7 research outputs found

    Digital microrobotics based on bistable modules : Design of compliant bistable structures.

    No full text
    International audienceIn the context of micromanipulation and microassembly, we propose in this paper a new type of microrobot based on bistable modules : digital microrobots. This concept consists in building a monolithic microrobot using microfabrication technology without anay assembly. It gets over the difficulties of traditional microrobots : non linear control, integration of sensors, noise, etc... Each module contains a bistable structure and actuators. No external energy input is needed to maintain the structure in a stable position. This opens a paradigm in the microrobotics field allowing the design of various kinematics adapted to the microworld

    Microfabricated bistable module for digital microrobotics.

    No full text
    International audienceHigh precision microrobots are needed more and more to perform micro/nanomanipulation and microassembly tasks in various environments like microrobotic stations, electronic microscopes (SEM, TEM), etc. Current microrobots are based on the use of smart materials to perform proportional or incremental actuation. To avoid the main drawbacks of these microrobots (non linearities, integration of sensors, robust control, energy consumption, sensitivity to noise), we propose a new type of microrobots, called digital microrobots, based on microfabricated bistable modules. The study presented in this paper is dedicated to the microfabricated bistable modules, notably the structure and the actuators design and characterization. The results open a new paradigm in the field of microrobotics leading to open loop control and the design of various kinematics adapted to the microworld. Moreover, no external energy is required to maintain the microrobot in its position

    A kinematic coupling mechanism with binary electromagnetic actuators for high-precision positioning

    Get PDF
    Rather than working in a continuous range of motion, binary actuators can only maintain two positions. This lack of flexibility is compensated by high accuracy, repeatability, and reliability. These features make binary-actuated mechanisms appealing for space exploration systems, repetitive pick & place tasks, and biomedical applications. This paper introduces a novel class of binary-actuated mechanisms driven by electromagnets. As these systems rely on the extreme positions of their binary actuators for positioning, the proposed design aims to increase repeatability with a kinematic coupling. By inverting the polarity of its electromagnets, the configuration of the mechanism can be changed from a discrete state to another one. Thus, when the actuation is known, the pose of the system can be accurately computed without any external feedback. A sensorless design simplifies both the control and the architecture of the proposed design, as well as reducing manufacturing and maintenance costs. The conceptual design of the proposed class of mechanisms is described through two examples with three and four configurations, and alternative designs with higher mobility are discussed. Then, a kinematic synthesis procedure is discussed. Finally, the advantages of asymmetric and irregular designs are outlined. Overall, the proposed mechanisms are suited to a wide range of applications that require a rapid, accurate and interchangeable positioning of sensors and tools

    Concept development for lightweight binary-actuated robotic devices, with application to space systems

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2001."June 2001."Includes bibliographical references (leaves 66-71).Exploratory space missions of the future will require robotic systems to lead the way by negotiating and mapping very rough terrain, collecting samples, performing science tasks, and constructing facilities. These robots will need to be adaptable and reconfigurable in order to achieve a wide variety of objectives. Conventional designs using gears, motors, bearings, encoders, and many discrete components will be too complex, heavy, and failure-prone to allow highly-reconfigurable systems to be feasible. This thesis develops new concepts that may potentially enable the design of self-transforming space explorers. The vision of this research is to integrate compliant bistable mechanisms with large numbers of binary-actuated embedded smart materials. Compliant mechanisms are lightweight and robust. Binary actuation is the idea of using an actuator in a discrete on/off manner rather than in a continuous manner. A binary actuator is easy to control and robust, and by using tens or hundreds of binary actuators, one can approximate a continuous system, much like a digital computer can approximate an analog system. The first part of this thesis examines the fundamental planning issues involved with systems having large numbers of binary actuators. The notion of a workspace is described and applied to the optimization of a manipulator design. Methods for solving the forward and inverse kinematics are discussed in the context of this application. These methods are extended to the trajectory and locomotion planning problems. Methods for planning systems of substantial complexity are developed in the context of exploratory space robotics. The second part of this thesis presents experimental demonstrations that examine elements of the concept. The results of several design prototypes are discussed.by Matthew D. Lichter.S.M

