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ABSTRACT

Selecting a subset of the best solutions among large-scale problems is an important
area of research. When the alternative solutions are stochastic in nature, then it puts
more burden on the problem. The objective of this paper is to select a set that is
likely to contain the actual best solutions with high probability. If the selected set
contains all the best solutions, then the selection is denoted as correct selection. We
are interested in maximizing the probability of this selection; P(CS). In many cases,
the available computation budget for simulating the solution set in order to maximize
P(CS) is limited. Therefore, instead of distributing these computational efforts equally
likely among the alternatives, the optimal computing budget allocation (OCBA) pro-
cedure came to put more effort on the solutions that have more impact on the selected
set. In this paper, we derive formulas of how to distribute the available budget asymp-
totically to find the approximation of P(CS). We then present a procedure that uses
OCBA with the ordinal optimization (OO) in order to select the set of best solutions.
The properties and performance of the proposed procedure are illustrated through a
numerical example. Overall results indicate that the procedure is able to select a sub-
set of the best systems with high probability of correct selection using small number
of simulation samples under different parameter settings.
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1. INTRODUCTION
Consider a stochastic optimization problem at which it is sought to select a set of best solutions with

high probability, when the solution set is very large. For the presence of noise, one needs to estimate the
objective function values of all or sometimes some of the solutions. Simulation is the primary way to get
these estimates, however, simulation requires a huge amount of computational time, especially when the set of
alternative systems is large. Therefore, getting a precise estimate of each alternative could be a time consuming,
and much time will be spent on alternatives that are not likely to be optimal. The optimal computing budget
allocation (OCBA) proposed by Chen et al. [1] that puts more effort of computation on the solutions that
have more 2 impact on the selection while not neglecting the other solutions. Recently, the OCBA has been
studied extensively in the literature, Xiao et al. [2] studied simulation optimization using genetic algorithms
with OCBA, Zhang et al. [3] have considered the OCBA for selecting an optimal subset, Xiao et al. [4] have
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considered the OCBA for ranking the top designs with stochastic constraints and Zhang et al. [5] have studied
the OCBA for particle swarm optimization in stochastic optimization. Zhu et al. [6] have combined the OCBA
with the time dilation (TD), which is a single-run simulation optimization algorithm to solve an optimization
problem and implement it to solve remote diagnostic (RD) problem in the semiconductor sector.

One of the methods that is commonly used to solve the large size stochastic optimization problem is
the particle swarm optimization (PSO), which is a random search method that iteratively arrange the particles
around the state space according to simple mathematical formulae over the particle’s position and velocity [7].
See also [8] for a PSO and simulated annealing (SA) algorithm. Manusov et al. [9] have used the PSO to find
the optimal distribution and powers of reactive power compensation units. Yoganandini and Anitha [10] have
used the PSO to maximize the power point tracking (MPPT) in order to enhance the efficiency of the photo
voltaic (PV) systems. More methods used to solve optimization methods especially for solving optimal power
flow can be found in Abd Rahman et al. [11].

The OCBA has been implemented in many applications, for instance Liu [12] has applied the OCBA
to solve the N −k problem that asks whether there exists a set of k or fewer elements out of N elements whose
removal would cause the system to fail in a power grid generation model Cao et al. [13] have implemented the
OCBA to find the optimal maintenance policies for the system to improve system availability so as to increase
profit margin.

In many cases when the size of the problem is very large, then one can relax the problem to locate
a good enough optimal set rather than estimating each alternative precisely, this is the essence of the ordinal
optimization (OO) proposed by Ho et al. [14]. The idea of OO is to select a random subset from the solution
set, then use any known optimization method to select the best system in the smaller set if the objective to
select one best solution. Chen [15] has proposed a procedure using the idea of OO with ranking and selection
methods to improve the performance of indifference zone (IZ) selection procedure.

