden layer parameterized by U € R¥*VI ynlike one used for computing Eq. (2.80).
We project the context words by U and the context vector 0; for a target word w; is given
by

W= > Uy, (2.82)

The probability of a binary decision over a path can then be represented by a dot product
of two vectors given by

P(cg(wy) | w§) = o ([ex(ws) = 018 Qpau, 1)) - (2.83)

Such a simpler architecture allows us to train neural language models on a large training
corpus and to increase the capacity of word embeddings.

NLMs perform better than traditional count-based LMs such as Kneser-Ney (KN) smooth-
ing (Kneser and Ney, 1995). In addition to the data-scarcity problem, another major issue
of the count-based LMs is the curse of dimensionality that arises when learning from data
in high-dimensional spaces, for which the amount of data we need grows exponentially in
terms of the dimensionality. For instance, if we have a word vocabulary V of 100, 000 words
and a sequence of 10 words, LMs need to learn a highly complex function over 10°° configu-
rations. NLMs are able to avoid the curse of dimensionality problem effectively by learning
lower dimensional representations of high dimensional data such as word sequences. We
can generalize the central idea to learning representations of some other discrete inputs and

outputs. We will discuss the use of lower dimensional representation learning methods for
MLC in Chapters 5 and 6.
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Figure 2.6: (a) A recurrent neural network with a hidden layer in which activations h; at time ¢ are
fed back into the hidden layer for computing hidden activations h; ;. (b) Another representation
of RNNs unfolded over T time steps.

2.3.3 Recurrent Neural Networks

We have shown that language modeling can be addressed by MLPs under the Markovian
assumption. As MLP-based approaches to n-grams language modeling use n — 1 previous
words to predict the next word, it is unable to capture dependencies between the target
word and words out of the range of n — 1. To overcome the limitation, one may consider
an architecture that does not rely on a fixed number of previous inputs when predicting the
future output. Also, it is necessary that the architecture has the capability to learn the long
range dependencies between inputs over the entire sequence.

A recurrent neural network (RNN) is a special NN architecture that has long been used
for learning from sequential data. Let us consider a sequence prediction problem where a
pair of an instance and a label vector (z,y) is given as training information and both an
instance and a label are sequences of T" vectors. More specifically, assume that an instance
is a sequence of d-dimensional vectors £ = {x1,Xg, -+ ,x7} and a label is also a sequence
of 1-of-L vectors y = {y1,y2, - ,yr}, where y; € y are L dimensional binary vectors and
only one element of each vector is 1. In other words, we perform multi-class classification
T times for a given instance. Figure 2.6 illustrates a RNN parameterzied by three sets of
weights {W® W) V}. At step t € {1,2,---,T}, RNN utilizes the previous hidden
activation h;_q to compute the current hidden activation:

VAR W(I)Xt + Vht—l (284)
ht = f (Zt) (285)

where W € R¥XD denotes a matrix of weights connecting input units to hidden units,
V € RE*XH denotes a set of weights from hidden units at step t —1 to ¢, and f is a non-linear
transfer function such as tanh. The use of the previous hidden activation in computing the
current hidden activation makes RNNs more useful in sequence prediction tasks compared
to FNNs. Given hidden activations h; at step ¢, we obtain output activations o; at that step
as follows

Oy = ‘A’Q)htL (286)
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i

where W) € REXH g the output weights. Then, we have a prediction probability Dkt for
output unit k at step ¢ by the softmax function as in Eq. (2.46). In turn, the discrepancy
between targets y; and predictions p; is measured by the cross entropy denoted by £;. The
total error L of the network in Fig. 2.6 can be defined by a sum of the errors in time:

T
L=>"L, (2.87)
t=1

The unrolled RNNs can be thought of as deep feed-forward neural networks in time, so we
can apply the backpropagation algorithm to RNNs as well. Since the gradients of the total
loss £ with respect to the parameters 6 = {W(l), W@, V} are the sum of the gradients of
the loss L; at step t, we consider only 0L;/06 (Fig. 2.7).

Similar to Eq. (2.51), we can calculate the gradient of £; with respect to the output
weights W@ in a straightforward way given by

aﬁt . 8£t 8015
OW®@  Jo, OW2)’

(2.88)

Note that it is possible to parallelize computing 0L/ OW @) efficiently because this step is
time independent. In contrast, we need to pay more attention to computing the gradients
of £ in terms of W) and V. This is because these weights are shared when calculating
the hidden activations in Eq. (2.85) across all steps and used repeatedly.

Training difficulties in RNNs. Let us compute the gradient of £; in terms of the recurrent
weights V. By applying the chain rule, we have

IL;  ~o 9L Do, Ohy Oy,

Okt _ 9.
oV p— 80,5 aht ahk oV ( 89)
with
oh, 1 Oh, s S
— = = V*dia Z 2.90
il N e _]1 g(f'(z)) (2.90)
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where diag(f'(z;)) € RT*H denotes a diagonal matrix with elements of f’(z;) € R”*! on
the main diagonal. Likewise, we also obtain the gradient of £; in terms of W) as follows

L, 9L, Do, Oy Ohy
oW & do; Ohy Ohy, oW D)

(2.91)

The vanilla RNNs are prone to two problems while learning: wvanishing and exploding
gradients. To obtain the gradients 0L;/0V and 9L;/OWW we need to calculate the
product of the Jacobian matrices (Eq. (2.90)). According to Eq. (2.90), the 2-norm of the
Jacobian matrix 0h;/0h;_; is bounded by two matrices such that

Oh; .
H < IV | ding( (@) | < vy 292

oh;_;

where v is the largest eigenvalue of V and 7 denotes the upper bound of the derivative
of f. Given Eq. (2.92), we have the upper bound of the 2-norm of temporal contributions
Oh;/0hy, as follows

Ohy

—k
a_hk S(’YVWf’)t : (2.93)

This shows that the temporal contributions either vanish or explode unless yvyp = 1. In
other words, the long-range contributions in time approach zero as t — k goes to infinity, or
the magnitude of the gradient increases exponentially in ¢ — k if the spectral norm of V is

large than —-—.
Yy

Solutions to the exploding gradient problem. A simple, yet effective solution to the ex-
ploding gradient problem was proposed by Pascanu et al. (2013). Suppose that we have a
threshold of the 2-norm of the gradients denoted by ~. If the 2-norm of the gradients of £
in terms of all the parameters 6 exceeds the threshold, the gradients are normalized before
updating parameters so that we ensure the norm of the gradients is bounded:

ng, —

Y
L. 2.94
Vol] *? (2.94)

This method is called gradient clipping and it has been used widely in training RNNs to
avoid the exploding gradient problem.

Solutions to the vanishing gradient problem. In vanilla RNNs hidden activations h; may
not exploit effectively the past information, say, hidden activations hy if £ > k because
the gradient 0h;/0hy, goes to zero. A simple solution is to add direct connections from
the past every [ steps, so that RNNs take advantage of shortcuts or skip connections when
propagating errors from h; to hy. However, this introduces additional hyperparameters [ to
be tuned while the problems remain but occur at a lower rate.

A principled way of achieving the goal is long short-term memory (LSTM) (Hochreiter
and Schmidhuber, 1997) that learns read, write and erase operations when computing hidden
activations adaptively from data. The main idea of LSTM is to keep information learned
from data and to carry the information through time as long as it is useful.
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Let us denote m; € R¥*! as the information the model keeps, called memory at step t.

To compute m;, LSTMs have three functions called as gates: input, forget and output gate.
These gates in principle determine the information flow in LSTMs. For simplicity, we will
drop the superscript of W wherever it is clear from the context. The input gate denoted
by i; € R”*! determines how much information available at step ¢ needs to be added to
memory my:

7. = Wix; + V'hy_4 (2.95)
iy =o(z}) (2.96)

where Wi € REXP and VI € REXH denote weights connecting inputs at step ¢ and pre-
vious hidden activations h;_1, respectively, to units in the input gate like hidden activation
computation in vanilla RNNs.

It might not be a good way of carrying information by simply adding it to memory every
step because the memory capacity is restricted by, say, the dimensionality of the memory
vector. Also, some information from the past might not be useful to make future decisions.
The forget gate denoted by f, € R”*! learns how much information we need to unload or
reset from memory my_q:

7l = W'x, +V/h, (2.97)
f,=o(zf) (2.98)

Given the input and forget gates, we can compute memory states m; at step ¢ by using
memory states from the previous step m;_; and (immediate) memory proposals m; as follows

Z;n = Wth + tht—l (299)
m; = tanh (z;") (2.100)
m; = ft GO m;_q —|—It ® fflt (2101)

Once memory states m; are updated (Eq. (2.101)), the next step is to calculate hidden
activations h;. Note that memory states m; convey information selectively up to t. Like
computing input and forget gates, we also put output gates 6, € R”*! to control which
information needs to be retrieved from memory m; given by

Z? = WOXt + Voht_l (2102)
o =0 (z7). (2.103)

In turn, LSTM computes hidden activations h; as follows
ht =0;©® tanh (mt) . (2104)

The hidden activations calculated in Eq. (2.104) are forwarded subsequently to the output
layer as vanilla RNNs. The intermediate steps to compute hidden activations h; and memory
states m; of LSTMs can be represented in a shorthand form as follows

ht, m; — LSTM (Xt, ht—l; mt_l) (2105)
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where LSTM(+) denotes a parameterized function that returns updated hidden activations
and memory states.

Let us compare memory states m; in LSTM to hidden states h; in a vanilla RNN ar-
chitecture as an information flow path over time. By expanding the recurrence of LSTM
in Eq. (2.101), we have

m; =i, o m; +f Omy_

t—1 t t
=iheom+> ( []5 @(ikQIYlk)—i-(l_[fk)@mo (2.106)

k=1 \j=k+1 k=1
with

t
ﬂﬂz]@ﬂ@---@ft (2.107)
k=1

where mg denotes the initial memory that can be a vector of all zeros or initialized by
context depending on applications. Remember that in vanilla RNNs hidden activations
h; that preserve information from the past can be computed by a product of the linear
projections of previous hidden activations hy, followed by nonlinearity f as follows

hy = f(VF(VF(-f(Vho+Wxq)--+) + Wx 1) + Wxy). (2.108)

In contrast, memory states my at step ¢ in LSTMs are a weighted sum of memory proposals
my, over time such that 1 < k& < ¢. We initialize mg with all zeros. Please note that the
weighting factors are basically calculated by input and forget gates (Eqgs. (2.98) and (2.103))
adaptively based on immediate inputs and previous hidden activations.

As mentioned in Eq. (2.105), one can consider LSTM as a building block that takes three
inputs x;, h;_1, m;_; and returns two outputs h;, m;. Suppose that we want to calculate
the gradients of the loss function £; with respect to the LSTM parameters, and that we are
given errors 0 to be propagated to LSTM from the upper layer and from LSTM at step t+ 1.
To be more specific, let o, be the contributions of hidden activations to the loss at step ¢
given by

8£t ~ <~

On, = =0, + On

= (2.109)

17
where 5h Y € RH¥*1 denotes the incoming error term from the upper layer to hidden activations
h;, and 5 h; € RAx1 denotes the error contribution of h; as an input to LSTM at stept+1,

which is set to all zeros (5 n, = 0if ¢ = T. We will derive how to obtain (5 n, shortly.
Similarly, we also define 0y, as the error term of memory states my:

0L,

31’nt

%

O, = — Oy + 0 m, (2.110)

where gmt € R”*1 denotes the error term passed from the upper layer, i.e., hidden acti-

vations hy, and 0 p,, denotes the error term from memory states but at step ¢t 4+ 1. If we
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rewrite both error terms in Eq. (2.110) with products of the intermediate gradients, the error
of memory states at step ¢ can be calculated as

0L, Oh, i aLt—i—l amt+1

Om, = 2.111

t aht amt amt+1 amt ( )
=0n, ©®0; © (1 - tanh2(mt)) + 0myq © fi1 (2.112)

where 0, ,, denotes the error of memory states at the next step. Given dp, and o, obtained

above, error signals for the gates and memory proposal can be derived as follows

8L’t al’l’lt 8lt
07 = = Om 1— 2.11
1 amt o1, Gz Oy O o ( 1t> ( 3)
. 8£t (9mt 8ft =
5{’.} = 8mt aft az = 5mt Omy_1©® ft ® (1 — ft) (2114)
0L; dh; 0o
Jo, = ahz 80: 8zt O, ® tanh(my) ©6; ® (1 — &) (2.115)
0L; Omy Om 3 ~
Sy = b Tt T 5 08,0 (1 - W), (2.116)

om, Oy, 07,

Once we have all error terms in LSTM, the next step is to calculate the gradients of the
parameters. For the sake of notational convenience, let us define the following matrices by
concatenating the parameters, and the pre-activations and the error terms of the gates in
LSTM:

w* \'%% z; %,
w/ v/ 7/ 5e
W = V= Z = “i 0z, = B (2.117)
Wwe ve zy do
| W] | V™ ] | z}" | | O, |

where W is a (4H x D)-dimensional matrix, V is a (4H x H)-dimensional matrix, and
both z; and 0z, are (4H x 1)-dimensional vectors. The gradients of £; with respect to the
parameters, i.e., W and V, are given by

oL oL 0z
av\j = az; a“t, — 0g, %" (2.118)

0L, 0Ly 074

oV 0z, OV
Like 0, , we can also calculate errors of inputs, i.e., x; and h;_1, to be propagated backwards
further in the network as follows

= 05,0 . (2.119)

0L, 07, 1
= — W7, 9.12
5 t aZt 8xt 5 ¢ ( 0)
< 8£t 8zt T
— . 2121
0 hy 1 8Zt 3ht ) =V t ( )
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Note that %htfl (Eq. (2.121)) can be plugged into Eq. (2.109) when computing dn, ;.

We have discussed the vanishing and exploding gradient problem in vanilla RNNs caused
by 0h;/0hy, namely the Jacobian terms, when ¢ >> k. In contrast, memory states m; in
LSTM have a linear recurrence relation which allows us to avoid the computation of powers of
V. Thus, LSTMs are more robust than vanilla RNNs with respect to the vanishing gradient
problem.

Another recurrent unit using gating functions is the gated recurrent unit (GRU) (Cho
et al., 2014). Unlike LSTM that has three gates, GRU has only two gates: update and reset.
The update gate in GRU plays a role of the input gate and forget gate in LSTM, and the
reset gate can be considered as the LSTM’s output gate. Another difference between GRU
and LSTM is that GRU does not maintain an extra internal information flow path such
as memory in LSTM. To be more specific, hidden activations h; in GRU are calculated as
follows

Zy = 0O (Wth + Vzht_1> ( )
r; =0 (W'x; +V'h ) ( )
Et = tanh (WhXt -+ Vh (I't ® htfl)) (2124)
ht:Ztth,1+(1—Zt)®flt. ( )

We will use GRU as a black-box that returns hidden states h; given x; and h;_; as follows
ht = GRU (Xt> ht—l) . (2126)

Although GRU is a light-weight version of LSTM, it works well in practice and has been
widely used in various applications.

2.3.4 Neural Machine Translation

Inspired by recent success of methods that learn vector representations of words from large
corpora in an unsupervised way (Section 2.3.2), Devlin et al. (2014) have shown that word
representations learned by neural language models are also effective as a core component
of a complex translation system, which in general requires heavy feature engineering. By
contrast, neural machine translation (NMT) models are end-to-end learning systems that
tune model parameters in a way of generating a desired output sentence for a given input
sentence of arbitrary length with minimal processing steps such as tokenization. Most of
recently proposed NMT models are based on the encoder-decoder framework (Cho et al.,
2014; Sutskever et al., 2014), where a source sentence is mapped into a fixed-size vector that
preserves both the syntactic and semantic structure of the source sentence, from which a de-
coder starts with generating a sequence of words in a target language. Bahdanau et al. (2015)
extend the vanilla encoder-decoder NMT framework by soft-attention, a small feed-forward
neural network which learns which word in the source sentence is relevant for predicting the
next word in the target sequence. It has been shown that the performance of soft-attention
NMT stays consistent as the sequence length increases.

Although NMT models have been successfully applied to translation tasks, it is still chal-
lenging to handle out-of-vocabulary (OOV) words because only a small number of words are
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considered to reduce computational overhead. All words not in the vocabulary are assigned
to a single special token, e.g., UNK. In the literature, the OOV word problem have been
addressed by using importance sampling (Jean et al., 2015), smaller linguistic units such
as subwords or characters (Chung et al., 2016; Luong and Manning, 2016; Sennrich et al.,
2016), and linguistic properties such as compound words (Hirschmann et al., 2016).

We will only explain encoder-decoder (EncDec) networks dealing with word sequences
because aforementioned approaches addressing the OOV word problem are beyond the scope
of this thesis. Consider that we have a pair of a source sentence and its translation in another
language, for instance, ( Wie geht es dir?, How are you?) when translating German sentences
into English. Suppose that a word is treated as an atomic unit of translation and that we
have two word vocabularies Vs and V, let us define a source sentence and target sentence by
x = {x1,29, -+ ,xs} and ¥y = {y1,¥2, -+ ,yr}, respectively, where z; € Vs denote source
words and y; € V; denote target words. Note that the lengths S and T for both sentences in
each pair (z,y) will vary depending on its context, and they are not necessarily to be same.

The goal of training translation systems can be expressed as maximizing the joint proba-
bility of target words y conditioned on source words &, and then we can factorize it into a
product of conditional probabilities of a single target word:

p(ylz) = ]_[p (Wely <1, @) (2.127)

where Yy, = {y1,--- ,y—1} denotes a set of words preceding a word at position ¢ in the
target sentence. Each conditional probability p(y:|y.;, ) can be computed by

exp(ow)
Z| Vi eXp Otw)

where |V;| denotes the size of the target vocabulary and o € R is an output score produced
by a RNN-based translation system for the k-th word in V}; being predicted as a word at
position t.

Pyt = kly<y, x) = (2.128)

For computing Eq. (2.128), we use the EncDec architecture, also known as sequence-to-
sequence learning (Bahdanau et al., 2015; Cho et al., 2014; Sutskever et al., 2014), where
two RNNs are trained jointly to handle such variable-length inputs and outputs. Let us
consider an encoder RNN that summarizes source sentences. We use a RNN with GRUs for
encoding source sentences instead of a vanilla RNN due to the vanishing gradient problem
discussed in the previous section.? Let U* € R**IVsl bhe the embeddings for source words. If
we denote word embeddings corresponding to words in & by {uf,uj,-- -, ug}, hidden states
h? € R7*1 of source words can be calculated as follows

h? = GRU (u?,h? ;) (2.129)

where the initial hidden state h{ is set to a vector of zeros. Once hidden states over all of
the source words are calculated by the encoder, we set the initial hidden state hg e RAx!
of another RNN, namely decoder, using the last hidden state hg of the encoder as follows

h{ = tanh (Whg) (2.130)

2 LSTMs can be also used instead of GRUs.

37



where W, € RT*H denotes weights connecting the encoder’s hidden states to the decoder’s
hidden states.