    An Efficient Method for Computing the Forward Kinematics of Binary Manipulators

    No full text
    Binary actuators have only two discrete states (denoted `0' and `1'), both of which are stable without feedback. As a result, manipulators built with binary actuators have a finite number of states. Compared to a manipulator built with continuous actuators, a binary manipulator provides good performance, and is also relatively inexpensive. However, the number of states of a binary manipulator grows exponentially with the number of actuators. While this makes the calculation of its inverse kinematics quite difficult, the discrete nature of a binary manipulator makes it possible to compute its forward kinematics more efficiently than for a continuously actuated manipulator. By precomputing all possible configurations of each module of a binary manipulator (a finite and usually small number) it is possible to compute the forward kinematics from a set of joint parameters without using any transcendental functions. 1 Introduction Presently, nearly all robots are powered by continuous actu..

    XLIII Jornadas de Automática: libro de actas: 7, 8 y 9 de septiembre de 2022, Logroño (La Rioja)

    Get PDF
    [Resumen] Las Jornadas de Automática (JA) son el evento más importante del Comité Español de Automática (CEA), entidad científico-técnica con más de cincuenta años de vida y destinada a la difusión e implantación de la Automática en la sociedad. Este año se celebra la cuadragésima tercera edición de las JA, que constituyen el punto de encuentro de la comunidad de Automática de nuestro país. La presente edición permitirá dar visibilidad a los nuevos retos y resultados del ámbito, y su uso en un gran número de aplicaciones, entre otras, las energías renovables, la bioingeniería o la robótica asistencial. Además de la componente científica, que se ve reflejada en este libro de actas, las JA son un punto de encuentro de las diferentes generaciones de profesores, investigadores y profesionales, incluyendo la componente social que es de vital importancia. Esta edición 2022 de las JA se celebra en Logroño, capital de La Rioja, región mundialmente conocida por la calidad de sus vinos de Denominación de Origen y que ha asumido el desafío de poder ganar competitividad a través de la transformación verde y digital. Pero también por ser la cuna del castellano e impulsar el Valle de la Lengua con la ayuda de las nuevas tecnologías, entre ellas la Automática Inteligente. Los organizadores de estas JA, pertenecientes al Área de Ingeniería de Sistemas y Automática del Departamento de Ingeniería Eléctrica de la Universidad de La Rioja (UR), constituyen un pilar fundamental en el apoyo a la región para el estudio, implementación y difusión de estos retos. Esta edición, la primera en formato íntegramente presencial después de la pandemia de la covid-19, cuenta con más de 200 asistentes y se celebra a caballo entre el Edificio Politécnico de la Escuela Técnica Superior de Ingeniería Industrial y el Monasterio de Yuso situado en San Millán de la Cogolla, dos marcos excepcionales para la realización de las JA. Como parte del programa científico, dos sesiones plenarias harán hincapié, respectivamente, sobre soluciones de control para afrontar los nuevos retos energéticos, y sobre la calidad de los datos para una inteligencia artificial (IA) imparcial y confiable. También, dos mesas redondas debatirán aplicaciones de la IA y la implantación de la tecnología digital en la actividad profesional. Adicionalmente, destacaremos dos clases magistrales alineadas con tecnología de última generación que serán impartidas por profesionales de la empresa. Las JA también van a albergar dos competiciones: CEABOT, con robots humanoides, y el Concurso de Ingeniería de Control, enfocado a UAVs. A todas estas actividades hay que añadir las reuniones de los grupos temáticos de CEA, las exhibiciones de pósteres con las comunicaciones presentadas a las JA y los expositores de las empresas. Por último, durante el evento se va a proceder a la entrega del “Premio Nacional de Automática” (edición 2022) y del “Premio CEA al Talento Femenino en Automática”, patrocinado por el Gobierno de La Rioja (en su primera edición), además de diversos galardones enmarcados dentro de las actividades de los grupos temáticos de CEA. Las actas de las XLIII Jornadas de Automática están formadas por un total de 143 comunicaciones, organizadas en torno a los nueve Grupos Temáticos y a las dos Líneas Estratégicas de CEA. Los trabajos seleccionados han sido sometidos a un proceso de revisión por pares
    corecore