In this paper, we propose a method for selecting a set that contains the best solutions among large but
finite set of stochastic solutions. We first derive new asymptotic formulas for the number of samples that can
be allocated to each solution, in order to maximize the probability of correct selection. Of course, there are
formulas in the literature, however, the proposed formulas allow us to approximate the probability of correct
selection P (CS). The proposed method is implemented in two examples. It can be used also to solve large
scale practical problems such as the optimal distribution and powers of reactive power compensation units
Manusov et al. [9], maximize the power point tracking (MPPT) in a photo voltaic (PV) systems Yoganandini
and Anitha [10], configuration of multi-agent system Hasan and Rafaat [16] and optimal design of digital and
analog filters [17].

Most of the previous work use combined procedures to select the best or a set of best solution systems,
when the number of solutions is large. For example, Gao et al. [18] proposed a sequential budget allocation
framework for simulation optimization. Alrefaei and Alawneh [19] have used two stage approach to select the
best simulated system among relatively large number of systems. Almomani and Abdul Rahman [20] have
proposed a sequential selection approaches to select a good system when the number of alternatives is large.
Almomani and Alrefaei [21] proposed a sequential algorithm for selecting a subset that contains good enough
systems when the number of alternatives is very large. For more sequential procedures, see [22–25].

The paper is organized as follows: In section 2, we formulate the problem, in section 2.1, we present a
derivation of the number of samples needed in OCBAm to maximize P(CS), in this section we also present the
approximation of P(CS) and propose the procedure for selecting the best m systems. In section 3. we implement
the proposed procedure for solving an inventory problem and discuss the results. Finally, concluding remarks
are presented in section 4.

2. RESEARCH METHOD
Let Sm be the set of the best solution of k solution systems. When the available computational budget

T is known, we seek to distribute this budget to all alternative solutions by allocating Ni samples for each
solution i in order to maximize the P (CS). Therefore, the problem can be formulated as (1).

max
N1,...,Nk

P (CSm)

s.t.
k∑
i=1

Ni = T
(1)
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Assume that Yij is the jth simulation sample of Yi, j = 1, . . . , Ni and Yi = 1/Ni
∑Ni
j=1 Yij is the estimated

mean. Using the methods of multiple replications method of simulation guarantees that Yi is considered as asymptotically
normally distributed with mean Yi and variance σ2

i /Ni. When σ2
i is unknown, it can be estimated by s2

i for Yi.
In order to select the set Sm that contains the m systems with the smallest means, let Ȳir be the r-th smallest

(order statistic) of {Ȳ1, Ȳ2, . . . , Ȳn}, i.e. Ȳi1 ≤ Ȳi2 ≤ . . . ≤ Ȳin . Then, the set will be given by Sm = {i1, i2, . . . , im}.
The correct selection is that Sm contains the actual m smallest means, i.e. CSm = {maxi∈Sm Yi ≤ mini/∈Sm Yi}, where
Yi is the mean of system i.

2.1. Optimal computing budget allocation for selecting the best m
Let Ŷi be independent samples of Ȳi obtained by simulation, then P (CS) can be approximated as: (see by

Chen et al. [26])

P (CSm) = P{Ŷi ≤ Ŷj},∀ i ∈ Sm, j 6∈ Sm
≥ P{Ŷi ≤ c and Ŷj ≥ c}, i ∈ Sm, j 6∈ Sm

=
∏
i∈Sm

P{Ŷi ≤ c}
∏
i 6∈Sm

P{Ŷi ≥ c} = APCSm

where c is a constant between Ym and Ym+1.