Like the way to project source words, let UY € R¥™ Vil be the embeddings for target
words, and the target words y are converted into {ua’, ug, e ,u%ﬂ}. Given the target word
embeddings, one can compute hidden states hi’ as in Eq. (2.129) where immediate inputs
and previous hidden states are only used. Even though we use gated RNNs including GRU
and LSTM to avoid the vanishing gradient problem, it is difficult to train them on long
sequence pairs because of the information bottleneck between two RNNs, namely encoder
and decoder. Note that the encoder summarizes all source words into a single vector, i.e.,
hg, that is the only information the decoder exploits from the source side.

Due to the limitation, Bahdanau et al. (2015) have proposed conditional GRU that takes a
weighted average of hidden states of the encoder RNN as an additional input. In conditional
GRUs, we compute hidden states as follows

z; = 0 (W?x; + VPhy_1 + LP¢y) (2.131)
r;=0(W'x;+V'™hy_1 +L'¢) (2.132)
h; = tanh (W"x; + V" (r, © hy_1) + L"¢,) (2.133)
hy =2z Ohy_; + (1 —2z)®h,. (2.134)

where ¢ € R™! is the context vector and L() € R¥*? are weight matrices. In contrast to
the vanilla GRU, the conditional GRU needs the context vector c¢; as aforementioned, which
can be calculated as

S
¢ = Y ayh! (2.135)

i=1

with
(§ Sti
A — Xp(sti) (2.136)
Doh=1 eXD(stk)

St; — VZ;tt tanh (Watth?_l + Vatthf) (2137>

where vy € R%*l W, € R%*H and V,y € R%@*H are weights. In other words, the
decoder RNN learns which source words are important when generating context vectors while
computing hidden activations for each target word. Such a concept is often referred to as
soft-attention and ay; are attention weights. The decoder RNN computes hidden states hi’
that takes into account the encoder’s hidden states as follows

h! = GRU (u’_,,h! |, c,). (2.138)
As the soft-attention component in EncDec allows the decoder to exploit source words while
computing hidden states, we make use of information flow path from decoder’s hidden states

to encoder’s hidden states directly.
We calculate output scores o, given hidden states h? as follows

o, = WhY. (2.139)
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The output scores o; are then used to yield the probability of predicting next words
(Eq. (2.128)).

NMT approaches are trained in an end-to-end fashion, where all model parameters are
learned jointly, and work surprisingly well in practice compared to traditional machine trans-
lation systems composed of many sub-components. Furthermore, attention-based NMT
methods provide a way to analyze alignments between source words and target words by
attention weights ay learned from data automatically.
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3 Efficient Neural Networks for
Large-scale Multi-label Classification

3.1 Introduction

As the amount of textual data on the web and in digital libraries is increasing rapidly, the
need for augmenting unstructured data with metadata is also increasing. Systematically
maintaining a high quality digital library requires extracting a variety types of information
from unstructured text, from trivial information such as title and author, to non-trivial
information such as descriptive keywords and categories. Time- and cost-wise, a manual
extraction of such information from ever-growing document collections is impractical.

In the simplest case, multi-label classification (MLC) may be viewed as a set of binary
classification tasks that decides for each label independently whether it should be assigned
to the document or not. However, this so-called binary relevance (BR) approach ignores de-
pendencies between the labels, so that current research in MLC concentrates on the question
of how such dependencies can be exploited (Dembczynski et al., 2010; Read et al., 2011).
One such approach is backpropagation for multi-label learning (BP-MLL) (Zhang and Zhou,
2006), which formulates MLC problems as a neural network with multiple output nodes, one
for each label. The output layer is able to model dependencies between the individual labels.

In this work, we directly build upon BP-MLL and show how a simple, single hidden layer
neural network (NN) may achieve a state-of-the-art performance in large-scale multi-label
text classification tasks. The key modifications that we suggest are (i) more efficient and
more effective training by replacing BP-MLL’s pairwise ranking loss with cross entropy and
(ii) the use of recent developments in the area of deep learning such as rectified linear unit
(ReLU), Dropout, and AdaGrad.

Even though we employ techniques that have been developed in the realm of deep learning,
we nevertheless stick to NNs with a single hidden layer. The motivation behind this is two-
fold: first, a simple network configuration allows better scalability of the model and is more
suitable for large-scale tasks. Second, as it has been shown in the literature (Joachims, 1998),
popular feature representation schemes for textual data such as variants of term frequency-
inverse document frequency (tf-idf) term weighting already incorporate a certain degree of
higher dimensional features, and we speculate that even a single-layer NN model can work
well with text data.

The most prominent learning method for multi-label text classification is to use a BR
approach with strong binary classifiers such as support vector machines (SVMs) (Rubin et al.,
2012; Yang and Gopal, 2012) despite its simplicity. It is well known that characteristics
of high-dimensional and sparse data, such as text data, make decision problems linearly
separable (Joachims, 1998), and this characteristic suits the strengths of SVM classifiers
well.
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Unlike benchmark datasets, real-world text collections consist of a large number of training
examples represented in a high-dimensional space with a large amount of labels. To handle
such datasets, researchers have derived efficient linear SVMs (Fan et al., 2008; Joachims,
2006) that can handle large-scale problems. The training time of these solvers scales linearly
with the number of instances, so that they show good performance on standard benchmarks.
However, their performance decreases as the number of labels grows and the label frequency
distribution becomes skewed (Liu et al., 2005; Rubin et al., 2012). In such cases, it is also
intractable to employ methods that minimize ranking errors among labels (Elisseeff and
Weston, 2001; Zhang and Zhou, 2006) or that learn joint probability distributions of labels
(Dembczyniski et al., 2010; Ghamrawi and McCallum, 2005).

This chapter provides an empirical evidence to support that a simple NN model equipped
with recent advanced techniques for training NNs performs as well as or even outperforms
state-of-the-art approaches on large-scale datasets with diverse characteristics.

3.2 Neural Networks for Multi-label Classification

In this section, we propose a neural network-based multi-label classification framework that
is composed of a single hidden layer and operates with recent developments in neural network
and optimization techniques, which allow the model to converge into good regions of the error
surface in a few steps of parameter updates. Our approach consists of two modules (Figure
3.1): a neural network that produces label scores (Sections 3.2.2-3.2.5), and a label predictor
that converts label scores into binary using a thresholding technique (Section 3.2.3).

3.2.1 Rank Loss

One of the most commonly used objectives for MLC (Section 2.2.1) is to minimize the
number of mis-ordering between a pair of relevant label and irrelevant label, which is called
rank loss:

brankly, £0) = w(y) 3 1(fi00) > () + 51 (i = 1) 5.)

Yi<yj

where w(y) is a normalization factor, I (+) is the indicator function, and f; () is a prediction
score for a label 7. Unfortunately, it is hard to minimize due to non-convex property of the
loss function. Therefore, convex surrogate losses have been proposed as alternatives to rank
loss (Elisseeff and Weston, 2001; Schapire and Singer, 2000; Zhang and Zhou, 2006).

3.2.2 Pairwise Ranking Loss Minimization in Neural Networks

Let us assume that we would like to make a prediction on L labels from D dimensional input
features. Consider the neural network model with a single hidden layer in which H hidden
units are defined and input units x € RP*! are connected to hidden units h € R*! with
weights W) € RF*P and biases b(Y) € RF*1. The hidden units are connected to output
units 0 € RE*! through weights W) € RE*H and biases b® e RL*1. The network,
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(b) Threshold decision

Figure 3.1: (a) A neural network with a single hidden layer of two units and multiple output units,
one for each possible label. (b) shows how threshold for a training example is estimated based
on prediction output o of the network. Consider nine possible labels, of which 01, 04 and og are
relevant labels (blue) and the rest are irrelevant (red). The figure shows three exemplary threshold
candidates (dashed lines), of which the middle one is the best choice because it gives the highest
F1 score. See Section 3.2.3 for more details.

then, can be written in a matrix-vector form, and we can construct a feed-forward network
fe : x — 0 as a composite of non-linear functions in the range [0, 1]:

fo(x) = fo(W® fr (WWx + b)) + b®) (3.2)

where @ = {WM) b)) W@ b1} and f, and fj, are element-wise activation functions in
the output layer and the hidden layer, respectively. Specifically, the function fg (x) can be
re-written as follows:

20 = Whx - b®), b= f, (V)
22 = WO+ b®, o=/, (z?)

where z(1) and z(? denote pre-activations in the hidden and the output layer, respectively.
Our aim is to find a parameter vector ® that minimizes a cost function £(©;x,y). The
cost function measures discrepancy between predictions of the network and given targets y.
BP-MLL (Zhang and Zhou, 2006) minimizes errors induced by incorrectly ordered pairs of
labels, in order to exploit dependencies among labels. To this end, it introduces a pairwise
error function (PWE), which is defined as follows:

1

Lpwe(©;Xx,y) = W

> exp(—(0, — on)) (3.3)

(p,n)EY Xy
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where p and n are positive and negative label index associated with training example x. y
represents a set of negative labels and | - | stands for the cardinality. The PWE is relaxation
of the loss function in Equation 3.1 that we want to minimize.

3.2.3 Thresholding

Once training of the neural network is finished, its output may be interpreted as a probability
distribution p (o|x) over the labels for a given document x. The probability distribution can
be used to rank labels, but additional measures are needed in order to split the ranking
into relevant and irrelevant labels. For transforming the ranked list of labels into a set of
binary predictions, we train a multi-label threshold predictor from training data. This sort
of thresholding methods are also used in (Elisseeff and Weston, 2001; Zhang and Zhou, 2006)

For each document x,,, labels are sorted by the probabilities in decreasing order. Ideally,
if NNs successfully learn a mapping function fg, all correct (positive) labels will be placed on
top of the sorted list and there should be large margin between the set of positive labels and
the set of negative labels. Using Fj score as a reference measure, we calculate classification
performances at every pair of successive positive labels and choose a threshold value ¢,,, that
produces the best performance (Figure 3.1 b).

Afterwards, we train a multi-label thresholding predictor t="T (x;0) to learn t as target
values from input pattern x. We use linear regression with ¢2-regularization to learn 6

A
QMZ (em: 0) — 1) + 110113 (3.4)

where T (x,,;0) = 67x,, and )\ is a parameter which controls the magnitude of the (2
penalty.

At test time, these learned thresholds are used to predict a binary output gg; for label [
of a test document x; given label probabilities og;; yr; = 1 if o > T (xx; 6), otherwise 0.

3.2.4 Ranking Loss vs. Cross Entropy

BP-MLL is supposed to perform better in multi-label problems since it takes label correla-
tions into consideration than the standard form of NN that does not. However, we have found
that BP-MLL does not perform as expected in our preliminary experiments, particularly, on
datasets in textual domain.

Consistency w.r.t Rank Loss. Recently, it has been claimed that none of convex loss func-
tions including BP-MLL’s loss function (Equation 3.3) is consistent with respect to rank loss
which is non-convex and has discontinuity (Calauzénes et al., 2012; Gao and Zhou, 2013).
Furthermore, univariate surrogate loss functions such as log loss are rather consistent with
rank loss (Dembczyniski et al., 2012a).

Liog(©:;x,y) = w ( Zlog 1+e ylzl)

where w (y) is a weighting function that normalizes loss in terms of y and z; indicates
prediction for label [. Please note that the log loss is often used for logistic regression in

44



which y € {—1,1} a target and z; is output of a linear function z, = Zk Wiz, + by where
Wik is a weight from input xj to output z; and b; is bias for label [. A typical choice is,
for instance, w(y) = (|y||¥|)~! as in BP-MLL. In this work, we set w(y) = 1, then the
log loss above is equivalent to cross entropy (CE), which is commonly used to train neural
networks for classification tasks if we use sigmoid transfer function in the output layer, i.e.

fo(z) =1/ (1 + exp(—z)), or simply fo(2) = o (2):

Lop(©:%,y) == Y (ylogoy) + (1 — ) log(1 — o)) (35)
l

where o; and y; are the prediction and the target for label [, respectively. Let us verify the
equivalence between the log loss and the CE. Consider the log loss function for only label [.

. 1
) _ U2y — -
Lio(©5%,11) = log(1 -+ ¢ %) = ~log  1— (3.6)

As noted, y in the log loss takes either —1 or 1, which allows us to split the above equation
as follows:

el L Y[ log(o(x)  ify=1
lg(1+6‘91zl)_{—10g<a(—zl)) if g =—1 (3.7)

Then, we have the corresponding CE by using a property of the sigmoid function o (—z) =
1—o0(2)

Lep (©;x,y) = — (yilogoy + (1 — yi) log (1 — 1)) (3.8)
where y € {0,1} and 0, = 0 (2).

Computational Expenses In addition to consistency with rank loss, CE has an advantage
in terms of computational efficiency; computational cost for computing gradients of param-
eters with respect to PWE is getting more expensive as the number of labels grows. The
error term 51(2) for label [ which is propagated to the hidden layer is defined as

— =S exp(— (o — o) A=), ifley

i = . (3.9)
l WZ exp(—(op — o)) f3(2")), ifley
pPEY

Whereas the computation of (51(2) =—yfor+ (1 —wy)/(1— ol)f(’)(zl@)) for the CE can be per-

formed efficiently, obtaining error terms (5;2) for the PWE is L times more expensive than
one in ordinary NN utilizing the cross entropy error function. This also shows that BP-MLL
scales poorly w.r.t. the number of unique labels.
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Figure 3.2: Landscape of cost functions and a type of hidden units. T represents a weight con-
necting an input unit to a hidden unit. Likewise, WI(Q) denotes a weight from the hidden unit to out-

put unit 1. The z-axis stands for a value for the cost function J(W(l), W1(2)3 X,y, WQ(Q), W;Q), Wf))
where instances x, targets y and weights Wg(z), W3(2), W4(2) are fixed.

Plateaus To get an idea of how differently both objective functions behave as a function of
parameters to be optimized, let us draw graphs containing cost function values. Note that
it has been pointed out that the slope of the cost function as a function of the parameters
plays an important role in learning parameters of neural networks (Glorot and Bengio, 2010;
Solla et al., 1988) which we follow.

Consider two-layer neural networks consisting of W1 € R for the first layer, W® ¢ R4x1
for the second, output layer. Since we are interested in function values with respect to two
parameters W) and WI(Q) out of 5 parameters, W~({22)3 5 is set to a fixed value c. In this
paper we use ¢ = 0.! Figure 3.2 shows different shapes of the functions and slope steepness.
In figure 3.2 both curves have similar shapes, but the curve for PWE has plateaus in which
gradient descent can be very slow in comparison with the CE. Figure 3.2 shows that CE with
ReLUs, which is explained the next section, has a very steep slope compared to CE with tanh.
Such a slope can accelerate convergence speed in learning parameters using gradient descent.
We conjecture that these properties might explain why our set-up converges faster than the
other configurations, and BP-MLL performs poorly in most cases in our experiments.

3.2.5 Recent Advances in Deep Learning

In recent neural network and deep learning literature, a number of techniques were proposed
to overcome the difficulty of learning neural networks efficiently. In particular, we make use
of ReLLUs, AdaGrad, and Dropout training, which are briefly discussed in the following.

Rectified Linear Units The most commonly used non-linear functions include the sigmoid
and hyperbolic tangent (tanh) function. Once these functions are saturated during training,

L The shape of the functions is not changed even if we set ¢ to arbitrary value since it is drawn by function

values in z-axis with respect to only W) and Wl(Z).
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Figure 3.3: Activation functions (solid and red lines) and their derivative (dotted and blue lines).

for instance, tanh(z) approaches either —1 or 1, the gradient of f(x) with respect to input
x vanishes.

To overcome the vanishing gradient problem, a ReLLU has been proposed as a non-linear
activation function on the hidden layer and shown to yield better generalization performance
(Glorot et al., 2011; Nair and Hinton, 2010; Zeiler et al., 2013). More precisely, a ReLU is
defined as

T ifxz>0

ReLU(z) = { (3.10)

0 otherwise.

ReLUs disable negative activation so that the number of active parameters to be learned
decreases at each gradient update step. Figure 3.3 compares tanh and ReLLU. This spar-
sity characteristic makes RelLUs advantageous over the traditional activation units such as
sigmoid and tanh in terms of the generalization performance.

Learning Rate Adaptation with AdaGrad Stochastic gradient descent (SGD) is a simple
but effective technique for minimizing the objective functions of NNs. When SGD is consid-
ered as an optimization tool, one of the problems is the choice of the learning rate. A common
approach is to estimate the learning rate which gives lower training errors on subsamples
of training examples (LeCun et al., 2012) and then decrease it over time. Furhermore, to
accelerate learning speed of SGD, one can utilize momentum (Rumelhart et al., 1986).

Instead of a fixed or scheduled learning rate, an adaptive learning rate method, namely
AdaGrad, was proposed (Duchi et al., 2011). The method determines the learning rate
at iteration 7 by keeping previous gradients Ai.; to compute the learning rate for each
dimension of parameters

710

Nigr = —F——

V 21 A
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where ¢ stands for an index of each dimension of parameters and 7) is the initial learning
rate and shared by all parameters. For multi-label learning, it is often the case that a few
labels occur frequently, whereas the majority only occurs rarely, so that the rare ones need
to be updated with larger steps in the direction of the gradient. If we use AdaGrad, the
learning rates for the frequent labels decreases because the gradient of the parameter for
the frequent labels will get smaller as the updates proceed. On the other hand, the learning
rates for rare labels remain comparatively large.

Regularization using Dropout Training In principle, as the number of hidden layers and
hidden units in a network increases, its expressive power also increases. If one is given a large
number of training examples, training a larger networks will result in better performance
than using a smaller one. The problem when training such a large network is that the model
is more prone to getting stuck in local minima due to the huge number of parameters to
learn. Dropout (Srivastava et al., 2014) is a technique for preventing overfitting in a huge
parameter space. Its key idea is to decouple hidden units that activate the same output
together, by randomly dropping some hidden units’ activations as follows
hj _ {fh (Zz’il WJ(Zl).IZ + bgl)) if Ty :1 (3'11>
0 otherwise
where 7 denotes a binary random variable sampled from the Bernoulli distribution with
dropout probability 1 — p. Essentially, this corresponds to training an ensemble of networks
with a subset of the parameters shared across all networks, and combining their predictions.
However, the individual predictions of all possible hidden layers need not be computed and
combined explicitly, but the output of the ensemble can be approximately reconstructed
from the full network. Thus, dropout training has a similar regularization effect as ensemble
techniques.

