7,989 research outputs found

    Sequential Design for Ranking Response Surfaces

    Full text link
    We propose and analyze sequential design methods for the problem of ranking several response surfaces. Namely, given L2L \ge 2 response surfaces over a continuous input space X\cal X, the aim is to efficiently find the index of the minimal response across the entire X\cal X. The response surfaces are not known and have to be noisily sampled one-at-a-time. This setting is motivated by stochastic control applications and requires joint experimental design both in space and response-index dimensions. To generate sequential design heuristics we investigate stepwise uncertainty reduction approaches, as well as sampling based on posterior classification complexity. We also make connections between our continuous-input formulation and the discrete framework of pure regret in multi-armed bandits. To model the response surfaces we utilize kriging surrogates. Several numerical examples using both synthetic data and an epidemics control problem are provided to illustrate our approach and the efficacy of respective adaptive designs.Comment: 26 pages, 7 figures (updated several sections and figures

    Adaptive Pareto Set Estimation for Stochastic Mixed Variable Design Problems

    Get PDF
    Many design problems require the optimization of competing objective functions that may be too complicated to solve analytically. These problems are often modeled in a simulation environment where static input may result in dynamic (stochastic) responses to the various objective functions. System reliability, alloy composition, algorithm parameter selection, and structural design optimization are classes of problems that often exhibit such complex and stochastic properties. Since the physical testing and experimentation of new designs can be prohibitively expensive, engineers need adequate predictions concerning the viability of various designs in order to minimize wasteful testing. Presumably, an appropriate stochastic multi-objective optimizer can be used to eliminate inefficient designs through the analysis of simulated responses. This research develops an adaptation of Walston’s [56] Stochastic Multi-Objective Mesh Adaptive Direct Search (SMOMADS) and Paciencia’s NMADS [45] based on Kim and de Weck’s [34] Adaptive Weighted Sum (AWS) procedure and standard distance to a reference point methods. This new technique is compared to standard heuristic based methods used to evaluate several real-world design problems. The main contribution of this paper is a new implementation of MADS for Mixed Variable and Stochastic design problems that drastically reduces dependence on subjective decision maker interaction

    Genetic Algorithms in Stochastic Optimization and Applications in Power Electronics

    Get PDF
    Genetic Algorithms (GAs) are widely used in multiple fields, ranging from mathematics, physics, to engineering fields, computational science, bioinformatics, manufacturing, economics, etc. The stochastic optimization problems are important in power electronics and control systems, and most designs require choosing optimum parameters to ensure maximum control effect or minimum noise impact; however, they are difficult to solve using the exhaustive searching method, especially when the search domain conveys a large area or is infinite. Instead, GAs can be applied to solve those problems. And efficient computing budget allocation technique for allocating the samples in GAs is necessary because the real-life problems with noise are often difficult to evaluate and require significant computation effort. A single objective GA is proposed in which computing budget allocation techniques are integrated directly into the selection operator rather than being used during fitness evaluation. This allows fitness evaluations to be allocated towards specific individuals for whom the algorithm requires more information, and this selection-integrated method is shown to be more accurate for the same computing budget than the existing evaluation-integrated methods on several test problems. A combination of studies is performed on a multi-objective GA that compares integration of different computing budget allocation methods into either the evaluation or the environmental selection steps. These comparisons are performed on stochastic problems derived from benchmark multi-objective optimization problems and consider varying levels of noise. The algorithms are compared regarding both proximity to and coverage of the true Pareto-optimal front, and sufficient studies are performed to allow statistically significant conclusions to be drawn. Finally, the multi-objective GA with selection integrated sampling technique is applied to solve a multi-objective stochastic optimization problem in a grid connected photovoltaic inverter system with noise injected from both the solar power input and the utility grid

    Optimal computing budget allocation for constrained optimization

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Stochastic simulation framework for the Limit Order Book using liquidity motivated agents

    Full text link
    In this paper we develop a new form of agent-based model for limit order books based on heterogeneous trading agents, whose motivations are liquidity driven. These agents are abstractions of real market participants, expressed in a stochastic model framework. We develop an efficient way to perform statistical calibration of the model parameters on Level 2 limit order book data from Chi-X, based on a combination of indirect inference and multi-objective optimisation. We then demonstrate how such an agent-based modelling framework can be of use in testing exchange regulations, as well as informing brokerage decisions and other trading based scenarios

    Selecting the best stochastic systems for large scale engineering problems

    Get PDF
    Selecting a subset of the best solutions among large-scale problems is an important area of research. When the alternative solutions are stochastic in nature, then it puts more burden on the problem. The objective of this paper is to select a set that is likely to contain the actual best solutions with high probability. If the selected set contains all the best solutions, then the selection is denoted as correct selection. We are interested in maximizing the probability of this selection; P(CS). In many cases, the available computation budget for simulating the solution set in order to maximize P(CS) is limited. Therefore, instead of distributing these computational efforts equally likely among the alternatives, the optimal computing budget allocation (OCBA) procedure came to put more effort on the solutions that have more impact on the selected set. In this paper, we derive formulas of how to distribute the available budget asymptotically to find the approximation of P(CS). We then present a procedure that uses OCBA with the ordinal optimization (OO) in order to select the set of best solutions. The properties and performance of the proposed procedure are illustrated through a numerical example. Overall results indicate that the procedure is able to select a subset of the best systems with high probability of correct selection using small number of simulation samples under different parameter settings

    A Critical Review of Optimization Methods for Road Vehicles Design

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/77078/1/AIAA-2006-6998-235.pd
    corecore