Let αi = (Yi − c)/σi then for i ∈ Sm, αi < 0. Since Ŷi is normally distributed with mean Yi and variance
σ2
i /Ni, for large Ni, it can be shown by simple calculation, see (Ross [27] (chapter 5 section 3)) that:

P (Ŷi ≤ c) = P

(
Ŷi − Yi
σi/
√
Ni
≤ c− Yi
σi/
√
Ni

)

= 1−

(
1− P

(
Ŷi − Yi
σi/
√
Ni
≤ −αi

√
Ni

))

> 1 +
1√
2π

1√
Niαi

exp

(
−α2

iNi
2

)
, for large Ni

(2)

We approximate P (Ŷi ≤ c) by its lower bound, therefore

P (Ŷi ≤ c) ≈ 1 +
1√
2π

1√
Niαi

exp

(
−α2

iNi
2

)
Similarly for i 6∈ Sm, then αi > 0, therefore

P (Ŷi ≥ c) = P

(
Ŷi − Yi
σi/
√
Ni
≥ c− Yi
σi/
√
Ni

)

= P

(
Ŷi − Yi
σi/
√
Ni
≤ Yi − c
σi/
√
Ni

)

= 1−

(
1− P

(
Ŷi − Y i
σi/
√
Ni
≤ Yi − c
σi/
√
Ni

))

> 1− 1√
2π

1√
Niαi

exp

(
−α2

iNi
2

)
, for large Ni

again we let

P (Ŷi ≥ c) ≈ 1− 1√
2π

1√
Niαi

exp

(
−α2

iNi
2

)

(3)

Now we provide asymptotic analysis of the probability of correct selection
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APCSm =
∏
i∈Sm

P{Ŷi ≤ c}
∏
j 6=Sm

P{Ŷj ≥ c}

≈
∏
i∈Sm

[
1 +

1√
2π

1√
Niαi

exp

(
−α2

iNi
2

)] ∏
i 6∈Sm

[
1− 1√

2π

1√
Niαi

exp

(
−α2

iNi
2

)]
= EAPCSm

(4)

where EAPCS denotes the estimated approximate probability of correct selection, note that αi < 0 for i ∈ Sm and αi > 0
for i 6∈ Sm.

The optimization problem (1) becomes,

max
N1,N2,...,Nk

∏
i∈Sm

[
1 +

1√
2π

1√
Niαi

exp

(
−α2

iNi
2

)] ∏
i 6∈Sm

[
1− 1√

2π

1√
Niαi

exp

(
−α2

iNi
2

)]

subject to
k∑
i=1

Ni = T

Ni ∈ N, i = 1, 2, ..., k

(5)

Let F be the Lagrangian relaxation function of the optimization problem (5) then,

F =
∏
i∈Sm

[
1 +

1√
2π

1√
Niαi

exp

(
−α2

iNi
2

)] ∏
i6∈Sm

[
1− 1√

2π

1√
Niαi

exp

(
−α2

iNi
2

)]

− λ
k∑
i=1

(Ni − T )

(6)

Take the partial derivatives ∂F
∂Ni

for the lagrangian function F , then for i ∈ Sm we get,

∂F

∂Ni
=

∏
j∈Smj 6=i

[
1 +

1√
2π

1√
Njαj

exp

(
−α2

iNi
2

)] ∏
j 6∈Sm

[
1− 1√

2π

1√
Njαj

exp

(
−α2

iNi
2

)]

×
[
−1

2
√

2π

1

Ni
√
Niαi

exp

(
−α2

iNi
2

)
− 1√

2π

αi

2
√
Ni

exp

(
−α2

iNi
2

)]
− λ

Note that as Ni →∞, the second term in

−1

2
√

2π

1

Ni
√
Niαi

exp

(
−α2

iNi
2

)
− 1√

2π

αi

2
√
Ni

exp

(
−α2

iNi
2

)
dominate the first term, so ∂F

∂Ni
becomes

∂F

∂Ni
=

∏
j∈Smj 6=i

[
1 +

1√
2π

1√
Njαj

exp

(
−α2

iNi
2

)] ∏
j 6∈Sm

[
1− 1√

2π

1√
Njαj

exp

(
−α2

iNi
2

)]

×
[
−1√
2π

αi

2
√
Ni

exp

(
−α2

iNi
2

)]
− λ

(7)