3.3 Experimental Setup

We have shown that why the structure of NNs needs to be reconsidered in the previous
Sections. In this Section, we describe evaluation measures to show how effectively NNs
perform by combining recent development in learning neural networks based on the fact that
the univariate loss is consistent with respect to rank loss on large-scale textual datasets.

Datasets Our main interest is in large-scale text classification, for which we selected six
representative domains, whose characteristics are summarized Table 3.1. For Reuters21578
we used the same training/test split as previous works (Yang and Gopal, 2012). Training and
test data were switched for RCV1-v2 (Lewis et al., 2004) which originally consists of 23,149
train and 781,265 test documents. The EUR-Lex, Declicious and Bookmarks datasets were
taken from the MULAN repository.? Except for Delicious and Bookmarks, all documents are
represented with tf-idf features with cosine normalization such that length of the document
vector is 1 in order to account for the different document lengths.

In addition to these standard benchmark datasets, we prepared a large-scale dataset from
documents of the German Education Index (GEI).?> The GEI is a database of links to more

http://mulan. sourceforge.net/datasets.html

3 http://www.dipf.de/en/portals/portals-educational-information/german-education-index
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Table 3.1: Number of documents (D), size of vocabulary (D), total number of labels (L) and aver-
age number of labels per instance (C) for the six datasets used in our study.

Dataset M D L C
Reuters-21578 10789 18637 90 1.13
RCV1-v2 804414 47236 103 3.24
EUR-Lex 19348 5000 3993 5.31
Delicious 16105 500 983 19.02
Bookmarks 87856 2150 208 2.03

German Education Index 316061 20000 1000 7.16

than 800,000 scientific articles with metadata, e.g. title, authorship, language of an article
and index terms. We consider a subset of the dataset consisting of approximately 300,000
documents which have abstract as well as the metadata. Each document has multiple index
terms which are carefully hand-labelled by human experts with respect to the content of
articles. We processed plain text by removing stopwords and stemming each token. To
avoid the computational bottleneck from a large number of labels, we chose the 1,000 most
common labels out of about 50,000. We then randomly split the dataset into 90% for training
and 10% for test.

Algorithms Our main goal is to compare our NN-based approach to BP-MLL. NN 4 stands
for the single hidden layer neural networks which have ReL Us for its hidden layer and which
are trained with SGD where each parameter of the neural networks has their own learning
rate using AdaGrad. NN 4p additionally employs Dropout based on the same settings as
NN 4. For both NN and BP-MLL, we used 1000 units in the hidden layer over all datasets.
4 As Dropout works well as a regularizer, no additional regularization to prevent overfitting
was incorporated. The base learning rate 1y was also determined among [0.001,0.01,0.1]
using validation data.

We also compared the NN-based algorithms to binary relevance (BR) using SVMs (Lib-
linear) as a base learner, as a representative of the state-of-the-art. The penalty parameter
C was optimized in the range of [1073,1072, ..., 102, 10%] based on either average of micro-
and macro-average F1 or rankloss on validation set. BRp refers to linear SVMs where C'
is optimized with bipartition measures on the validation dataset. BR models whose penalty
parameter is optimized on ranking measures are indicated as BRg. In addition, we apply

the same thresholding technique which we utilize in our NN approach (Section 3.2.3) on a
ranked list produced by BR models (BRRg).

3.4 Results

We evaluate our proposed models and other baseline systems on datasets with varying statis-
tics and characteristics. We first show experimental results that confirm that the techniques
discussed in Section 3.2.5 actually contribute to an increased performance of NN-based multi-

4 The optimal number of hidden units of BP-MLL and NN was tested among 20, 50, 100, 500 and 1000
on validation datasets. Usually, the more units are in the hidden layer, the better performance yield.
We chose the number of units in terms of computational efficiency.
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Figure 3.4: (left) effects of AdaGrad and momentum on three types of transfer functions in the
hidden layers in terms of rank loss on Reuters-21578. (right) effects of dropout with two different
numbers of hidden units in terms of rank loss on EUR-Lex.

label classification, and then compare all algorithms on the six above-mentioned datasets in
order to get an overall impression of their performance.

Better Local Minima and Acceleration of Convergence Speed First we intend to show
the effect of ReLLUs and AdaGrad in terms of convergence speed and rank loss. The left part
of Figure 3.4 shows that all three results of AdaGrad show a lower rank loss than all three
versions of momentum. Moreover, within each group, ReLUs outperform the versions using
tanh or sigmoid activation functions. That NNs with ReLLUs at the hidden layer converge
faster into a better weight space has been previously observed for the speech domain (Zeiler
et al., 2013).% This faster convergence is a major advantage of combining recently proposed
learning components such as ReLLUs and AdaGrad, which facilitates a quicker learning of
the parameters of NNs. This is particularly important for the large-scale text classification
problems that are the main focus of this work.

Decorrelating Hidden Units While Output Units Remain Correlated One major goal of
multi-label learners is to minimize rank loss by leveraging inherent correlations in a label
space. However, we conjecture that these correlations also may cause overfitting because if
groups of hidden units specialize in predicting particular label subsets that occur frequently
in the training data, it will become harder to predict novel label combinations that only
occur in the test set. Dropout effectively fights this by randomly dropping individual hidden
units, so that it becomes harder for groups of hidden units to specialize in the prediction of
particular output combinations, i.e., they decorrelate the hidden units, whereas the correla-
tion of output units still remains. Particularly, a subset of output activations o and hidden
activations h would be correlated through W®).

We observed overfitting across all datasets except for Reuters-21578 and RCV1-v2 under
our experimental settings. The right part of Figure 3.4 shows how well Dropout prevents
NNs from overfitting on the test data of EUR-Lex. In particular, we can see that with
increasing numbers of parameter updates, the performance of regular NNs eventually got

®  However, unlike the results of (Zeiler et al., 2013), in our preliminary experiments adding more hidden

layers did not further improve generalization performance.
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Figure 3.5: Rankloss (left) and mean average precision (right) on the German Education Index test-
data for the different cost functions. n denotes the base learning rate and D indicates that Dropout
is applied. Note that x-axis is in log scale.

worse in terms of rank loss. On the other hand, when dropout is employed, convergence is
initially slower, but eventually effectively prevents overfitting.

Limiting Small Learning Rates in BP-MLL The learning rate strongly influences conver-
gence and learning speed. (LeCun et al., 2012). As we have already seen in the Figure 3.2,
the slope of PWE is less steep than CE, which implies that smaller learning rates should be
used. Specifically, we observed PWE allows only smaller learning rate 0.01 (blue markers)
in contrast with CE that works well a relatively larger learning rate 0.1 (red markers) in
Figure 3.5. In the case of PWE with the larger learning rate (green markers), interestingly,
dropout (rectangle markers in green) makes it converge towards much better local minima,
yet it is still worse than the other configurations. It seems that the weights of BP-MLL os-
cillates in the vicinity of local minima and, indeed, converges worse local minima. However,
it makes learning procedure of BP-MLL slow compared to NNs with CE making bigger steps
for parameter updates.

With respect to dropout, Figure 3.5 also shows that for the same learning rates, networks
without dropout converge much faster than ones working with Dropout in terms of both
rank loss and MAP. Regardless of the cost functions, overfitting arises over the networks
without dropout and it is likely that overfitting is avoided effectively as discussed earlier.

Comparison of Algorithms Table 3.3 shows detailed results of all experiments with all
algorithms on all six datasets, except that we could not obtain results of BP-MLL on EUR-
Lex within a reasonable time frame. In an attempt to summarize the results, table 3.2
shows the average rank of each algorithm in these six datasets according to all ranking an
bipartition measures.

We can see that although BP-MLL focuses on minimizing pairwise ranking errors, thereby
capturing label dependencies, the single hidden layer NNs with cross-entropy minimization
(i.e., NN 4 and NN 4p) work much better not only on rank loss but also on other ranking
measures. The binary relevance (BR) approaches show acceptable performance on ranking

5 A trajectory for PWE 7 = 0.1 is missing in the figure because it got 0.2 on the rankloss measure which

is much worse than the other configurations.
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Table 3.2: Average ranks of the algorithms on ranking and bipartition measures.

Ranking measures
rankloss | oneError | Coverage | MAP
NN 4 2.2 2.4 2.6 2.2
NN ap 1.2 1.4 1.2 1.6
BP-MLL;, |50 6.9 6.2 6.2
BP-MLLpap | 5 5.7 5 5.7
BP-MLLRra 5.2 7 5.4 6.6
BP-MLLgrap | 3.1 6.3 3 5.8
BRp 7.4 3.3 6.9 4.3
BRp 6 3 5.7 3.6

Bipartition measures

miP | miR | miF | maP | maR | maF
NN 4 2 6 24 | 1.8 5.6 2
NN ap 2 5.8 | 1.8 |2 5.6 2.2
BP-MLLt4 6.6 |36 |66 |68 3 6.2
BP-MLLpap | 7 3.6 |7 7 4 7.2
BP-MLLpa 56 |28 |5 5) 2.8 4.2
BP-MLLgrap | 6 28 |58 |56 3.6 5.6
BRp 32 |68 |46 |44 6.8 5.6
BRp 3.6 |46 |28 |34 4.6 3

measures even though label dependency was ignored during the training phase. In addition,
NN 4 and NN 4p perform as good as or better than other methods on bipartition measures
as well as on ranking measures.

We did not observe significant improvements by replacing hidden units of BP-MLL from
tanh to ReLLU. However, if we change the cost function in the previous setup from PWE
to CE, significant improvements were obtained. Because BP-MLLgrap is the same ar-
chitecture as NN zp except for its cost function,® we can say that the differences in the
effectiveness of NNs and BP-MLL are due to the use of different cost functions. This also
implies that the main source of improvements for NNs against BP-MLL is replacement of
the cost function. Again, Figure 3.5 shows the difference between two cost functions more
explicitly.

3.5 Conclusion

This chapter presented a multi-label classification framework based on a neural network and
a simple threshold label predictor. We found that our approach outperforms the state-of-
the-art, BP-MLL, both in predictive performance as well as in computational complexity

6 For PWE we use tanh in the output layer, but sigmoid is used for CE because predictions o for computing

CE with targets y needs to be between 0 and 1.
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Table 3.3: Results on ranking and bipartition measures. Results for BP-MLL on EUR-Lex are missing
because the runs could not be completed in a reasonably short time.

Fval. measures Ranking Bipartition
rankloss | oneError | Coverage | MAP miP | miR | miF | maP | maR | maF
Reuters-21578
NNz 0.0037 0.0706 0.7473 0.9484 0.8986 | 0.8357 | 0.8660 | 0.6439 | 0.4424 | 0.4996
NN ap 0.0031 0.0689 0.6611 0.9499 0.9042 | 0.8344 | 0.8679 | 0.6150 | 0.4420 | 0.4956
BP-MLLT 4 0.0054 0.0808 1.0987 0.9431 0.8205 | 0.8582 | 0.8389 | 0.5303 | 0.4364 | 0.4624
BP-MLLtap | 0.0063 0.0719 1.2037 0.9476 0.8421 | 0.8416 | 0.8418 | 0.5510 | 0.4292 | 0.4629
BP-MLLRa 0.0039 0.0868 0.8238 0.9400 0.7876 | 0.8616 | 0.8230 | 0.5609 | 0.4761 | 0.4939
BP-MLLgrap | 0.0039 0.0808 0.8119 0.9434 0.7945 | 0.8654 | 0.8284 | 0.5459 | 0.4685 | 0.4831
BRp 0.0040 0.0613 0.8092 0.9550 0.9300 | 0.8096 | 0.8656 | 0.6050 | 0.3806 | 0.4455
BRpr 0.0040 0.0613 0.8092 0.9550 0.8982 | 0.8603 | 0.8789 | 0.6396 | 0.4744 | 0.5213
RCV1-v2
NN a 0.0040 0.0218 3.1564 0.9491 0.9017 | 0.7836 | 0.8385 | 0.7671 | 0.5760 | 0.6457
NN ap 0.0038 0.0212 3.1108 0.9500 0.9075 | 0.7813 | 0.8397 | 0.7842 | 0.5626 | 0.6404
BP-MLLT 4 0.0058 0.0349 3.7570 0.9373 0.6685 | 0.7695 | 0.7154 | 0.4385 | 0.5803 | 0.4855
BP-MLLtap | 0.0057 0.0332 3.6917 0.9375 0.6347 | 0.7497 | 0.6874 | 0.3961 | 0.5676 | 0.4483
BP-MLLRa 0.0058 0.0393 3.6730 0.9330 0.7712 | 0.8074 | 0.7889 | 0.5741 [ 0.6007 | 0.5823
BP-MLLgrap | 0.0056 0.0378 3.6032 0.9345 0.7612 | 0.8016 | 0.7809 | 0.5755 | 0.5748 | 0.5694
BRp 0.0061 0.0301 3.8073 0.9375 0.8857 | 0.8232 | 0.8533 | 0.7654 | 0.6342 | 0.6842
BRpr 0.0051 0.0287 3.4998 0.9420 0.8156 | 0.8822 | 0.8476 | 0.6961 | 0.7112 | 0.6923
EUR-Lex
NN a 0.0195 0.2016 310.6202 | 0.5975 0.6346 | 0.4722 | 0.5415 | 0.3847 | 0.3115 | 0.3256
NN ap 0.0164 0.1681 269.4534 | 0.6433 0.7124 | 0.4823 | 0.5752 | 0.4470 | 0.3427 | 0.3687
BRp 0.0642 0.1918 976.2550 | 0.6114 0.6124 | 0.4945 | 0.5471 | 0.4260 | 0.3643 | 0.3752
BRR 0.0204 0.2088 334.6172 | 0.5922 0.0329 | 0.5134 | 0.0619 | 0.2323 | 0.3063 | 0.2331
German Education Index
NN 4 0.0350 0.2968 138.5423 | 0.4828 0.4499 | 0.4200 | 0.4345 | 0.4110 | 0.3132 | 0.3427
NN ap 0.0352 0.2963 138.3590 | 0.4797 0.4155 | 0.4472 | 0.4308 | 0.3822 | 0.3216 | 0.3305
BP-MLLt4 0.0386 0.8309 150.8065 | 0.3432 0.1502 | 0.6758 | 0.2458 | 0.1507 | 0.5562 | 0.2229
BP-MLL1ap | 0.0371 0.7591 139.1062 | 0.3281 0.1192 | 0.5056 | 0.1930 | 0.1079 | 0.4276 | 0.1632
BP-MLLRa 0.0369 0.4221 143.4541 | 0.4133 0.2618 | 0.4909 | 0.3415 | 0.3032 | 0.3425 | 0.2878
BP-MLLgrap | 0.0353 0.4522 135.1398 | 0.3953 0.2400 | 0.5026 | 0.3248 | 0.2793 | 0.3520 | 0.2767
BRp 0.0572 0.3052 221.0968 | 0.4533 0.5141 | 0.2318 | 0.3195 | 0.3913 | 0.1716 | 0.2319
BRpR 0.0434 0.3021 176.6349 | 0.4755 0.4421 | 0.3997 | 0.4199 | 0.4361 | 0.2706 | 0.3097
Delicious
NN 4 0.0860 0.3149 396.4659 | 0.4015 0.3637 | 0.4099 | 0.3854 | 0.2488 | 0.1721 | 0.1772
NN ap 0.0836 0.3127 389.9422 | 0.4075 0.3617 | 0.4399 | 0.3970 | 0.2821 | 0.1777 | 0.1824
BP-MLLt4 0.0953 0.4967 434.8601 | 0.3288 0.1829 | 0.5857 | 0.2787 | 0.1220 | 0.2728 | 0.1572
BP-MLL1ap | 0.0898 0.4358 418.3618 | 0.3359 0.1874 | 0.5884 | 0.2806 | 0.1315 | 0.2427 | 0.1518
BP-MLLRa 0.0964 0.6157 427.0468 | 0.2793 0.2070 | 0.5894 | 0.3064 | 0.1479 | 0.2609 | 0.1699
BP-MLLgrap | 0.0894 0.6060 411.5633 | 0.2854 0.2113 | 0.5495 | 0.3052 | 0.1650 | 0.2245 | 0.1567
BRp 0.1184 0.4355 496.7444 | 0.3371 0.1752 | 0.2692 | 0.2123 | 0.0749 | 0.1336 | 0.0901
BRR 0.1184 0.4358 496.8180 | 0.3371 0.2559 | 0.3561 | 0.2978 | 0.1000 | 0.1485 | 0.1152
Bookmarks
NN 4 0.0663 0.4924 22.1183 0.5323 0.3919 | 0.3907 | 0.3913 | 0.3564 | 0.3069 | 0.3149
NN ap 0.0629 0.4828 20.9938 0.5423 0.3929 | 0.3996 | 0.3962 | 0.3664 | 0.3149 | 0.3222
BP-MLLt4 0.0684 0.5598 23.0362 0.4922 0.0943 | 0.5682 | 0.1617 | 0.1115 | 0.4743 | 0.1677
BP-MLL1ap | 0.0647 0.5574 21.7949 0.4911 0.0775 | 0.6096 | 0.1375 | 0.0874 | 0.5144 | 0.1414
BP-MLLRa 0.0707 0.5428 23.6088 0.5049 0.1153 | 0.5389 | 0.1899 | 0.1235 | 0.4373 | 0.1808
BP-MLLgrap | 0.0638 0.5322 21.5108 0.5131 0.0938 | 0.5779 | 0.1615 | 0.1061 | 0.4785 | 0.1631
BRp 0.0913 0.5318 29.6537 0.4868 0.2821 | 0.2546 | 0.2676 | 0.1950 | 0.1880 | 0.1877
BRR 0.0895 0.5305 28.7233 0.4889 0.2525 | 0.4049 | 0.3110 | 0.2259 | 0.3126 | 0.2569
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and convergence speed. We have explored why BP-MLL does not perform well as a multi-
label text classifier. Our experimental results showed the proposed framework is an effective
method for the multi-label text classification task. Also, we have conducted extensive analy-
sis to characterize the effectiveness of combining ReLLUs with AdaGrad for fast convergence
rate, and utilizing Dropout to prevent overfitting which results in better generalization.
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4 Estimating Joint Probabilities of Label
Subsets using Label Sequences

4.1 Introduction

In the previous chapter, we have shown that feed-forward neural networks (FNNs) with
cross-entropy loss (Eq. (3.8)) perform better than those with pairwise loss (Eq. (3.3)) in
particular in terms of the rank loss because univariate surrogate loss functions including the
cross-entropy loss are rather consistent with the rank loss (Dembezynski et al., 2012a). FNNs
with the cross-entropy loss do not explicitly exploit the label dependence since prediction
errors are measured by the binary cross-entropy for each label independently. As discussed
in Section 2.2, classifiers independently learned per label could yield optimal predictions
for each label, but a collection of the optimal predictions does not necessarily equal to the
optimal prediction over all possible label combinations.

If we consider multi-label classification (MLC) as a problem of assigning a subset of labels
out of all possible label subsets to a given instance, MLC can be seen as multi-class classi-
fication with extremely large label spaces, which referred to as label powerset (LP). In fact,
each label subset as a target has a smaller number of associated training instances because
we now have an increasing number of labels to take into account while the size of data to
train classifiers remains intact. In other words, the data scarcity problem arises much more
severely when LP is considered for MLC.

Albeit its poor scalability, it is worth noting that LP is consistent with the subset 0/1 loss,
which is the most strict evaluation measure in MLC. The subset 0/1 loss favors algorithms
that yield predictions exactly, so that predictions that contain just a single mistake are
treated equally as entirely incorrect predictions. Also note that the subset 0/1 loss biases
MLC methods towards the mode of the target distribution, as does the 0/1 loss in binary
classification. In our case, the target distribution is the joint probability distribution of
labels conditioned on instances.

As aforementioned, such a problem transformation makes it rather difficult to build ef-
fective MLC systems. Read et al. (2009) have proposed classifier chains (CCs) that creates
a chain of L binary classifiers, each of which learns to predict a single label given ground
truths for preceding labels in the chain. In fact, CC decomposes the original problem into
multiple sub-problems that can be solved in an efficient way. Probabilistic classifier chain
(PCC) (Dembezynski et al., 2010) is an extension of CC interpreted in a probabilistic point
of view that allows us to seek the mode of the estimated target distribution but with higher
computational cost. Training multiple binary classifiers independently can be though of as
a key advantage of PCCs during training because we can reduce the training time by par-
allelizing the training process over multiple devices. On the other hand, PCC restricts the
classifiers not to share information across them during training and each classifier has its own
parameters. As PCC trains independent classifiers mapping instances and a partial label
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sequence to each label over an arbitrary sequence of labels, it can be seen as an efficient
learning framework for maximizing the joint probability of sequences when the length of
sequences is fixed, i.e., L. Given such a setting, one may solve MLC problems by sequence
learning methods.

Recently, recurrent neural networks (RNNs) have been successfully applied to several
sequence learning tasks. Instead of building multiple independent classifiers, RNNs use
the same set of parameters to predict all labels through the chain of labels. Parameter
sharing across all classifiers allows to better exploit information of previous decisions. In this
chapter, we present several RNNs for MLC and discuss key advantages of RNNs compared
to traditional MLC approaches for maximizing subset accuracy. Moreover, as both, CCs and
RNNs depend on a fixed ordering of the labels, which is typically not part of a multi-label
problem specification, we also compare different ways of ordering the label set, and give some
recommendations on suitable ordering strategies.

4.2 Learning to Predict Subsets as Sequence Prediction

We have discussed LP and PCC as a means of subset accuracy maximization. More precisely,
LP defines a set of all possible label combinations Sy, = {{1},{2},--- ,{1,2,---, L}}, from
which a new class label is assigned to each label subset consisting of positive labels in D.
LP, then, addresses MLC as a multi-class classification problem with min(N,2%) possible
labels such that

LP
P(y1,y2,--+ ,yrlz) — P(yLp = k|x) (4.1)

where k = 1,2, --- ,min(N, 2%). In contrast to LP, PCC decomposes the joint probability
into L conditional probabilities:

L
P<y17y27"' ,yL|$ :l_[P y’b|y<z7 (42)
=1
where y_; = {y1, -+ ,yi—1} denotes a set of labels that precede a label y; in computing

conditional probabilities, and y_; = ) if i = 1. As discussed in Section 2.2.3, both LP
and PCC have drawbacks when L is large.

Note that yrp in Eq. (4.1) denotes a set of positive labels. Instead of solving Eq. (4.1)
using a multi-class classifier, one can consider predicting all labels individually in yrp, and
interpret this approach as a way of maximizing the joint probability of a label subset given
the number of labels 7" in the subset. Similar to PCC Eq. (4.2), the joint probability can
be computed as product of conditional probabilities, but unlike PCC, only T' < L terms
are needed. Therefore, maximizing the joint probability of positive labels can be viewed as
subset accuracy maximization such as LP in a sequential manner as the way PCC works.
To be more precise, y can be represented as a set of 1-of-L vectors such that y = {y,, ?:1
and y,, € R where T is the number of positive labels associated with an instance x. The
joint probability of positive labels can be written as

T

P(Yp1: Yoo Yorl®) = [ [ Pymlycp. 2). (4.3)
=1
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Note that Eq. (4.3) has the same form as Eq. (4.2) except for the number of output variables.
While Eq. (4.2) is meant to maximize the joint probability over the entire 2% configurations,
Eq. (4.3) represents the probability of sets of positive labels and ignores negative labels.
The subscript p is omitted unless it is needed for clarity. A key advantage of Eq. (4.3) over
the traditional multi-label formulation is that the number of conditional probabilities to be
estimated is dramatically reduced from L to 7', improving scalability. Also note that each
estimate itself again depends on the previous estimates. Reducing the length of the chain
might be helpful in reducing the cascading errors, which is particularly relevant for labels at
the end of the chain. Having said that, computations over the LT search space of Eq. (4.3)
remain infeasible even though our search space is much smaller than the search space of PCC
in Eq. (4.2), 27, since the label cardinality C' is usually very small, i.e., C' < L.

As each instance has a different value for T', we need MLC methods capable of dealing with
a different number of output targets across instances. In fact, the idea of predicting positive
labels only has been explored for MLC. RNNs have been successful in solving complex output
space problems. In particular, Wang et al. (2016) have demonstrated that RNNs provide a
competitive solution on MLC image datasets. Doppa et al. (2014) propose multi-label search
where a heuristic function and cost function are learned to iteratively search for elements
to be chosen as positive labels on a binary vector of size L. In this work, we make use
of RNNs to compute HZT:1 P(Yp;|y<p,> ) for which the order of labels in a label subset
Yp1:Ypast* » ¥pp need to be determined a priori, as in PCC. In the following, we explain
possible ways of choosing label permutations, and then present three RNN architectures for
MLC.

4.2.1 Determining Label Permutations

We hypothesize that some label permutations make it easier to estimate Eqs. (4.2) and (4.3)
than others. However, as no ground truth such as relevance scores of each positive label to
a training instance is given, we need to make the way to prepare fixed label permutations
during training.

The most straightforward approach is to order positive labels by frequency simply either
in a descending (from frequent to rare labels) or an ascending (from rare to frequent ones)
order. Although this type of label permutation may break down label correlations in a chain,
Wang et al. (2016) have shown that the descending label ordering allows to achieve a decent
performance on multi-label image datasets. As an alternative, if additional information such
as label hierarchies is available about the labels, we can also take advantage of such infor-
mation to determine label permutations. For example, assuming that labels are organized
in a directed acyclic graph (DAG) where labels are partially ordered, we can obtain a total
order of labels by topological sorting with depth-first search (DFS), and given that order,
target labels in the training set can be sorted in a way that labels that have same ancestors
in the graph are placed next to each other. In fact, this approach also preserves partial label
orders in terms of the co-occurrence frequency of a child and its parent label in the graph.

4.2.2 Label Sequence Prediction from Given Label Permutations

A recurrent neural network (RNN) is a neural network (NN) that is able to capture temporal
information. RNNs have shown their superior performance on a wide range of applications

57



where target outputs form a sequence. In our context, we can expect that MLC will also
benefit from the reformulation of PCCs because the estimation of the joint probability of
only positive labels as in Eq. (4.3) significantly reduces the length of the chains, thereby
reducing the effect of error propagation.

A RNN architecture that learns a sequence of L binary targets can be seen as a NN coun-
terpart of PCC because its objective is to maximize Eq. (4.2), just like in PCC. We will
refer to this architecture as RNN® (Fig. 4.1b). One can also come up with a RNN archi-
tecture maximizing Eq. (4.3) to take advantage of the smaller label subset size T than L,
which shall be referred to as RNN™ (Fig. 4.1¢). For learning RNNs, we use gated recurrent
units (GRUs) which allow to effectively avoid the vanishing gradient problem (Cho et al.,
2014). Let x be the fixed input representation computed from an instance x. We shall
explain how to determine X in Sec. 4.3.2. Given an initial state hy = fini (X), at each
step i, both RNN? and RNN" compute a hidden state h; by taking X and a target (or
predicted) label from the previous step as inputs: h; = GRU (hi,l, V. 1, 5() for RNN® and
h; = GRU (hi—I; Vypz.fl,)_c) for RNN™ where V is the matrix of d-dimensional label em-
beddings. In turn, RNN® computes the conditional probabilities Py (y;|y;, ) in Eq. (4.2)
by f (hi, Vyl._l,fc) consisting of linear projection, followed by the softmax function. Like-
wise, we consider f (h;, Vy;_1,%) for RNN™. Note that the key difference between RNN?
and RNN™ is whether target labels are binary targets y; or 1-of-L targets y;. Under the
assumption that the hidden states h; preserve the information on all previous labels y_,,
learning RNN® and RNN"™ can be interpreted as learning classifiers in a chain. Whereas in
PCCs an independent classifier is responsible for predicting each label, both proposed types
of RNNs maintain a single set of parameters to predict all labels.

The input representations X to both RNN? and RNN™ are kept fixed after the preprocess-
ing of inputs & is completed. Recently, an encoder-decoder (EncDec) framework, also known
as sequence-to-sequence (Seq2Seq) learning (Cho et al., 2014; Sutskever et al., 2014), has
drawn attention to modeling both input and output sequences, and has been applied success-
fully to various applications in natural language processing and computer vision (Donahue
et al., 2015; Kumar et al., 2016). EncDec is composed of two RNNs: an encoder network
captures the information in the entire input sequence, which is then passed to a decoder
network which decodes this information into a sequence of labels (Fig. 4.1d). In contrast
to RNN? and RNN™, which only use fixed input representations X, EncDec makes use of
context-sensitive input vectors from x. We describe how EncDec computes Eq. (4.3) in the
following.

Encoder. An encoder takes x and produces a sequence of D-dimensional vectors x =
{xX1,X2, -+ ,Xp} where E is the number of encoded vectors for a single instance. In this
work, we consider documents as input data. For encoding documents, we use words as atomic
units. Consider a document as a sequence of F words such that £ = {wy,ws, - ,wg} and a
vocabulary of V words. Each word w; € V has its own K-dimensional vector representation
u;. The set of these vectors constitutes a matrix of word embeddings defined as U € REXIVI,
Given this word embedding matrix U, words in a document are converted to a sequence of

K-dimensional vectors w4 = {uj, ug, -+ ,ug}, which is then fed into the RNN to learn the
sequential structures in a document
X; = GRU()(]‘,l7 llj) (44)

where xq is the zero vector.
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Figure 4.1: lllustration of PCC and RNN architectures for MLC. For the purpose of illustration, we
assume T' = 3 and zx consists of 4 elements.

Decoder. After the encoder computes x; for all elements in 2, we set the initial hidden state
of the decoder hy = finit(Xxg), and then compute hidden states h; = GRU (h;_1, Vy;_1, ¢;)
where c¢; = Zj a;;X; is the context vector which is the sum of the encoded input vectors

weighted by attention scores c; = far (hi—1,%;), ;5 € R. Then, as shown in Bahdanau

59



Table 4.1: Comparison of the three RNN architectures for MLC.

| | RNN? | RNN" | EncDec |
hidden states GRU (h;_1,V,, ,,%) | GRU(h;_1, Vy;—1,%) | GRU (h;_1, Vy;_1,¢;)
prob. of output labels f(h;,Vy, %) f(h;, Vy;_1,%) f(h;, Vy;_1,¢;)

et al. (2015), the conditional probability Py(y;|y.,, &) for predicting a label y; can be esti-
mated by a function of the hidden state h;, the previous label y; 1 and the context vector
C;.

Py(yily<i,x) = f(h;, Vyi_1,¢c;). (4.5)

Indeed, EncDec is potentially more powerful than RNN? and RNN™ because each predic-
tion is determined based on the dynamic context of the input z unlike the fixed input
representation X used in PCC, RNN® and RNN™ (cf. Figs. 4.1a to 4.1d). The differ-
ences in computing hidden states and conditional probabilities among the three RNNs are
summarized in table 4.1.

Unlike in the training phase, where we know the size of positive label set T', this information
is not available during prediction. Whereas this is typically solved using a meta learner that
predicts a threshold in the ranking of labels, EncDec follows a similar approach as Fiirnkranz
et al. (2008) and directly predicts a virtual label that indicates the end of the sequence.

4.3 Experimental Setup

In order to see whether solving ML.C problems using RNNs can be a good alternative to CC-
based approaches, we will compare traditional multi-label learning algorithms such as binary
relevance (BR) and PCCs with the RNN architectures (Fig. 4.1) on multi-label text classifi-
cation datasets. For a fair comparison, we will use the same fixed label permutation strategies
in all compared approaches if necessary. As it has already been demonstrated in the literature
that label permutations may affect the performance of classifier chain approaches (Kumar
et al., 2013; Read et al., 2011), we will evaluate a few different strategies.

4.3.1 Baselines and Training Details

We use feed-forward NNs as a base learner of BR, LP and PCC. For PCC, beam search with
beam size of 5 is used at inference time (Kumar et al., 2013). As another NN baseline, we
also consider a feed-forward NN with binary cross entropy per label (Nam et al., 2014). We
compare RNNs to FastXML (Prabhu and Varma, 2014), one of state-of-the-arts in extreme
MLC.! All NN based approaches are trained by using Adam (Kingma and Ba, 2015) and
dropout (Srivastava et al., 2014). The dimensionality of hidden states of all the NN baselines
as well as the RNNs is set to 1024. The size of label embedding vectors is set to 256. We used
the NVIDIA Titan X to train NN models including RNNs and base learners. For FastXML,
a machine with 64 cores and 1024GB memory was used.

1" Note that as FastXML optimizes top-k ranking of labels unlike our approaches and assigns a confidence

score for each label. We set a threshold of 0.5 to convert rankings of labels into bipartition predictions.
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Table 4.2: Summary of datasets. # training documents (V;,.), # test documents (IV;), # labels (L),
label cardinality (C'), # label combinations (LC'), type of label structure (HS).

Dataset Ny, Ny, L C LC HS
Reuters-21578 7770 3019 90 1.24 468 -
RCV1-v2 781261 23149 103 3.21 14921 Tree
BioASQ 11431049 274675 26970 12.60 11673800 DAG

4.3.2 Datasets and Preprocessing

We use multi-label text classification datasets for which we had access to the full text as it
is required for our approach EncDec, namely Reuters-21578,2 RCV1-v2 (Lewis et al., 2004)
and BioASQ,? each of which has different properties. Summary statistics of the datasets are
given in Table 4.2. For preparing the train and the test set of Reuters-21578 and RCV1-
v2, we follow Nam et al. (2014). We split instances in BioASQ by year 2014, so that all
documents published in 2014 and 2015 belong to the test set. For tuning hyperparameters,
we set aside 10% of the training instances as the validation set for both Reuters-21578 and
RCV1-v2, but chose randomly 50 000 documents for BioASQ.

The RCV1-v2 and BioASQ datasets provide label relationships as a graph. Specifically,
labels in RCV1-v2 are structured in a tree. The label structure in BioASQ is a directed
graph and contains cycles. We removed all edges pointing to nodes which have been already
visited while traversing the graph using DFS, which results in a DAG of labels.

Document Representations. For all datasets, we replaced numbers with a special token
and then build a word vocabulary for each data set. The sizes of the vocabularies for Reuters-
21578, RCV1-v2 and BioASQ are 22747, 50 000 and 30 000, respectively. Out-of-vocabulary
(OOV) words were also replaced with a special token and we truncated the documents after
300 words.*

We trained word2vec (Mikolov et al., 2013a) on an English Wikipedia dump to get 512-
dimensional word embeddings u. Given the word embeddings, we created the fixed input
representations X to be used for all of the baselines in the following way: Each word in the
document except for numbers and OOV words is converted into its corresponding embedding
vector, and these word vectors are then averaged, resulting in a document vector X. For
EncDec, which learns hidden states of word sequences using an encoder RNN, all words are
converted to vectors using the pre-trained word embeddings and we feed these vectors as
inputs to the encoder. In this case, unlike during the preparation of X, we do not ignore
OOV words and numbers. Instead, we initialize the vectors for those tokens randomly. For
a fair comparison, we do not update word embeddings of the encoder in EncDec.

4.4 Experimental Results

In the following, we show results of various versions of RNNs for ML.C on three text datasets
which span a wide variety of input and label set sizes. We also evaluate different label

http://www.daviddlewis.com/resources/testcollections/reuters21578/

http://bioasq.org

By the truncation, one may worry about the possibility of missing information related to some specific
labels. As the average length of documents in the datasets is below 300, the effect would be negligible.
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Figure 4.2: Negative log-likelihood of RNNs on the validation set of Reuters-21578.

orderings, such as frequent-to-rare (f2r), and rare-to-frequent (r2f), as well as a topo-
logical sorting (when applicable) in terms of subset accuracy (ACC), Hamming accuracy

(HA), example-based Fy-measure (ebF}), micro-averaged Fy (miFy) and macro-averaged F
(maFl).

4.4.1 Experiments on Reuters-21578

Figure 4.2 shows the negative log-likelihood (NLL) of Eq. (4.3) on the validation set during
the course of training. Note that as RNN? attempts to predict binary targets, but RNN™ and
EncDec make predictions on multinomial targets, the results of RNN? are plotted separately,
with a different scale of the y-axis (top half of the graph). Compared to RNN™ and EncDec,
RNN? converges very slowly. This can be attributed to the length of the label chain and
sparse targets in the chain since RNN? is trained to make correct predictions over all 90
labels, most of them being zero. In other words, the length of target sequences of RNN? is
90 and fixed regardless of the content of training documents. In particular, RNN® has trouble
with the r2f label ordering, where training is unstable. The reason is presumably that the
predictions for later labels depend on sequences that are mostly zero when rare labels occur
at the beginning. Hence, the model sees only few examples of non-zero targets in a single
epoch. On the other hand, both RNN™ and EncDec converge relatively faster than RNN?
and do obviously not suffer from the r2f ordering. Moreover, there is not much difference
between both strategies since the length of the sequences is often 1 for Reuters-21578 and
hence often the same.