For i 6∈ Sm we get,

∂F

∂Ni
=
∏
j∈Sm

[
1 +

1√
2π

1√
Njαj

exp

(
−α2

jNj

2

)] ∏
j 6∈Smj 6=i

[
1− 1√

2π

1√
Njαj

exp

(
−α2

jNj

2

)]

×
[

1

2
√

2π

1

Ni
√
Niαi

exp

(
−α2

iNi
2

)
+

1√
2π

αi

2
√
Ni

exp

(
−α2

iNi
2

)]
− λ
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Also the second term of

1

2
√

2π

1

Ni
√
Niαi

exp

(
−α2

iNi
2

)
+

1√
2π

αi

2
√
Ni

exp

(
−α2

iNi
2

)
dominates the first term, therefore ∂F

∂Ni
becomes

∂F

∂Ni
=
∏
j∈Sm

[
1 +

1√
2π

1√
Njαj

exp

(
−α2

jNj

2

)] ∏
j 6∈Smj 6=i

[
1− 1√

2π

1√
Njαj

exp

(
−α2

jNj

2

)]

×
[

1√
2π

αi

2
√
Ni

exp

(
−α2

iNi
2

)]
− λ

(8)

and ∂F
∂λ

yields

∂F

∂λ
=

k∑
i=1

(Ni − T ) (9)

Now we use the Karush-Kuhn-Tucker (KKT) optimality conditions by letting ∂F
∂Ni

= 0, ∀i = 1, . . . k, and
∂F
∂λ

= 0
For i ∈ Sm

∏
j∈Smj 6=i

[
1 +

1√
2π

1√
Njαj

exp

(
−α2

jNj

2

)] ∏
j 6∈Sm

[
1− 1√

2π

1√
Njαj

exp

(
−α2

jNj

2

)]

×
[
−1√
2π

αi

2
√
Ni

exp

(
−α2

iNi
2

)]
= λ

(10)

For i 6∈ Sm

∏
j∈Sm

[
1 +

1√
2π

1√
Njαj

exp

(
−α2

jNij

2

)] ∏
j 6∈Smj 6=i

[
1− 1√

2π

1√
Njαj

exp

(
−α2

jNj

2

)]

×
[

1√
2π

αi

2
√
Ni

exp

(
−α2

iNi
2

)]
= λ

(11)

and ∂F
∂λ

= 0 is just the constraint
∑k
i=1 Ni = T.

To find a relation between Ni and Nj we take three cases:
− Case I: i, j ∈ Sm

By (10), we get

−αi√
Ni

exp

(
−α2

iNi
2

)
− 1

2π

αi

αj
√
Ni
√
Nj

exp

(
−α2

iNi
2

−
α2
jNj

2

)
=

−αj√
Nj

exp

(
−α2

jNj

2

)
− 1

2π

αj

αi
√
Ni
√
Nj

exp

(
−α2

iNi
2

−
α2
jNj

2

)
As Ni, Nj →∞, the first term in each side dominates the second term, therefore

−αi√
Ni

exp

(
−α2

iNi
2

)
=
−αj√
Nj

exp

(
−α2

jNj

2

)

Take the log for both sides, and note that αi < 0 since i ∈ Sm, we get

log
−αi√
Ni

+

(
−α2

iNi
2

)
= log

−αj√
Nj

+

(
−α2

jNj

2

)

Selecting the best stochastic systems for large scale engineering problems (Mahmoud H. Alrefaei)



4294 r ISSN: 2088-8708

Since
∑k
i=1 Ni = T, we can assume that Ni = tiT, where 0 ≤ ti ≤ 1 and i = 1, . . . , k. Let Ni = tiT,Nj =

tjT
then by simple calculations, we get

−1

2T
log

tiT

α2
i

+

(
−α2

i ti
2

)
=
−1

2T
log

tjT

α2
j

+

(
−α2

j tj

2

)
Let T →∞ we get the relation

tiα
2
i = tjα

2
j

Multiply by T , and note that tiT = Ni,

Niα
2
i = Njα

2
j

Recall that αi = (Yi − c)/σi, if we let δi = Yi − c, then

Ni
σ2
i /δ

2
i

=
Nj
σ2
j /δ

2
j

(12)

− Case II: i ∈ Sm, j 6∈ Sm
By (10) and (11)

−1√
2π

αi

2
√
Ni

exp

(
−α2

iNi
2

)[
1− 1√

2π

1√
Njαj

exp

(
−α2

jNj

2

)]

=
1√
2π

αj

2
√
Nj

exp

(
−α2

jNj

2

)[
1 +

1√
2π

1√
Niαi

exp

(
−α2

iNi
2

)]
so

−1√
2π

αi

2
√
Ni

exp

(
−α2

iNi
2

)
+

1

4π

αi√
NiNjαj

exp

(
−α2

iNi
2

)
exp

(
−α2

jNj

2

)
=

1√
2π

αj

2
√
Nj

exp

(
−α2

jNj

2

)
+

1

4π

αj√
NiNjαi

exp

(
−α2

jNj

2

)
exp

(
−α2

iNi
2

)

since we assume Ni = tiT and Nj = tjT so as T → ∞ the first term in each side dominates the second term,
therefore,

−1√
2π

αi

2
√
Ni

exp

(
−α2

iNi
2

)
=

1√
2π

αj

2
√
Nj

exp

(
−α2

jNj

2

)
Use the same argument in Case I and note that αi < 0 and αj > 0. We get

Ni
σ2
i /δ

2
i

=
Nj
σ2
j /δ

2
j

(13)

− Case III: i, j 6∈ Sm
Using (11), and by similar calculations, we get

αi√
Ni

exp

(
−α2

iNi
2

)
=

αj√
Nj

exp

(
−α2

jNj

2

)
Use the same argument in Case I, we get

Ni
σ2
i /δ

2
i

=
Nj
σ2
j /δ

2
j

(14)
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Therefore for all cases by (12), (13) and (14), we have

Ni
σ2
i /δ

2
i

=
Nj
σ2
j /δ

2
j

(15)

Therefore, we have the following theorem
Given a total budget of simulation runs T to be allocated to k computing systems whose performance is depicted

by random variables with means Y (θ1), Y (θ2), . . . , Y (θk), and finite variances σ2
1 , σ

2
2 , . . . , σ

2
k respectively, as T −→∞,

the approximate probability of correct selection can be asymptotically maximized when

Ni
Nj

=

(
σi/δi
σj/δj

)2

, i, j ∈ {1, 2, . . . , k}.

where Ni is the number of samples allocated to system i, δi = Ȳi − c, and Ȳi = 1
Ni

∑Ni
k=1 Yij , and Yij is a sample from

Yi for j = 1, 2, . . . , Ni, i = 1, 2, . . . k.

2.2. Approximating the probability of correct selection
In the previous section, we have seen how to distribute the available budget in order to maximize the probability

of correct selection. Note that if we fix an index s say, then we have

Ns
σ2
s/δ2

s

=
Nj
σ2
j /δ

2
j

∀ j = 1, . . . , k

so we have

Nj =
σ2
j

δ2
j

δ2
s

σ2
s

Ns =
α2
s

α2
j

Ns,

recall that αj = δj/σj . Therefore we have

α2
iNi = α2

sNs, ∀i = 1, . . . k (16)

Since
∑
j∈Θ Nj = T , we get ∑

j∈Θ

α2
s

α2
j

Ns = T

To facilitate the computation, let Ds =
∑
j∈Θ

α2
s

α2
j

and Dj = α2
s/α

2
j thus

Ns = T/Ds

Nj = DjNs, j ∈ Θ, j 6= s
(17)

Note that if j ∈ Sm, then αj < 0 and if j 6∈ Sm, then αj > 0. Therefore, plug (16) in (5), we can approximate
P (CS) as follows

P (CS∗) =
∏
i∈Sm

[
1 +

1√
2π

1√
Niαi

exp

(
−α2

iNi
2

)] ∏
i6∈Sm

[
1− 1√

2π

1√
Niαi

exp

(
−α2

iNi
2

)]