Figure 4.3 shows the performance of RNNs in terms of all evaluation measures on the
validation set. EncDec performs best for all the measures, followed by RNN". There is no
clear difference between the same type of models trained on different label permutations,
except for RNN? in terms of NLL (cf. Fig. 4.2). Note that although it takes more time to
update the parameters of EncDec than those of RNN"*, EncDec ends up with better results.
RNNP? performs poorly especially in terms of maF} regardless of the label permutations, sug-
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Table 4.3: Performance comparison on Reuters-21578.
ACC HA ebF1 miF1 maF1

No label permutations
BR(NN)  0.7685 0.9957 0.8515 0.8348 0.4022
LP(NN) 0.7837 0.9941 0.8206 0.7730 0.3505
NN 0.7502 0.9952 0.8396 0.8183 0.3083

Frequent labels first (f2r)
PCC(NN) 0.7844 0.9955 0.8585 0.8305 0.3989
RNN? 0.6757 0.9931 0.7180 0.7144 0.0897
RNN™ 0.7744 0.9942 0.8396 0.7884 0.2722
EncDec 0.8281 0.9961 0.8917 0.8545 0.4567

Rare labels first (r2f)
PCC(NN) 0.7864 0.9956 0.8598 0.8338 0.3937
RNN? 0.0931 0.9835 0.1083 0.1389 0.0102
RNN™ 0.7744 0.9943 0.8409 0.7864 0.2699
EncDec 0.8261 0.9962 0.8944 0.8575 0.4365

gesting that RNN® would need more parameter updates for predicting rare labels. Notably,
the advantage of EncDec is most pronounced for this specific task.

Detailed results of all methods on the test set are shown in table 4.3. Clearly, EncDec
perform best across all measures. LP works better than BR and NN in terms of ACC
as intended, but performs behind them in terms of other measures. The reason is that
LP, by construction, is able to more accurately hit the exact label set, but, on the other
hand, produces more false positives and false negatives in our experiments in comparison
to BR and NN when missing the correct label combination. As shown in the table, RNN™
performs better than its counterpart, i.c., RNN?, in terms of ACC, but has clear weaknesses
in predicting rare labels (cf. especially maF}). For PCC, our two permutations of the labels
do not affect much ACC due to the low label cardinality.

4.4.2 Experiments on RCV1-v2

In comparison to Reuters-21578, RCV1-v2 consists of a considerably larger number of docu-
ments. Though the the number of unique labels (L) is similar (103 vs. 90) in both datasets,
RCV1-v2 has a higher C' and LC' is greatly increased from 468 to 14921. Moreover, this
dataset has the interesting property that all labels from the root to a relevant leaf label in
the label tree are also associated to the document. In this case, we can also test a topological
ordering of labels, as described in section 4.2.1. As RNN? takes long to train and did not
show good results on the small dataset, we have no longer considered it in these experiments.
We instead include FastXML as a baseline.

Table 4.4 shows the performance of the methods with different label permutations. These
results demonstrate again the superiority of PCC and RNN" as well as EncDec against
BR and NN in maximizing ACC. Another interesting observation is that LP performs much
worse than other methods even in terms of ACC due to the data scarcity problem caused
by higher LC'. RNN" and EncDec, which also predict label subsets but in a sequential
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Figure 4.3: Performance of RNN models on the validation set of Reuters-21578 during training.
Note that the x-axis denotes # epochs and we use different scales on the y-axis for each measure.
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Table 4.4: Performance comparison on RCV1-v2.
ACC HA ebF1 miF1 maF1

No label permutations
BR(NN)  0.5554 0.9904 0.8376 0.8349 0.6376
LP(NN) 0.5149 0.9767 0.6696 0.6162 0.4154
NN 0.5837 0.9907 0.8441 0.8402 0.6573
FastXML 0.5953 0.9910 0.8409 0.8470 0.5918

Frequent labels first (f2r)
PCC(NN) 0.6211 0.9904 0.8461 0.8324 0.6404
RNN™ 0.6218 0.9903 0.8578 0.8487 0.6798
EncDec 0.6798 0.9925 0.8895 0.8838 0.7381

Rare labels first (r2f)
PCC(NN) 0.6300 0.9906 0.8493 0.8395 0.6376
RNN™ 0.6216 0.9903 0.8556 0.8525 0.6583
EncDec 0.6767 0.9925 0.8884 0.8817 0.7413

topological sorting
PCC(NN) 0.6257 0.9904 0.8463 0.8364 0.6486
RNN™ 0.6072 0.9898 0.8525 0.8437 0.6578
EncDec 0.6761 0.9924 0.8888 0.8808 0.7220

reverse topological sorting
PCC(NN) 0.6267 0.9902 0.8444 0.8346 0.6497
RNN™ 0.6232 0.9904 0.8561 0.8496 0.6535
EncDec 0.6781 0.9925 0.8899 0.8797 0.7258

manner, do not suffer from the larger number of distinct label combinations. Similar to the
previous experiment, we found no meaningful differences between the RNN and EncDec
models trained on different label permutations on RCV1-v2. FastXML also performs well
except for maf’ which tells us that it focuses more on frequent labels than rare labels. As
noted, this is because FastXML is designed to maximize top-k ranking measures such as
prec@k for which the performance on frequent labels is important.

4.4.3 Experiments on BioASQ

Compared to Reuters-21578 and RCV1-v2, BioASQ has an extremely large number of in-
stances and labels, where LC' is almost close to Ny, + Nys. In other words, nearly all distinct
label combinations appear only once in the dataset and some label subsets can only be found
in the test set. Table 4.5 shows the performance of Fast XML, RNN and EncDec on the test
set of BioASQ. EncDec clearly outperforms RNN" by a large margin. Making predictions
over several thousand labels is a particularly difficult task because MLC methods not only
learn label dependencies, but also understand the context information in documents allowing
us to find word-label dependencies and to improve the generalization performance.

We can observe a consistent benefit from using the reverse label ordering on both ap-
proaches. Note that EncDec does show reliable performance on two relatively small bench-
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Table 4.5: Performance comparison on BioASQ.
ACC HA ebF}  miF] mal)

No label permutations
FastXML 0.0001 0.9996 0.3585 0.3890 0.0570

Frequent label first (f2r)
RNN"™ 0.0001 0.9993 0.3917 0.4088 0.1435
EncDec 0.0004 0.9995 0.5294 0.5634 0.3211

Rare labels first (72f)

RNN™ 0.0001 0.9995 0.4188 0.4534 0.1801
EncDec  0.0006 0.9996 0.5531 0.5943 0.3363

topological sorting
RNN" 0.0001 0.9994 0.4087 0.4402 0.1555
EncDec 0.0006 0.9953 0.5311 0.5919 0.3459

reverse topological sorting
RNN™ 0.0001 0.9994 0.4210 0.4508 0.1646
EncDec  0.0007 0.9996 0.5585 0.5961 0.3427

marks regardless of the choice of the label permutations. Also, EncDec with reverse topolog-
ical sorting of labels achieves the best performance, except for maF;. Note that we observed
similar effects with RNN"" in our preliminary experiments on RCV1-v2, but the impact of
label permutations disappeared once we tuned RNN™ with dropout. This indicates that
label ordering does not affect much the final performance of models if they are trained well
enough with proper regularization techniques.

To understand the effectiveness of each model with respect to the size of the positive label
set, we split the test set into five almost equally-sized partitions based on the number of
target labels in the documents and evaluated the models separately for each of the partition,
as shown in Fig. 4.4. The first partition (P1) contains test documents associated with 1 to
9 labels. Similarly, other partitions, P2, P3, P4 and P5, have documents with cardinalities
of 10 ~ 12, 13 ~ 15, 16 ~ 18 and more than 19, respectively. As expected, the performance
of all models in terms of ACC and HA decreases as the number of positive labels increases.
The other measures increase since the classifiers have potentially more possibilities to match
positive labels. We can further confirm the observations from table 4.5 w.r.t. to different
labelset sizes.

The margin of FastXML to RNN™ and EncDec is further increased. Moreover, its poor
performance on rare labels confirms again the focus of FastXML on frequent labels. Re-
garding computational complexity, we could observe an opposed relation between the used
resources: whereas we ran EncDec on a single GPU with 12G of memory for 5 days, FastXML
only took 4 hours to complete (on 64 CPU cores), but, on the other hand, required a machine
with 1024G of memory.
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4.5 Conclusion

We have presented an alternative formulation of learning the joint probability of labels given
an instance, which exploits the generally low label cardinality in multi-label classification
problems. Instead of having to iterate over each of the labels as in the traditional classi-
fier chains approach, the new formulation allows us to directly focus only on the positive
labels. We provided an extension of the formal framework of probabilistic classifier chains,
contributing to the understanding of the theoretical background of multi-label classifica-
tion. Our approach based on recurrent neural networks, especially encoder-decoders, proved
to be effective, highly scalable, and robust towards different label orderings on both small
and large scale multi-label text classification benchmarks. However, some aspects of the
presented work deserve further consideration.
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5 Learning from Label Hierarchies

5.1 Introduction

Recent developments in multi-label classification can be roughly divided into two bodies
of research. One is to build a classifier in favor of statistical dependencies between labels,
and the other is devoted to making use of prior information over the label space. In the
former area, many attempts have been made to exploit label patterns (Chekina et al., 2013;
Dembczynski et al., 2012b; Read et al., 2011). As the number of possible configurations of
labels grows exponentially with respect to the number of labels, it is required for multi-label
classifiers to handle many labels efficiently (Bi and Kwok, 2013) or to reduce the dimen-
sionality of a label space by exploiting properties of label structures such as sparsity (Hsu
et al., 2009) and co-occurrence patterns (Chen and Lin, 2012). Label space dimensionality
reduction (LSDR) methods allow to make use of latent information on a label space as well
as to reduce computational cost. Another way of exploiting information on a label space
is to use its underlying structures as a prior. Many methods have been developed to use
hierarchical output structures in machine learning (Silla Jr. and Freitas, 2011). In particu-
lar, several researchers have looked into utilizing the hierarchical structure of the label space
for improved predictions in multi-label classification (Rousu et al., 2006; Vens et al., 2008;
Zimek et al., 2010).

Although extensive research has been devoted to techniques for utilizing implicitly or
explicitly given label structures, there remain the scalability issues of previous approaches
in terms of both the number of labels and documents in large feature spaces. Consider a
very large collection of scientific documents covering a wide range of research interests. In
an emerging research area, it can be expected that the number of publications per year
grows rapidly. Moreover, new topics will emerge, so that the set of indexing terms, which
has initially been provided by domain experts or authors to describe publications with few
words for potential readers, will grow as well.

Interestingly, similar problems have been faced recently in a different domain, namely
representation learning (Bengio et al., 2013). In language modeling, for instance, a word is
traditionally represented by a K-dimensional vector where K is the number of unique words,
typically hundreds of thousands or several millions. Clearly, it is desirable to reduce this
dimensionality to much smaller values d < K. This can, e.g., be achieved with a simple
log-linear model (Mikolov et al., 2013b), which can efficiently compute a so-called word
embedding, i.e., a lower-dimensional vector representations for words. Another example for
representation learning is a technique for learning a joint embedding space of instances
and labels (Weston et al., 2011). This approach maximizes the similarity between vector
representations of instances and relevant labels while projecting them into the same space.

Inspired by the log-linear model and the joint space embedding, we address large-scale
multi-label classification problems, in which both hierarchical label structures are given a
priori as well as label patterns occur in the training data. The mapping functions in the joint

69



space embedding method can be used to rank labels for a given instance, so that relevant
labels are placed at the top of the ranking. In other words, the quality of such a ranking
depends on the mapping functions. As mentioned, two types of information on label spaces
are expected to help us to train better joint embedding spaces, so that the performance on
unseen data can be improved. We focus on exploiting such information so as to learn a
mapping function projecting labels into the joint space. The vector representations of labels
by using this function will be referred to as label embeddings. While label embeddings are
usually initialized randomly, it will be beneficial to learn the joint space embedding method
taking label hierarchies into consideration when label structures are known. To this end, we
adopt the above-mentioned log-linear model which has been successfully used to learn word
embeddings.

Learning word embeddings relies fundamentally on the use of the context information, that
is, a fixed number of words surrounding that word in a sentence or a document. In order
to adapt this idea to learning label embeddings, we need to define context information in
a label space, where, unlike in textual documents, there is no sequence information which
can be used to define the context of words. We use, instead, pairwise relationships in label
hierarchies and in label co-occurrence patterns.

There are two major contributions of this chapter:

1. We build efficient multi-label classifiers which employ label hierarchies so as to predict
unseen labels.

2. We provide a novel method to efficiently learn label representations from hierarchical
structures over labels as well as their co-occurrence patterns.

5.2 Model Description

5.2.1 Joint space embeddings

Weston et al. (2011) proposed an efficient online method to learn ranking functions in a joint
space of instances and labels, namely Wsabie. Under the assumption that instances which
have similar representation in a feature space tend to be associated with similar label sets,
we find joint spaces of both instances and labels where the relevant labels for an instance
can be separated from the irrelevant ones with high probability.

Formally, consider an instance x of dimension D and a set of labels y associated with x.
Let ¢(x) = Wx denote a linear function which projects the original feature representations
of an instance x to a d-dimensional joint space, where W € R%*P ig a transformation matrix.
Similarly, let U be a d x L matrix that maps labels into the same joint d-dimensional space.
A label 7 € y can then be represented as a d-dimensional vector u;, which is the ¢-th column
vector of U. We will refer to the matrix U = [uy,ug, -+ ,uy] as label embeddings. The
objective function is given by

®F7 Z |yn Z Z h Tz Xn Xn;ylvy]) (5'1>

€Yy JEYn

with the pairwise hinge loss function

C(Xn, Yir yj) = [ma - u?é(xn) + U?¢(Xn>]+ (5.2)
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where 7;(+) denotes the rank of label i for a given instance x,, h(-) is a function that
maps this rank to a real number (to be introduced shortly in more detail), y, is the
complement of y,,, [z], is defined as z if z > 0 and 0 otherwise, @ = {W, U} are
model parameters, and m, is a real-valued parameter, namely the margin. The relevance
scores 8(x) = [s1(x),s2(x),- - ,s5(x)] of labels for a given instance x can be computed
as s;(x) = u] ¢(x) € R. Then, the rank of label ¢ with respect to an instance X can be
determined based on the relevance scores

rx) = > [ma—si(x) +s;(x)], (5.3)
JEY J#i
It is prohibitively expensive to compute such rankings exactly when L is large.

The rank of label 7, i.e., 7;(x), is determined by the number of negative labels j € y,, that
are ranked higher than the positive label i. Let Ni be a random variable that stands for the
number trials to choose a negative label j that is placed at a higher rank than a positive
label 7 if there are k such labels. The random variable N, follows the geometric distribution,
which is the probability distribution of the number of trials until the first success with some
probability p where 0 < p < 1. The probability of drawing a violating label out of k in this
case is defined as

. k
L—lyl

Given the expected number of trials E[Ng] = %, we can calculate approximately 7;(x)

in Eq. (5.3) as follows
L—lyl
rilx) { Si J

where [-] denotes the floor function and S;, an approximation of E [N], is the number of
trials to sample an index j yielding incorrect ranking against label ¢ such that m, — s;(x) +

s;j(x) > 0. Having an approximate rank r;(x), we can obtain a weighted ranking function

ri(x) 1
hri(x)) = >, 7.

which is shown to be an effective way of optimizing precision at the top of rankings.

5.2.2 Learning with hierarchical structures over labels

Wsabie is trained in a way that the margin of similarity scores between positive associations
u'¢(x) and negative associations u} ¢(x) is maximized, where u, and u,, denote the em-
beddings of relevant and irrelevant labels, respectively, for an instance x. In practice, this
approach works well if label patterns of test instances appear in training label patterns. If
there are few or no training instances for some labels, the model may fail to make predictions
accurately on test instances associated with those labels. In such cases, a joint space learn-
ing method could benefit from label hierarchies. In this section, we introduce a simple and
efficient joint space learning method by adding a regularization term which employs label
hierarchies, hereafter referred to as Wsabiey.
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Figure 5.1: An illustrative example of our proposed method. A label y; (green circle) indicates a
relevant label for a document (rectangle) while y,, (red circle) is one of the irrelevant labels. In the
joint space, we learn representations for the relevant label, its ancestor y,, and the document to
be similar whereas the distance between the document and the irrelevant label is maximized. Also,
the parent label, y;, and its children are forced to be similar while sibling labels of y;, i.e. y, are kept
away from each other.

Notations. Consider multi-label problems where label hierarchies exist. Label graphs are
a natural way to represent such hierarchical structures. Because it is possible for a label
to have more than one parent node, we represent a hierarchy of labels in a directed acyclic
graph (DAG). Consider a graph G = {V, E} where V denotes a set of nodes and E represent
a set of connections between nodes. A node u € V' corresponds to a label. A directed edge
from a node u to a node v is denoted as e, ,, in which case we say that u is a parent of v
and v is a child of u. The set of all parents / children of v is denoted with Sp(v) / Se(v).
If there exists a directed path from u to v, u is an ancestor of v and v is a descendant of w,
the set of all ancestors / descendants is denoted as S4 / Sp(u).

Label structures as regularizers. As an example, let us consider three labels, “computer
science” (CS), “artificial intelligence” (Al), and “software engineering” (SE). The label CS can
be viewed as a parent label of Al and SE. Given a paper dealing with problems in artificial
intelligence and having Al as a label, we wish to learn a joint embedding model in a way
that it is also highly probable to predict CS as a relevant label. Following our hypothesis in
label spaces, even though we have no paper of software engineering, a label hierarchy allows
us to make reasonable predictions on such a label by representing label SE close to label CS
in a vector space. In order to prevent the model from converging to trivial solutions that
representations of all three labels are identical, it is desired that sibling labels such as Al
and SE in the hierarchy are well separated from each other in a joint embedding space. For
an illustration of our method, see Fig. 5.1.

Formally, we can achieve this by defining a regularization term €2, which takes into account
the hierarchical label structure

Z Z > —logp(yslyi xn)

ZEyn SESA(Z)

L
+;|S

(w)) mb — u w +uy, ul] (5.4)
qGS (1) keSc(a)
75
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where my, is the margin, Z4 = |y,,|/Sa(?)|, and p(ys|yi, x,,) denotes the probability of pre-
dicting an ancestor label s of a label ¢ given ¢ and an instance x,, for which ¢ is relevant.
More specifically, the probability p(ys|y:, X,) can be defined as

exp(uTﬁ(n))
P(Yslyi, Xn) = = s (5.5)
vy exp(ul,™)
where ﬁz(.n) = 1 (w; + ¢(xy)) is the averaged-representation of a label i and the n-th in-

stance in a joint space. We use the hierarchical softmax discussed in Section 2.3.2 to
compute Eq. (5.5). Intuitively, this regularizer forces labels, which share the same par-
ent label, to have similar vector representations as much as possible while keeping them
separated from each other. Moreover, an instance x has the potential to make good pre-
dictions on some labels even though they do not appear in the training set only if their
descendants are associated with training instances.

Adding Q to Eq. 5.1 results in the objective function of Wsabiey

L(®y;D Z ] Z Z h(ri(xp)) £ (Xn, Yi, Y;) + AQOx) (5.6)

€Yy JEYp

where A is a control parameter of the regularization term. If we set A\ = 0, then the above
objective function is equivalent to the objective function of Wsabie in Eq 5.1.

5.2.3 Label ranking to binary predictions

It is often sufficient in practice to just predict a ranking of labels instead of a bipartition
of labels, especially in settings where the learning system is comprehended as supportive
(Crammer and Singer, 2003). On the other hand, there are several ways to convert rank-
ing results into a bipartition. Basically all of them split the ranking at a certain position
depending on a predetermined or predicted threshold or amount of relevant labels.

Instead of experimenting with different threshold techniques, we took a pragmatic stance,
and simply assume that there is an oracle which tells us the actual number of relevant labels
for an unseen instance. This allows us to evaluate and compare the ranking quality of our
approaches independently of the performance of an underlying thresholding technique. The
bipartition measures obtained by this method could be interpreted as a (soft) upper bound
for any thresholding approach.

5.3 Experimental Setup

Datasets. We benchmark our proposed method on two textual corpora consisting of a large
number of documents and with label hierarchies provided.

The RCV1-v2 dataset (Lewis et al., 2004) is a collection of newswire articles. There are 103
labels and they are organized in a tree. Each label belongs to one of four major categories.
The original train/test split in the RCV1-v2 dataset consists of 23,149 training documents
and 781,265 test documents. In our experiments, we switched the training and the test data,
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Table 5.1: Number of instances (M), Size of vocabulary (D), Number of labels (L), Average number
of labels per instance (C), and the type of label hierarchy (HS). L subscripted k and u denote the
number of known and unseen labels, respectively.

Original datasets Modified datasets

7 T C 7 o L. C D HS
ROVIvZ 804414 103 3.24 700628 D) 51 1.43 20000  Troe
OHSUMED 233369 27483  9.07 100735 9570 17913 3.87 925802  DAG

and selected the top 20,000 words according to the document frequency. We chose randomly
10,000 training documents as the validation set.

The second corpus is the OHSUMED dataset (Hersh et al., 1994) consisting of 348,565
scientific articles from MEDLINE. Each article has multiple index terms known as Medical
Subject Headings (MeSH). In this dataset, the training set contains articles from year 1987
while articles from 1988 to 1991 belong to the test set. We map all MeSH terms in the
OHSUMED dataset to 2015 MeSH vocabulary® in which 27,483 MeSH terms are organized in
a DAG hierarchy. Originally, the OHSUMED collection consists of 54,710 training documents
and 293,856 test documents. Having removed all MeSH terms that do not appear in the
2015 MeSH vocabulary, we excluded all documents that have no label from the corpus. To
represent documents in a vector space, we selected unigram words that occur more than 5
times in the training set. These pre-processing steps left us with 36,883 train documents
and 196,486 test documents. Then, 10% of the training documents were randomly set aside
for the validation set. Finally, for both datasets, we applied log tf-idf term-weighting and
then normalized document vectors to unit length.

Preparation of the datasets in zero-shot settings. We hypothesize that label hierarchies
provide possibilities of learning representations of unseen labels, thereby improving predictive
performance for unseen data. To test our hypothesis, we modified the datasets. For the
RCV1-v2 dataset, we removed all labels corresponding to non-terminals in the label hierarchy
from training data and validation data while these non-terminal labels remain intact in the
test set. In other words, we train models with labels corresponding to the leaves in the label
hierarchy, then test them on the modified test set which only contains unseen labels.

Since the train and test examples of the OHSUMED dataset was split by year, the training
data does not cover all labels in the test set. More specifically, there are 27,483 labels in
the label hierarchy (cf. Table 5.1), of which only 9,570 occur in both training and test sets,
which will be referred to as the set of known labels. Of the 12,568 labels that occur in
the test set, 2,998 cannot be found in the known labels set, and thus form a set of unseen
labels together with the 14,915 labels which are only available in the label hierarchy, but not
present in the label patterns. In order to test predictive performance on these unseen labels,
we omitted all labels in the known label set from the test examples. This resulted in some
test examples having an empty set of labels, which were ignored for the evaluation. Finally,
the above preprocessing steps left us 67,391 test examples.

The statistics of the datasets and the modified ones are summarized in Table 5.1.

1 http://www.nlm.nih.gov/pubs/techbull/sol4/s014_2015_mesh_avail.html
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Representing parent-child pairs of MeSH terms in a DAG. As mentioned earlier, we use
parent-child pairs of MeSH terms in the 2015 MeSH vocabulary as the label hierarchy for the
OHSUMED dataset. If we represent parent-child pairs of labels as a graph, it may contain
cycles. Hence, we removed edges resulting in cycles as follows: 1) Pick a node that has no
parent as a starting node. 2) Run Depth-First Search (DFS) from the starting node in order
to detect edges pointing to nodes visited already, then remove such edges. 3) Repeat the
1 & 2 steps until all nodes having no parents are visited. There are 16 major categories
in the MeSH vocabulary. In contrast to RCV1-v2, the MeSH terms are formed in complex
structures so that a label can have more than one parent.

Baselines. We compare our algorithm, Wsabiey, which uses hierarchical information for
label embeddings, to Wsabie ignoring label hierarchies and several other benchmark algo-
rithms. For binary relevance (BR), which decomposes a multi-label problem into L binary
problems, we use LIBLINEAR (Fan et al., 2008) as a base learner which is a good compromise
between efficiency and effectiveness in multi-label text document classification.

To address the limitations of BR, specifically, when L is large, dimensionality reduction
method on label spaces, namely Principal Label Space Transformation (PLST) and Con-
ditional Principal Label Space Transformation (CPLST), have been proposed (Chen and
Lin, 2012; Tai and Lin, 2012) which try to capture label correlations before learning per-
label classifiers. Instead of directly predicting labels for given instances, the LSDR approach
learns d-output linear predictors in a reduced label space. Then, the original label space is
reconstructed from the outputs of the linear predictors using the transformation matrix for
reducing the label dimensionality. We use ridge regression as a linear predictor.

Pairwise decomposition has been already successfully applied for multi-label text classi-
fication (Fiirnkranz et al., 2008; Loza Mencia and Firnkranz, 2008). Here, one classifier is
trained for each pair of classes, i.e., a problem with L different classes is decomposed into
@ subproblems. At test time, all of the @ base classifiers make a prediction for
one of its two corresponding classes, which is interpreted as a full vote (0 or 1) for this
label. Adding these up results in a ranking over the labels. To convert the ranking into a
multi-label prediction, we use the calibrated label ranking (CLR) approach. Though CLR is
able to predict cutting points of ranked lists, in this work, in order to allow a fair compari-
son, it also relies on an oracle to predict the number of relevant labels for a given instance

(cf Section 5.2.3). We denote by CLRgy,, the use of CLR in combination with SVMs.

Training Details. All hyperparameters were empirically chosen based on AvgP on validation
sets. The dimensionality of the joint space d was selected in a range of {16, 32,64, 128} for
the RCV1-v2 dataset and {128, 256,512} for the OHSUMED dataset. The margins m, and
my, were chosen ranging from {1073,1072,107%,10°, 10, 10%}. We used Adagrad (Duchi
et al., 2011) to optimize parameters © in Eq. 5.1 and 5.6. Let A; ;- be the gradient of the
objective function in Eq. 5.6 with respect to a parameter #; € © at time 7. Then, the

update rule for parameters indexed 7 at time 7 is given by 9£T+1) = QET) — UZ(T)Ai,t with

an adaptive learning rate per parameter 771.(7) = 770/1/2;1 A?}t where 19 € {107%,1073,
1072, 10_1} denotes a base learning rate which decrease by a factor of 0.99 per epoch. We
implemented our proposed methods using a lock-free parallel gradient update scheme (Recht
et al., 2011), namely Hogwild!, in a shared memory system since the number of parameters
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Table 5.2: Comparison of Wsabiey to its baselines on the benchmarks. (Best in bold)

RCV1-v2
BR PLST CPLST CLRg,,, Wsabie Wsabiey
AvgP 9420 92.75  92.76 94.76 94.34 94.39
RL 0.46  0.78 0.76 0.40 0.44 0.44

OHSUMED
BR PLST CPLST CLRs,,, Wsabie Wsabiey
AvgP  45.00 26.50 - - 45.72 45.76
RL 4.48 15.06 - - 4.09 3.72

involved during updates is sparse even though the whole parameter space is large. For BR
and CLR gy, LIBLINEAR(Fan et al., 2008) was used as a base learner and the regularization
parameter C = {1072,10°, 102, 10%, 10°} was chosen by validation sets.

5.4 Experimental Results

5.4.1 Learning All Labels Together

Table 5.2 compares our proposed algorithm, Wsabier;, with the baselines on the bench-
mark datasets in terms of two ranking measures. It can be seen that CLRg,,, outperforms
the others including Wsabier; on the RCV1-v2 dataset, but the performance gap across all
algorithms in our experiments is not large. Even BR ignoring label relationship works com-
petitively on this dataset. Also, no difference between Wsabie and Wsabiey was observed.
This is attributed to characteristics of the RCV1-v2 dataset that if a label corresponding
to one of the leaf nodes in the label hierarchy is associated with an instance, (almost) all
nodes in a path from the root node to that node are also present, so that the hierarchical
information is implicitly present in the training data.

Let us now turn to the experimental results on the OHSUMED dataset which are shown at
the bottome of Table 5.2. Since the dataset consists of many labels, as an LSDR approach,
we include PLST only in this experiment because CPLST is computationally more expensive
than PLST, but no significant difference was observed. Similarly, due to the computational
cost of CLR gy, with respect to the number of labels, we excluded it from the experiment. It
can be seen that regardless of the choice of the regularization term, the Wsabie approaches
perform better than the other methods. PLST performed poorly under the settings where the
density of labels, i.e., C'/ L in Table 5.1, is very low. Moreover, we projected the original label
space L =27,483 into a much smaller dimension d = 512 using a small amount of training
examples. Although the difference to BR is rather small, the margin is more pronounced
that on RCV1.
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Table 5.3: The performance of Wsabiey compared to its baseline on the benchmarks in zero-shot
learning settings.

RCV1-v2 OHSUMED
AvgP  RL MiF MaF AvgP  RL MiF MaF
Wsabie 231 62.29 0.00 0.00 0.01 56.37 0.00 0.00
Wsabiey 9.47 30.39 0.50 1.64 0.06 39.91 0.00 0.00

5.4.2 Learning to Predict Unseen Labels

Over the last few years, there has been an increasing interest in zero-shot learning, which
aims to learn a function that maps instances to classes or labels that have not been seen
during training. Visual attributes of an image (Lampert et al., 2014) or textual description
of labels (Frome et al., 2013; Socher et al., 2013) may serve as additional information for
zero-shot learning algorithms. In contrast, in this work, we focus on how to exploit label
hierarchies and co-occurrence patterns of labels to make predictions on such unseen labels.
The reason is that in many cases it is difficult to get additional information for some specific
labels from external sources. In particular, while using a semantic space of labels’ textual
description is a promising way to learn vector representations of labels, sometimes it is not
straightforward to find suitable mappings of specialized labels.

Table 5.3 shows the results of Wsabie against Wsabiey on the modified datasets which do
not contain any known label in the test set (cf. Sec. 5.3). As can be seen, Wsabiey clearly
outperforms Wsabie on both datasets across all measures except for MiF and MaF on the
OHSUMED dataset. Note that the key difference between Wsabiery and Wsabie is the use of
hierarchical structures over labels during the training phase. Since the labels in the test set
do not appear during training, Wsabie can basically only make random predictions for the
unknown labels. Hence, the comparison shows that taking only the hierarchical relations into
account already enables a considerable improvement over the baseline. Unfortunately, the
effect is not substantial enough in order to be reflected w.r.t. MiF and MaF on OHSUMED.
Note, however, that a relevant, completely unknown label must be ranked approximately
as one of the top 4 labels out of 17,913 in order to count for bipartition measures in this
particular setting.

In summary, these results show that the regularization of joint embedding methods is an
effective way of learning representations for unseen labels in a tree-structured hierarchy of a
small number of labels . However, if a label hierarchy is defined on more complex structures
and while a fewer number of training examples exists per label, it might be difficult for
Wisabieyg to work well on unseen data.

5.5 Pretrained Label Embeddings as Good Initial Guess

From the previous experiments, we see that the regularization of Wsabiey using the hier-
archical structure of labels allows us to obtain better performance for unseen labels. The
objective function (Eq. 5.6) penalizes parameters of observable labels in the training data
by the negative log probability of predicting their ancestors in a hierarchy. If we initialize
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label spaces parameterized by U at random, presumably, the regularizer may rather act as
noise at a beginning stage of the training. Especially for OHSUMED, the label hierarchy is
complex and positive documents are very few for some labels.

We address this by exploiting both label hierarchies and co-occurrence patterns between
labels in the training data. Apart from feature representations of a training instance, it is
possible to capture underlying structures of the label space based on the co-occurrence pat-
terns. Hence, we propose a method to learn label embeddings from hierarchical information
and pairwise label relationships.

The basic idea of pretraining label embeddings is to maximize the probability of predicting
an ancestor given a particular label in a hierarchy as well as predicting co-occurring labels
with it. Given the labels of N training instances Dy = {y;,¥s, - ,¥yn}, the objective
function is to maximize the average log probability given by

N

Z[(lz— ) Z Z log p (y;y:) +— Z Z log p (yk|y:) ] (5.7)
n=1 A icy, jeSal) N icg, k/ig[”

where o determines the importance of each term ranging from 0 to 1, Z4 = |y,,||Sa(+)| and
= |y,|(J]y,] —1). The probability of predicting an ancestor label j of a label i, i.e.,
p(yj]yi), can be computed similarly to Eq. 5.5 by using softmaz and slight modifications.
Thus, the log-probability can be defined by
exp(u’; T
Psly) = o 58)
Do exXp(u, uy)
where u; is the i-th column vector of U € R¥*L and u’ j is a vector representation for label
4§ and the j-th column vector of U’ € R®%. The softmax function in Eq. 5.8 can be viewed
as an objective function of a neural network consisting of a linear activation function in
the hidden layer and two weights {U, U’}, where U connects the input layer to the hidden
layer while U’ is used to convey the hidden activations to the output layer. Here, U and
U’ correspond to vector representations for input labels and output labels, respectively.
Like Eq. 5.5, we use hierarchical softmaz instead of Eq. 5.8 to speed up pre-training label
embeddings.

The hierarchy of MeSH vocabulary consists of 16 major categories. Each index term
belongs to at least one major category. After training the log-linear model on the BioASQ
dataset, we selected labels corresponding terminals and belonging to a single major category
in order to visualize learned representations. Figure 5.2 shows that using a hierarchy and
co-occurrences of labels the model separates reasonably well 16 major categories defined in
MeSH vocabulary. Please note that whereas we use tSNE for better visualization in Figure

5.2, Principal Component Analysis is used then to project label representations for the rest
of figures in this paper. In the following section, we investigate what label representations
learn from a hierarchy and co-occurrences.

5.5.1 Encoding Hierarchical Structures

As an illustration of our results, we will focus on a subgraph related to health care, shown
in the top of Figure 5.3. Consider the leaf nodes in the figure. According to our objec-
tive in Equation 5.7, Urban Health, Suburban Health and Rural Health are trained to have
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Figure 5.2: Learned representations of 16 major categories in MeSH vocabulary. Projection of label
representations into 2D is done by t-distributed stochastic neighbor embedding (tSNE) (Van der
Maaten and Hinton, 2008).

representations for predicting their common ancestors, i.e., Health, Population Character-
istics and Health care category. The child nodes of Population are also trained similarly.
Although Urban, Suburban and Rural Health are separated from Urban, Suburban and Rural
Population, their representations tend to be similar since they share the same ancestors. In
other words, Urban Health and Rural Population, for example, should have somewhat similar
representations in part so as to increase a probability of predicting their common ancestors
even though they are rarely assigned to the same instance.

We did perform an experiment to see whether learning from only the co-occurrences yields
meaningful structures. In this case, our objective function is limited to the right term in
Equation 5.7. Co-occurrence information enables to learn internal structures (see Figure
5.3b). If we consider hierarchical relationship between labels as well as co-occurrences of
them, a more interesting property of our proposed method can be observed. A major differ-
ence between Figure 5.3b and 5.3c are the inter- and intra-group relationships among labels
at the leaves. Specifically, all child nodes of Health are located in the left side and those of
Population appear in the opposite side (Figure 5.3c). In addition to such relationship be-
tween two groups, relations between labels belonging to Health (on the left) resemble those
found among the children of Population (on the right).
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Figure 5.3: (a) A part of the hierarchy related to health care. (b) Learned vector representations
for the index terms at leaf without the hierarchy (manually rotated). (c) Learned vector represen-
tations for the same index terms with the hierarchy.

5.5.2 Understanding Label Embeddings

We begin by qualitatively demonstrating label embeddings trained on label co-occurrence
patterns from the BioASQ dataset (Balikas et al., 2014), which is one of the largest datasets
for multi-label text classification, and label hierarchies in the 2015 MeSH vocabulary. The
BioASQ dataset consists of more than 10 millions of documents. Note that we only use its
label co-occurrence patterns. Its labels are also defined over the same MeSH vocabulary, so
that we can use it for obtaining knowledge about the OHSUMED labels (cf Section 5.5).
We trained the label embeddings using Eq. 5.7 by setting the dimensionality of the label
embeddings to d = {128,256,512} with different weighting values o = {0,0.5,1} for 100
epoch using SGD with a fixed learning rate of 0.1. If we set d = 128, training took about 6
hours on a machine with dual Xeon E5-2620 CPUs.

Analysis on learned label representations. Fig. 5.4 shows vector representations of labels
related to Disorders/Diseases and their therapy in the 2015 MeSH vocabulary in 2D space.?
It is likely that label pairs that co-occur frequently are close to each other. Particularly, on
the left in Fig. 5.4, each therapy is close to a disorder for which the therapy is an effective
treatment. If we make use of hierarchical information as well as co-occurrence label patterns

2 Projection of 128-dim label embeddings into 2D was done by Principal Component Analysis.
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Figure 5.4: Visualization of learned label embeddings by the log-linear model (Eq 5.7). (top) using
only label co-occurrence patterns o = 1 (middle) using a hierarchy as well as co-occurrences o = 0.5
(bottom) using only a hierarchy o = 0.
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Table 5.4: Analogical reasoning on learned vector representations of MeSH vocabulary

On learned representations using the hierarchy

Analogy questions | Most probable answers

Diet Therapy
Enteral Nutrition
Gastrointestinal Intubation
Total Parenteral Nutrition
Parenteral Nutrition

Cardiovascular Diseases : Diet Therapy

~
~

Respiration Disorders : ?