=

[
1− 1√

2π

1√
Ns|αs|

exp

(
−α2

sNs
2

)]k (18)

To illustrate, we consider the following example.
To test the validity of formula (18) for approximating P (CS), we implement it on a generic example consists of

20 systems each is normally distributed with mean 1+0.1j, j = 1, . . . , 20 and variance 1. We assume that the correct selec-
tion is to select a set of 5 best solutions (where best means the lowest mean), of course the set Sm = {1.1, 1.2, 1.3, 1.4, 1.5},
we also let c = 1.55 between the largest mean in Sm and the smallest mean outside Sm. Table 1 includes the number of
samples to be allocated to each system for T = 5, 000 simulation samples. Table 2 includes the approximated values of
P (CS) as a function of T , where T ranges from 1, 000 to 20, 000.

Selecting the best stochastic systems for large scale engineering problems (Mahmoud H. Alrefaei)
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Table 1. The approximation number of samples to be allocated to each system if T = 5000 simulation runs
Mean α α2 Nj

1.1 -0.45 0.2025 26
1.2 -0.35 0.1225 43
1.3 -0.25 0.0625 83
1.4 -0.15 0.0225 231
1.5 -0.05 0.0025 2083
1.6 0.05 0.0025 2083
1.7 0.15 0.0225 231
1.8 0.25 0.0625 83
1.9 0.35 0.1225 43
2 0.45 0.2025 26

2.1 0.55 0.3025 17
2.2 0.65 0.4225 12
2.3 0.75 0.5625 9
2.4 0.85 0.7225 7
2.5 0.95 0.9025 6
2.6 1.05 1.1025 5
2.7 1.15 1.3225 4
2.8 1.25 1.5625 3
2.9 1.35 1.8225 3
3 1.45 2.1025 2

Table 2. The approximate values of P (CS)
T 1,000 2,000 4,000 6,000 8,000 10,000 12,000 15,000 20,000

P (CS) 0.0003 0.0513 0.4960 0.8191 0.9410 0.9810 0.9938 0.9988 0.9999

It is clear that the systems with mean 1.5 and 1.6 are given more samples, in order to get a precise estimate of
their means to take the correct decision. It is also clear from Table 2 that P (CS) approaches 1 as the number of samples
increased. The formula also implemented by alrefaei et al. [28] on larger example and indeed performs well.

Almomani and Alrefaei [21] presented an OO-OCBAm algorithm for selecting the best subset for large size
problems. Now we present a modification of the OO-OCBAm. The proposed modification of OO-OCBAm procedure for
selecting m good enough systems:

− Step 0: Determine the number of initial simulation samples t0 ≥ 5 and the number of samples to be distributed over
the set of systems in each iteration, ∆. Let l = 0 where l represents iteration index. Let (1 − α)% be the saught
P (CS∗), and let R be the maximum number of replications of the OCBAm inside each iteration and let r = 0 and
TT = 0.

− Step 1: Select a set G of size g from the feasible solution set Θ, let N0
i = t0 for all i ∈ G, and N0

i = 0 if i /∈ G, i ∈ Θ.
Take random samples of t0 observations Yij (1 ≤ j ≤ t0) for each system i ∈ G.

− Step 2: For each i ∈ G, compute the sample mean Ȳi and the sample variance s2
i as; Ȳi = 1

Nr
i

∑Nr
i

j=1 Yij and si =

1
Nr

i −1

∑Nr
i

j=1(Yij − Ȳi)2.

− Step 3: Increase the computing budget by ∆ and compute the new budget allocation Nr+1
i , i ∈ G using (17).

− Step 4: Perform additional max{0, Nr+1
i −Nr

i } simulation samples for each system i ∈ G. Compute the new sample
means and variances, let r ← r + 1, if r < R go to step 3.