Respiratory Therapy

Behavior Therapy
Cognitive Therapy
Rational-Emotive Psychotherapy
Brief Psychotherapy
Psychologic Desensitization
Implosive Therapy

Mental Disorders : Behavior Therapy

~

PTSD : 7

On learned representations without using the hierarchy

Analogy questions Most probable answers

Respiration Disorders
Respiratory Tract Diseases
Respiratory Sounds
Airway Obstruction
Hypoventilation
Croup
Behavior Therapy
Psychologic Desensitization
Internal-External Control
PTSD
Phobic Disorders
Anger

Cardiovascular Diseases : Diet Therapy

~
~

Respiration Disorders : ?

Mental Disorders : Behavior Therapy

~

PTSD : ?

during training, i.e., « = 0.5 in Eq. 5.7, more interesting relationships are revealed which are
not observed from the model trained only on co-occurrences (o = 1). We can say that the
learned vector representations has identified Therapy-Disorders/Diseases relationships (on
the middle in Fig. 5.4). We also present label embeddings trained using only label hierarchies
(a = 0) on the right in Fig. 5.4.

Analogical reasoning in label spaces. One way to evaluate representation quality is ana-
logical reasoning as shown in (Mikolov et al., 2013b). Upon the above observations (on
the middle in Fig. 5.4), we performed analogical reasoning on both the representations
trained with the hierarchy and ones without the hierarchy, specifically, regarding Therapy-
Disorders/Diseases relationships (Table 5.4). As expected, it seems like the label represen-
tations trained with the hierarchy are clearly advantageous to the ones trained without the
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Figure 5.5: (a) A modified hierarchy (right) from the original one (left) obtained by grouping
the same types of developed environments. See text for further explanation. (b) Learned vec-
tor representations without using a hierarchy. (c) Learned vector representations using the original
hierarchy. (d) Learned vector representations using the modified hierarchy.

hierarchy on analogical reasoning. To be more specific, consider the first example, where
we want to know what kinds of therapies are effective on “Respiration Disorders” as the
relationship between “Diet Therapy” and “Cardiovascular Diseases”. When we perform such
analogical reasoning using learned embeddings with the hierarchy, the most probable answers
to this analogy question are therapies that can be used to treat “Respiration Disorders” in-
cluding nutritional therapies. Unlike the learned embeddings with the hierarchy, the label
embeddings without the hierarchy perform poorly. In the bottom-right of Table 5.4, “Phobic
Disorders” can be considered as a type of anxiety disorders that occur commonly together
with “Post-traumatic Stress Disorders (PTSD)” rather than a treatment of it.

5.5.3 Different Hierarchies, Different Representations

In the previous section, we have shown our proposed method is capable of capturing hier-
archical structures over labels and co-occurrences of them. In this case, it can be expected
that the learned representations change when some part of the hierarchy is changed while
the label co-occurrences remains same. To answer this question, firstly, we modified the
original hierarchy (left in Fig. 5.5a) so as to obtain the new hierarchy (right in Fig. 5.5a).
Originally, Population Characteristics has two child nodes, Health and Population. Contrary
to Population that has only three child nodes, Health has dozens of child nodes. Instead
of removing the other nodes from the hierarchy, we kept them as they are in the hierarchy.
However, Population was removed from the hierarchy. We then created three new internal
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Table 5.5: Initialization of label embeddings on OHSUMED under zero-shot settings.

random label embeddings pretrained label embeddings

AvgP  RL MiF  MaF AvgP  RL MiF  MaF

Wsabie 0.01  56.37 0.00 0.00 1.64 2.82 0.03 0.06
Wsabiegy 0.06 39.91 0.00 0.00 1.36 5.33 0.08 0.14

nodes, Urban, Suburban and Rural representing types of developed environments. Finally,
all nodes of interest (in blue and red) were grouped according to the developed types.

Figure 5.5d shows learned vector representations with modified hierarchy and compares
the learned representations with the previous results.> Unlike the previous result in Fig. 5.5¢,
where Health-related nodes and Population-related nodes form clusters, Urban Health and
Urban Population are clustered together since they share the common parent node, Urban.
We can also observe similar patterns for Suburban and Rural. Besides, relative distance
between each Population and Health within a cluster is identical, and the same direction
vector from Health to Population or the other way around can be defined. Please note
that, in this case, learning the model only from co-occurrences yields always similar label
representations since we only modified the hierarchy (Fig. 5.5b).

5.5.4 Results

The results on the modified zero-shot learning datasets in Table 5.5 show that we can obtain
substantial improvements by the pretrained label embeddings. Please note that the scores
obtained by using random label embeddings on the left in Table 5.5 are the same as those of
Wsabie and Wsabiey in Table 5.3. In this experiment, we used very small base learning rates
(i.e., mp = 10~% chosen by validation) for updating label embeddings in Eq. 5.6 after being
initialized by the pretrained ones. This means that our proposed method is trained in a way
that maps a document into the some point of label embeddings while the label embeddings
hardly change. In fact, the pretrained label embeddings have interesting properties shown in
Section 5.5.2, so that Wsabie starts learning at good initial parameter spaces. Interestingly,
it was observed that some of the unseen labels are placed at the top of rankings for test in-
stances, so that relatively higher scores of bipartition measures are obtained even for Wsabie.
We also performed an experiment on the full OHSUMED dataset. The experimental results
are given in Table 5.6. Wsabieyp combining pretrained label embeddings with hierarchical
label structures is able to further improve, outperforming both extensions by its own across
all measures.

5.6 Conclusions

We have presented a method that learns a joint space of instances and labels taking hier-
archical structures of labels into account. This method is able to learn representations of

3 For the sake of readability, we used repeated results, the left graph in a, b and ¢ taken from Figure 5.3,

in order to clearly show the difference between representations learned from the original hierarchy and
from the modified one as well as learned from only co-occurrences.
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Table 5.6: Evaluation on the full test data of the OHSUMED dataset. Numbers in parentheses are
standard deviation over 5 runs. Subscript P denotes the use of pretrained label embeddings.

Wsabie Wsaibey Wsabiep Wsabiegp
AvgP 4572 (0.04) 45.76  (0.06) 45.88 (0.09) 45.92 (0.02)
RL 4.09 (0.18) 3.72  (0.11) 3.44  (0.13) 3.11 (0.10)
MiF 46.32  (0.04) 46.34 (0.04) 46.45 (0.07)  46.50 (0.01)
MakF 13.93  (0.03) 13.96 (0.07) 14.19 (0.05) 14.25 (0.02)

labels, which are not presented during the training phase, by leveraging label hierarchies.
We have also proposed a way of pretraining label embeddings from huge amounts of label
patterns and hierarchical structures of labels.

We demonstrated the joint space learning method on two multi-label text corpora that
have different types of label hierarchies. The empirical results showed that our approach can
be used to place relevant unseen labels on the top of the ranked list of labels. In addition
to the quantitative evaluation, we also analyzed label representations qualitatively via a 2D-
visualization of label representations. This analysis showed that using hierarchical structures
of labels allows us to assess vector representations of labels by analogical reasoning.
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6 Discovering Latent Structures from
Label Descriptions

6.1 Introduction

Classification is a classical task in machine learning whose goal is to assign class labels to
instances based on instances’ properties. This can be seen as a learning process to identify
common properties in instances and to aggregate instances, which are characterized by sim-
ilar properties, in the same class. That is, classes represent commonality among instances in
an abstract level. Thus, we evaluate how well the classifiers generalize to unseen instances.
In a similar sense, evaluation can also be extended to the performance of the classifiers on
unseen labels. For the latter, however, classification algorithms cannot work well if they
exploit association patterns only between instances and labels given in the training set. This
is because, in classification problems, a label is often represented by one of a fixed number of
discrete values. In other words, there is no way to know how unseen labels are related to seen
labels. This sort of problem is often referred to as zero-shot learning (ZSL) where a subset of
labels is associated with none of training examples, but only appears among the target labels
at test time (Farhadi et al., 2009; Palatucci et al., 2009). Hence, the main question in ZSL
is how we can define more meaningful labels in order to improve performance of classifiers
even on unseen labels.

Recently, several approaches have been proposed to address ZSL problems by making
use of additional information such as attributes of labels (Lampert et al., 2014) and their
textual information such as the labels’ name (Akata et al., 2015; Frome et al., 2013; Sappadla
et al., 2016; Socher et al., 2013). Such information allows for classifiers to make reasonable
predictions on unseen instances associated with unseen labels, without losing generalization
performance. As an example, assume that we are given a classifier trained on a collection
of documents about “dogs” and “cats.” What if documents about “wolves” and “lions” arrive
at test time? Given the fixed label set, i.e., “dogs” and “cats,” the classifier may predict the
label of documents about wolves as “dogs” because it is likely that the documents about
“wolves” shares more terms with ones about dogs than cats. Similarly, the documents about
lions will be predicted as “cats.” Let us consider a slightly different scenario that “wolves”
and “lions” are also used as labels to be predicted at test time even though we did not train
the classifier for such labels. Defining A < B which means A comes before B in a ranked
list, we want the classifier to yield the following ranked lists of labels for the documents
about wolves: “dogs” < “cats” < “wolves” < “lions,” “dogs” < “wolves” < “cats” < “lions,”
or, ideally, “wolves” < “dogs” < “cats” < “lions” based on the fact that “dogs” and “wolves”
belong to the same family, and under the assumption that the classifier also knows such
fact learned from external resources. In other words, for the documents about wolves it is
reasonable that “wolves” always precedes “lions” in label ranking based on the relationship
between “dogs” and “wolves.”
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One way that allows classifiers to learn relationships between labels and to exploit the
information for making predictions for unseen labels has been introduced in (Frome et al.,
2013). This approach first represents words as d-dimensional vectors. These word embed-
dings are learned from large textual corpora such as Wikipedia whose vocabulary includes
textual descriptions for labels such as “dogs” and “cats”. In turn, representations of words
corresponding to label names are used instead when labels need to be considered. As the
embedding space has the interesting property that words used in similar contexts have sim-
ilar representations, one is able to make reasonable predictions for unseen labels even when
no prior information on them is available.

Although it sheds light on an interesting direction of ZSL, it is still problematic when we
consider this method on problems where textual information of labels is quite complex to be
converted into words by looking up in the dictionary. To circumvent this problem, one can
make the assumption that each label has its own description in textual format. Then, such
descriptions can be represented by tf-idf as in (Elhoseiny et al., 2013). For example, “dog”
in Wikipedia is described as follows:

The domestic dog (Canis lupus familiaris or Canis familiaris) is a domesticated
cantd which has been selectively bred for millennia for various behaviors, sensory
capabilities, and physical attributes. . ..

Furthermore, it is worth noting that learning word representations is independent of the
training data in (Frome et al., 2013). If instances are also in textual format, we may further
exploit word embeddings by finding a joint space of all available information such as word
sequence patterns in both instances and label descriptions, and association patterns between
instances and labels.

Hence, in this chapter, we aim at learning document, label, and word representations
from such textual information where labels descriptions and documents share the same word
vocabulary, as well as association patterns between documents and labels. This joint learning
scheme allows us to infer representations for unseen labels and to obtain better classification
systems in terms of generalization performance on both unseen instances and labels.

6.2 Problem Statement

In the following we will define a set of notations which will be used throughout this chap-

ter. Assume that we are given a vocabulary of V words W = {1,2,--- ,V'}, a set of
L labels Cs = {1,2,---,L}, and a set of N training examples D = {(ﬁm),yn)i\;l}
where 7;1(36) = {wgm),wéx),--- ,wS\Z} denotes a sequence of M, words w € W, and
Yo = {v1,92, - ,yQ,} a set of @ relevant labels y € C for the n-th training exam-
ple. Each label y; € C, has its own description ﬁ(y) = {wgy),wéy), e ,w%} consisting
of M; words. Let X = {x1,Xa, -+ ,xny} € RN Y = {yy,y9,--- ,yr} € R¥L and
U={u,uy, - ,uy} € R**V be document, label, and word representations, respectively.
For exgcr)nple, X1 corresponds to the k-dimensional vector for the document indexed 1 in D,
ie., T,

In this chapter, we examine our hypothesis on a multi-label text classification dataset
where |y,,| > 1 for all n. Given multiple labels per document, our task is to learn a ranking
function which yields higher similarity scores between a document and its relevant labels
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than ones between a document and irrelevant labels. More formally, the objective is to learn
a ranking function f : (x,y) — R such that f (x,y,,) > f (X, yyj) where y; € y and y; € y.

At test time we have a set of unseen labels C, = {L + 1,L + 2,---, L+ L,} and each
unseen label y € Cy also has its description 7;(‘1’*).

6.3 Method

In this section, we describe how to learn representations of both documents and labels jointly
from their textual description in a way that a document and its relevant labels yield higher
similarity scores in the joint embedding space.

6.3.1 Documents and Labels as Word Sequences

As for documents, i.e., instances represented by sequences of words, we can also deal with
labels as instances of word sequences, provided they have textual descriptions. Based on
the assumption that a representation of such an instance should contain global information
on its description, one can learn fixed-size vector representations for documents and labels
while learning a local predictor of a word given its context in the textual description (Le and
Mikolov, 2014).

Given the training document set Kx = {7;L(x)|1 < n < N}, firstly, we show how to
learn representations for a document and individual words, respectively. For convenience,
we will drop n from both 7;(96) and x,, when it is not confusing. Note that the document
representation X is a set of learnable parameters as well as the word representations. The
objective function is to maximize the probability of predicting a word at position ¢ in T ®)
given its ¢ — 1 surrounding words and the document representation x:

1T -
plunfw-1 ) = )
t|W—t, = R
oy exp(u'] i)

(6.1)

where u), is the ck-dimensional vector for an output word wy, and 1, denotes the con-

wy
text representation of the output word, which is a concatenation of representations for the
context words w_y = {wy_(c—1)/2,"** , Ws—1,Wis1, "+, Wiy (c—1)/2) and the document rep-

resentation x defined as

L k
Uy, = [x, Wu, (o yyp " ’uwt+(cfl)/2j| c R, (6.2)

Here, 1, can be interpreted as a combination of global (ie., x) and local (ie.,
[uwt_(c_l)/z, e ,uwt+(c_1)/2:|) context information of a word w; in 7). Instead of using
the softmax in Eq. 6.1 directly, we use its approximation, namely negative sampling (Mikolov

et al., 2013b):
log p (wiw ¢, x)

T A - T
~ 1Og U(U,wtuwt> + Z IEPn(w) |:10g O—(u/wiuwt):l
=1

(6.3)
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where o(z) is the sigmoid function, x is the number of negative samples, and P,(w) is the
unigram distribution raised to the power of 3/4.

Then, we optimize both X and U in a way of maximizing the average log probability over
all words in documents K x as follows

T
Z —log p(wi p|w_t n, xy) (6.4)

N
Lx (©x;Kx) Z

where Oy = {X,U,U’}. Similarly, one can learn Y for the label descriptions Ky =
{(T¥]1 <1< L} and U:

\"
—~
<

g

[}/jN.

Ly (©y; Ky) Z —log p(wii|w—s1,y1) (6.5)

=1 \7;@ |t

I
—

where @y = {Y,U, U’}

6.3.2 Joint Embeddings

So far we have discussed how to learn document, label and word representations jointly from
textual description of documents and labels. Once we learn the document representations
X and the label representations Y, they are assumed to be global representations for their
textual description. In that case, modeling the relationship between documents and labels
is disregarded. However, since our goal in multi-label classification tasks is to make relevant
labels distinguishable from irrelevant labels for a given instance, we learn a ranking function
to place relevant labels at the top of a ranking of labels by similarity scores w.r.t. a given
instance.
Defining the k£ x k matrix W the bilinear function f(x,y) is written as

f(x,y) = yTWX. (6.6)

By using the bilinear function f(x,y), we can compute the rank of y; € y with respect to x
as sum of the number of incorrectly ranked pairs as follows

(x, ;) Z ]I (X,¥y,) < f(x Yy, )] (6.7)

Y€y

where I[-] takes 1 if its argument is true otherwise 0.
As discussed in Section 5.2.1, one can use the weighted approximate-rank pairwise (WARP)
loss (Weston et al., 2011), which uses an approzimation of Eq. (6.7) given by

EWARP X yz - Z h Tz m - f(X7 Yyl) + f(X7 vi)]+ (68)
yUGVy,L

where h(r;(x)) denotes a function of the rank of positive labels y;, [z], returns z if x > 0
otherwise 0, m € R denotes a margin, and V,, is the set of labels defined by

Vy, = {unl (m + f(x,yy,)) > f(x,yy,). Yy, € 5} (6.9)
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Algorithm 1: Training AiTextML

input : D = {(T,), 4,0}, Ky = {TY[1 <1< L}
output: © = {U, U X|Y W}

1 do

2 forn=1to N do

3 V¥ () // violation labels set
4 foreach y; € y,, do

5 S+ 0

; pos  F(%a¥yy)

7 do

8 S+ S+1

9 pick y; from {1,---, L} \ y,, at random
10 neg e f(Xn. ¥y,

11 if m + neg > pos then

12 V¥ V" Uy,

13 update ©; using Eq. 6.11

14 break

15 while m + neg < pos and S < L — |y,,|

16 foreach w, € ]7;1(95)] do

17 L update ©x using Eq. 6.4

18 foreach [ € {y,, UV*} do

19 foreach w; € |T(y)| do

20 L update ©y using Eq. 6.5

21 while until termination conditions are met

The rank of the positive label y; can be approximated by

) = | Z Y| (6.10)

where S is the number of samples drawn uniformly from ¥ until a label ¥, € V,, is sampled.
Thus, the objective to learn embeddings in a joint space is given by

N
w©1 D)= D3 S Fg i S ¢ devalle (@1

6.3.3 Putting It All Together

Our goal is to learn representations for documents, labels, and words, which are all in textual
format, jointly to improve the generalization performance of our proposed method to unseen
labels as well as to seen ones on multi-label text classification datasets. We call this method
All-in Text Multi-label Learner (AiTeztML). The goal is achieved by combining the losses
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Figure 6.1: lllustration of AiTextML. Given a pair of a document and its relevant label, the objec-
tive of AiTextML is to minimize the pairwise hinge loss maxz(0,m — f(x,y) + f(X,y.)), where y
denotes a relevant label’s embedding and y. is a irrelevant label’'s embedding, while maximizing
the probability of predicting a next word w; given its context w_, from documents 7(*) and label
descriptions 7).

regarding document and label representations from word sequences in Eqs. 6.4 and 6.5, and
the WARP loss, i.e., Eq. 6.11. Thus, the objective is

L (G;D,/Cy) =al, + BLx +vLy

st.a+B8+v=1 (6.12)
where © = {U, U’ X, Y, W} denotes the set of parameters which are randomly initialized,
and the control parameters «, (3,7 determine the impact of the WARP loss £,, and the
representation learning losses £ x and Ly to the total loss £. Figure 6.1 illustrates AiTextML.
We use stochastic gradient descent (SGD) with a fixed learning rate n for all time steps 7
to update the parameters © given a training example indexed n at a time. The pseudo-code
of our proposed method is shown in Algorithm 1.

6.3.4 Inference on Unseen Documents and Labels

As shown in the previous sections, our proposed method needs document and label represen-
tations to be estimated as parameters from word sequences. The same holds for unseen data
points at test time. Consider that we are given a test set D* = {(7;(:1), y*(”>)}7];’;1, and that
some of labels do not appear in the training set such that yz“) e{L+1,L+2--- L+ Ly}
where L, is the number of unseen labels. To make predictions on unseen documents w.r.t.
unseen labels as well, we initialize X* = {x},x3, - ,x}“vt} and Y* = {y],y5, ,yzu}
randomly for unseen documents and labels, respectively. In turn, we define only X* and
Y™ as trainable parameters for the AiTextML model on the test set D* while all the other
parameters {U, U’ XY, W} are kept fixed as shown in Fig. 6.2. At inference time, we use
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Figure 6.2: During the inference stage, embeddings for test documents X* and unseen labels Y*
are randomly initialized and then tuned in a way of maximizing the probability of a next word given
its context words whereas the rest of the parameters (in gray) are fixed.

Table 6.1: Statistics of the BioASQ dataset

# training examples (N) 6,692,815
# validation examples (V) 100,000
# test examples (Ny) 4,912,719
# words (V) 528,156
# seen labels (L) 23,669
# unseen labels (L) 2,435
Avg. # of relevant seen labels per training example 10.83
# test examples that have unseen labels 432,703
Avg. ratio of relevant unseen labels in the test set 10.31%

the same control parameters 3, v and number of parameter updates used in the training
phase. To prevent learning X* and Y™ from document-label association patterns in D*, we

set a to 0.

Note that as unseen document representations x* and unseen label representations y* are

independent of each other, we can easily parallelize this inference stage.

6.4 Experimental Setup
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6.4.1 Dataset

We use the BioASQ Task 3a dataset, a collection of scientific publications in biomedical
research, to examine our proposed method.! It contains about 12 million publications, each
of which is associated with around 11 descriptors on average out of 27,455, which come from
the Medical Subject Headings (MeSH) hierarchy.? We removed 1003 descriptors from the
MeSH hierarchy because they do not have textual descriptions as well as 348 descriptors not
appearing in the BioASQ Task 3a dataset. We split the dataset by year so that the training
set includes all papers by 2004 and the rest of papers published between 2005 and 2015
belongs to the test set. Thus, descriptors introduced to the MeSH hierarchy after 2004 can
be considered as unseen labels. 100,000 papers before 2005 were randomly sampled and set
aside as the validation set for tuning hyperparameters. Since we split the dataset by year,
2,435 labels in the test set do not appear in the training set. About 10% of test examples
contain such unseen labels in their target label set. The ratio of unseen labels in the target
label set of the test data is 10.31%.

We applied minimal preprocessing to documents and label descriptions; tokenization and
replacement of numbers and rare words to special tokens, e.g., NUM and UNK. The word
vocabularies were built according to the word frequency in the training documents, for
which words occurring more than 10 times were chosen. The statistics on the dataset used
are summarized in Table 6.1.

6.4.2 Baseline

Since no work has been reported yet in this line of research to our best knowledge, we com-
pare AiTextML with the same model using fixed v = 0 in Eq. 6.12. That is, our baseline
also optimizes the WARP loss. However, our baseline considers learning representation of
documents and words simultaneously, whereas Wsabie in (Weston et al., 2011) uses fixed
feature representations for instances. Hence, our baseline is also able to learn feature rep-
resentations and can be seen as an extension of Wsabie. Unlike conventional multi-label
learning algorithms, Wsabie scales well on large-scale datasets in terms of both the num-
ber of training examples and labels, and performs comparably even in standard benchmark
datasets for multi-label text classification (Nam et al., 2015).

6.5 Experiments

We used the validation set to set our hyperparameters as follows: the number of negative
samples Kk = 5, the dimensionality of all representations 100, the size of the context window
¢ = b, learning rate n = 0.025, margin m = 0.1, and the control variables a = 1/3,5 =
1/3,v = 1/3. For the baseline, different control parameters a = 1/3, 3 = 2/3,v = 0 were
used, but the rest of the hyperparameters were same with our proposed method. Unless
we specify otherwise, the hyperparameter settings are used throughout all experiments.
In order to prevent overfitting, we impose constraints on norm of document, label and
word vectors such that ||wlle < 1,i € {1,---,V}, [|xdll2 < 1,d € {1,---,N}, and

1
2

http://www.bioasq.org/participate/data
https://www.nlm.nih.gov/mesh/introduction.html
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Figure 6.3: Effect of learning from label descriptions in terms of rank loss on the BioASQ dataset
w.r.t. the seen labels. The rank loss was estimated on randomly sampled 10,000 training examples
and on a fixed subset of 10,000 test examples every 60 mins in the course of training, indicated by
markers.

Table 6.2: Comparison of AiTextML to the baseline w.r.t. seen labels. The AiTextML model was
trained for the same amount of time (24 hrs) as the baseline. The numbers in the parentheses
following the methods correspond to the control parameters («, 3, ) in Eq. 6.12.

RL AvgPr | OneErr
Daseline 0.05217| 0.36645| 0.41728
(5.3.0)
Ai ML
et 0.03544| 0.32786| 0.25992
(3’ 3’3
llyilla < 1,1 € {1,---, L}. We performed all experiments on a machine with two Intel Xeon

E5-2670 CPUs and 32GB of memory.

6.5.1 Effect of Label Descriptions

We carried out experiments to compare the models which learns purely from the associa-
tion patterns and the other which learn from label descriptions as well as the association
patterns. As can be seen in Fig. 6.3, learning from label descriptions improves the gener-
alization performance of our method. Indeed, rank loss on the training set of the model
without learning from label descriptions is even lower than that of the model trained on
label descriptions. In contrast to the baseline, AiTextML achieves better rank loss scores
on the test set. This shows that label descriptions help AiTextML prevent from overfitting.
Since AiTextML learns label representations not only from the association patterns, but also
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Figure 6.4: Label frequency distribution and relative improvement over the baseline with respect
to label size.

textual description of labels, it takes more time for a single iteration indeed under the same
hyperparameter settings.

Once having trained AiTextML and the baseline for 50 epochs, we evaluated two models
on the full set of test examples. We observed that AiTextML outperforms substantially the
baseline in terms of rank loss and one-error, which tells us learning from label descriptions
plays an important role for the improvements. However, AvgPr of our proposed method
rather decreases compared to the baseline. Note that our objective measure in the optimiza-
tion corresponds to ranking. The results are shown in Table 6.2. It is often the case that label
frequency distribution in real world multi-label text datasets follows a power law as shown
in Fig. 6.4, which means, informally, there are few frequent labels, but many infrequent ones.
This property makes it difficult for classifiers to generalize well to unseen instances if they
have rare labels in their target labels since a classifiers tend to overfit rare labels.

In order to take a closer look at the source of improvements, we comapared both the
baseline and our proposed method in terms of AvgRank. Fig. 6.4 shows that AiTextML
performs significantly better than the baseline for frequent labels, whereas its performance
on rare labels is worse than the baseline. Our model learns more often from descriptions of
frequent labels in a way that their representations are effective in predicting a next word
given its context and maximizing similarity scores to the documents that they belong to as
well. Due to the fact that AiTextML focuses more on frequent labels, average ranks rare
labels are rather ignored which results in lower average precision.

6.5.2 Unseen Label Representations

We demonstrate the quality of unseen label representations by listing nearest neighbors
in both seen and unseen label spaces to selected unseen labels, shown in Table 6.3. For
example, given a query “Tundra,” we have “Genetic Speciation,” “Biological Extinction,”
and “Wetlands” as similar labels from the seen label set, which are somehow related to
environmental danger in the tundra. “Grassland” from the unseen label set is another type
of biomes which is often used to contrast different characteristics of “Tundra.” “Permafrost”
and “Ponds” are also related labels to “Tundra” when a paper discusses climate changes and
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Table 6.3: Nearest neighbors for given unseen labels in seen and unseen label representations.

Query label | Seen labels Unseen labels
Genetic Speciation Grassland
Arcidae Permafrost
Tundra Secernentea Click Chemistry
Biological Extinction Ponds
Wetlands Cambium
Halorhodopsins Retinal Photoreceptor Cell Outer Segment
Fluorophotometry Mesopic Vision
Night Vision | Arthropod Compound Eye Plant Photoreceptors
Retinoscopes Rod-Cone Interaction
Color Vision Bleaching Agents
Adult Children Time-to-Treatment
World War II Anatomists
Hope Healthy Volunteers Pragmatic Clinical Trials as Topic
World War I Secondary Care
Health Status Disparities Historically Controlled Study

their effects in the tundra. Such relationships can be also found for the unseen label “Night
Vision.”

In contrast, there is no clear relationship between the unseen query label “Hope” and both
seen and unseen labels. This is because such a label has a very short description and unclear
terms are used in the description. For example, “Hope” is described as “Belief in a positive
outcome.”

To understand label embeddings, we projected all embeddings for both seen and unseen
labels onto 2D space by using t-distributed stochastic neighbor embedding (tSNE) (Van der
Maaten and Hinton, 2008). A sub-region of the space is shown in Fig. 6.5. The label
“Health Level Seven” is an unseen label and such a label embedding can be obtained at
the inference stage ( Section 6.3.4). During the inference stage, the following description is
used:

an american national standards UNK organization working on specifications to
support development and advancement of clinical and administrative standards
for health care .

Given the above description of “Health Level Seven”, one may see connections between the
unseen label and other seen labels.

6.5.3 Zero-Shot Prediction

One of the promising aspects of our proposed method is the capability of learning unseen
label representations from their descriptions. About 400,000 test examples have 1~2 unseen
labels in their target label sets on average as shown in Table 6.1. Without using the inference
step and the joint space embedding, a reasonably straightforward solution to obtain unseen
label representations is averaging embeddings of words which occur in textual description
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Figure 6.5: “Health_Level_Seven” (in blue) is a unseen label while all other labels (in green) are seen
labels.

of labels including their name. For label names, we applied the same preprocessing pipeline
used for the documents. For example, if we have an unseen label “1918-1919 Influenza
Pandemic,” it is replaced with “NUM-NUM influenza pandemic” and then its representation
is determined by the averaged representations of three words “NUM-NUM,” “influenza,” and
“pandemic.” We use a special token “UNK” when a word cannot be found in the vocabulary.
Also, the norm of unseen label representations is scaled to 1. Instead of learning such
word embeddings independently of our task, we used word embeddings of the baseline and
AiTextML in Sec. 6.5.1. Note that our baseline has the same architecture and number of
parameters for AiTextML, but does not learn from label descriptions.

We compare the proposed method with four possible combinations of two word embed-
dings from the baseline and A:TextML, and two textual information sources to be used for
representing unseen labels, i.e., names and descriptions. As can be seen in Table 6.4, Ai-
TextML, which infers unseen label representations from textual descriptions, outperforms
the baseline models for estimating unseen label representations by averaging over representa-
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Table 6.4: Comparison of AiTextML, which represents unseen labels by the inference step, to aver-
aging of embeddings for words in label names or descriptions on the zero-shot task. For averaging
words in the textual information, we use the word embeddings from the baseline and the AiTextML
model.

RL AvgPr | OneErr
Baseline avg (names) | 0.50225 | 0.00317 | 0.99969
Baseline avg (desc.) 0.48812 | 0.00375 | 0.99946
AiTextML avg (names) | 0.52335 | 0.00290 | 0.99979
AiTextML avg (desc.) | 0.52890 | 0.00388 | 0.99941

| AiTextML inf (desc.) | 0.21622 | 0.02665 | 0.98608

tions for words appearing in either label names or descriptions. Moreover, using the averaged
word embeddings from label descriptions does not achieve relevant improvements over using
only the label names. In other words, when we consider the word embeddings to obtain
unseen label representations, using label descriptions seems to be a better choice than label
names. However, the gain is not comparable to what our proposed method achieves. This
shows that the inference step for unseen label representations in our proposed method plays
an important role for yielding more useful information than given by the average of word
embeddings in this task.

6.6 Discussion

We have presented a framework for learning document, label, and word representations
jointly to leverage shared information available in textual format. This allows not only
to make better predictions w.r.t. seen labels, but also produces better representations for
unseen labels in a zero-shot learning setting. In particular, we could show that our methods
outperforms a baseline approach which simply averages representations of all words in either
the label names or the label descriptions.

Our objective in this work is to jointly learn document, label and word representations to
exploit shared information, and we demonstrated AiTextML only on textual data. However,
we note that the label representation learning part can be also applied to other domains
such as object classification in images under the ZSL setting instead of defining attributes
for unknown labels. A major limitation when considering our proposed method in learning
label representations is the availability of label descriptions. If a dataset does not have such
label descriptions, one can make use of external knowledge resources such as Wikipedia to
construct the label description set. For example, the first sentence or paragraph in Wikipedia
articles contain very general terms for describing facts of interest.

Finally, we would like to highlight the key differences between our proposed method and the
approaches where label names are used to obtain unseen label representations. The principle
of AiTextML is more general because we can easily and efficiently add representations for
unseen labels to the model by the inference step under the assumption that label descriptions
consist of general terms. If words in label names are out of the vocabulary, we need to handle
them more carefully because label names are rather short in general and such information
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loss occur frequently, which often leads to inaccurate unseen label representations in the ZSL
task. Furthermore, whereas label representations by using their names provide only a good
starting point for label embeddings, the proposed method allows us to obtain improved label
rankings on test instances as well by learning all representations jointly in conjunction with
label descriptions in the whole training process (Loza Mencia et al., 2016).
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7 Conclusions and Future Work

Multi-label classification (MLC) is the problem of assigning multiple labels to a single in-
stance, so the goal of MLC includes learning not only a mapping function from instances to
individual labels but also how labels are related.

Among several ways of evaluating the multi-label classification performance, the rank
loss has been used widely because it measures the quality of label rankings by pairwise
comparisons. For MLC, neural networks with a surrogate objective function of the rank
loss have also been used although the computational costs at the output layer increase
quadratically with the number of labels. In addition to their computational complexity,
it has been shown in prior work that pairwise comparisons are unnecessary for rank loss
optimization. Thus, we have presented a rather simpler neural network architecture whose
complexity at the output layer grows only linearly in the number of labels, which means that
we can achieve better performance in terms of the rank loss on large-scale MLC problems
when ignoring label dependence.

That being said, it is important that MLC methods make use of dependencies in the
label space so as to obtain better predictive performance in terms of evaluation measures
that consider label dependence. In other words, the rank loss is an evaluation measure that
prefers MLC methods that train classifiers independently per label over more complex ones
which take label dependence into consideration. For Hamming loss optimization, we can
utilize the same classifiers used to optimize the rank loss.

In contrast to the rank loss and Hamming loss, the subset 0/1 loss measures how well MLC
methods predict multiple labels as a set, so that modeling dependencies among labels in a
label subset is the ultimate goal of training MLC methods in this regard. As the possible
number of label subsets grows exponentially with respect to the number of unique labels,
we need methods that learn efficiently from a large number of label subsets. A recurrent
neural network has been used in this thesis as a means of minimizing the subset 0/1 loss. We
have empirically shown that recurrent neural network-based MLC methods perform better
than label powerset and classifier chain approaches on multiple multi-label text datasets in
terms of several evaluation measures including the subset 0/1 loss. In fact, recurrent neural
networks predict a set of relevant labels one by one in a sequential manner, so that we have
presented several label ordering strategies. We have also demonstrated in our experiments
that label ordering affects the performance of our recurrent neural networks.

Many MLC methods mainly aim to learn only from statistical patterns on a label space
given input instances. However, in some cases we have additional information on label spaces
such as pairwise relationships between two labels that can be represented in a graph. Such
additional information enables to make predictions with respect to unseen labels that have
no training information as well as to improve the generalization performance with respect
to labels that have been observed during the training phase, i.e., unseen labels.

We have proposed a method learning a joint space of instances and labels where label
hierarchies are respected as well as label cooccurrence patterns. If the method learns the
joint space from only label association patterns, an instance on that space would be placed
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near its relevant labels that have training information. The use of label structures given
a priori allows to infer unseen labels’ representations at test time, so that we were able to
have MLC systems that make reasonable predictions with respect to unseen labels without
losing overall performance on the entire label space. To better understand the effects of label
structures we have also analyzed label spaces learned from both label structures and label
subsets.

We have shown that label structures are useful to build MLC systems that have the
capability to make predictions with respect to unseen labels. In other words, it is difficult to
use the above idea unless we are given the structure. For MLC problems with many labels, it
might be very expensive to maintain such label structures. Also the performance of the joint
space learning method may depend on the quality of the structures. Thus, we need another
type of information on label spaces that is more easy to acquire than label structures built
by human experts.

In this work we have presented another joint space learning method that exploits textual
description of labels instead of label structures. Under the assumption that documents and
labels share a vocabulary of words on multi-label text classification datasets, we learned
document and label representations from words as well as relationships between documents
and their relevant labels. Similar to the joint space learning method that uses label struc-
tures, we were also able to make predictions with respect to unseen labels. We have observed
that unseen label representations estimated from their descriptions are close to seen label
representations on the joint space. Furthermore, we have achieved much better performance
in terms of frequent labels than the baseline method which does not take label descriptions
into consideration.

Recall that we need to determine how to sort labels to train recurrent neural networks
for subset 0/1 loss minimization. One interesting future direction is to learn label ordering
strategies from data (Nam et al., 2019).

In recent years, the size of MLC problems has grown rapidly, so that there are several public
benchmark datasets that consist of several millions instances and hundreds of thousands of
labels. As traditional MLC approaches have less focused on scalability problems, in particular
on the aforementioned datasets, it is highly desirable that MLC methods handle problems
with even millions of labels under time and resource constraints.

When considering MLC problems with extremely large numbers of labels, a problem often
referred to as extreme multi-label classification, label-based Fj-measure maximization is
often preferred to subset accuracy maximization because it is less susceptible to the very
large number of label combinations and imbalanced label distributions. Label frequencies,
in fact, are highly skewed in extreme multi-label classification so that we may have lots of
rare labels though the proportion of rare labels is quite low. If we want to have a MLC
system that performs well with respect to rare labels, for instance, then label-based macro
Fi-measure needs to be taken into account. Though the recurrent neural networks that
optimize the subset 0/1 loss per instance work also well in terms of that measure, their
performance might be suboptimal because the macro Fj-measure is a non-decomposable
evaluation measure in terms of instances.
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