− Step 5: Let Sm be the subset that contains the m best mean systems. Let N0
i = Nr

i for all i ∈ G and let TT =
TT +

∑
i∈GN

0
i . Compute the probability of correct selection P (CS∗) using Equation 18, if P (CS∗) ≥ 1− α%

then go to step 6, otherwise if TT < T, randomly select a subset Sc of g −m alternatives from Θ−G and replace
the worst g −m systems of the set G with Sc. For i ∈ Sc, if N0

i = 0, let N0
i = t0, take random samples of N0

i

observations Yij (1 ≤ j ≤ N0
i ) and calculate the sample mean Ȳi and sample variance s2

i for all i ∈ G = Sm ∪Sc.
Let l←− l + 1, r = 0, go to step 3.

− Step 6: Select the set Sm that contains the best systems in G.

3. RESULTS AND DISCUSSION
To illustrate the proposed algorithm, we implement it on solving inventory model under different parameter

settings. Consider a stochastic inventory model with periodic review (S, s). It is a single item under periodic review,
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full backlogging. The lead time is assumed to be uniform random variable between 0.5 and 1.0 period. The ordering cost
includes a fixed set-up cost of $32 per order and a $3 per item, with inventory cost of $1 per item per period. The shortage
cost is $5 per item per period. The time between demands is assumed to be i.i.d exponential random variable and the
number of demand items in each demand is distributed as follows: 1, 2, 3, and 4, with probability 1/6, 1/3, 1/3, and 1/6,
respectively.

We test 15-systems with the following policy; (Si, si) = { (40,70), (50,100), (50,90), (60,130), (70,150), (90,140),
(50,200), (90,200), (60,90), (100,230), (50,190), (60,190), (70,100), (80,190), (100,130) }. First, we run simulation for each
system to select the best of these systems, and we have the best as a follows (40,70), (50,90), and (60,90). Then, apply
the approach using this policies to select the best, also we study the influence of the simulation factors, such that the initial
sample size t0, the increment in simulation samples ∆, and the total budget used T, in the performance of the proposed
approach.

We perform the selection procedure that we develop on the given inventory example that we have discussed
above. Algorithm 2.2 is codded using Java programming. For selecting the best m-system, we assume m = 3, ∆ = 20,
and three choice of t0 are considered; t0 = 5, 10, 20. The outcome are shown in Figure 1. It is clear that the smaller the
value of t0, t0 = 5 gives better performance than the larger size t0 = 10 or 20 this is because we pend more samples on
non competent solutions. Moreover, to get estimates of the mean and variance of each solution, we have to have non zer
values of t0. It is also clear that the procedure converges to unity for all choices of t0 which suggest that the algorithm is
robust. Now we perform the selection procedure on the above example with different values of ∆; ∆ = 10, 20, 50, and
t0 = 20. Figure 2 shows the results of selecting the best m-system, we choose m = 3, t0 = 20. When the computing
budget equal 750 the P (CS) that we have is 0.966, 0.9, 0.933 when ∆ = 10, 20, 50, respectively. So the better choice
here is when ∆ = 10. In conclusion, the smaller the values of the initial sample size t0, the better solution we get. The
number of samples to be performed and distributed over the alternatives ∆ is better to be moderate.

Figure 1. The effect of t0 over 10 replications when selecting the best m-system

Figure 2. The effect of ∆ over 10 replications when selecting the best m-system
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4. CONCLUSION
In this paper, we have derived an approximation of the probability of correct selection when OCBAm is used to

select the best m systems. Then, we have presented a sequential approach for selecting a set of good enough systems, from
a large set of alternative systems. The proposed approach consists of two stages. In the first stage, we use theOO procedure
to select a subset G randomly from the search space that contains the best simulated system with high probability. In the
second stage, we use the OCBAm procedure to select the best m subset of G which is chosen by OO procedure. The
proposed selection approach is applied on monotone increasing mean example and solving inventory model with different
parameter setting. The numerical results show that the algorithm selects a set of best systems very fast.
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