23,727 research outputs found

    A schema-based P2P network to enable publish-subscribe for multimedia content in open hypermedia systems

    No full text
    Open Hypermedia Systems (OHS) aim to provide efficient dissemination, adaptation and integration of hyperlinked multimedia resources. Content available in Peer-to-Peer (P2P) networks could add significant value to OHS provided that challenges for efficient discovery and prompt delivery of rich and up-to-date content are successfully addressed. This paper proposes an architecture that enables the operation of OHS over a P2P overlay network of OHS servers based on semantic annotation of (a) peer OHS servers and of (b) multimedia resources that can be obtained through the link services of the OHS. The architecture provides efficient resource discovery. Semantic query-based subscriptions over this P2P network can enable access to up-to-date content, while caching at certain peers enables prompt delivery of multimedia content. Advanced query resolution techniques are employed to match different parts of subscription queries (subqueries). These subscriptions can be shared among different interested peers, thus increasing the efficiency of multimedia content dissemination

    Self-healing topology discovery protocol for software defined networks

    Get PDF
    “© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. http://ieeexplore.ieee.org/document/8319433/”This letter presents the design of a self-healing protocol for automatic discovery and maintenance of the network topology in Software Defined Networks (SDN). The proposed protocol integrates two enhanced features (i.e. layer 2 topology discovery and autonomic fault recovery) in a unified mechanism. This novel approach is validated through simulation experiments using OMNET++. Obtained results show that our protocol discovers and recovers the control topology efficiently in terms of time and message load over a wide range of generated networks.Peer ReviewedPostprint (author's final draft

    A Survey on the Contributions of Software-Defined Networking to Traffic Engineering

    Get PDF
    Since the appearance of OpenFlow back in 2008, software-defined networking (SDN) has gained momentum. Although there are some discrepancies between the standards developing organizations working with SDN about what SDN is and how it is defined, they all outline traffic engineering (TE) as a key application. One of the most common objectives of TE is the congestion minimization, where techniques such as traffic splitting among multiple paths or advanced reservation systems are used. In such a scenario, this manuscript surveys the role of a comprehensive list of SDN protocols in TE solutions, in order to assess how these protocols can benefit TE. The SDN protocols have been categorized using the SDN architecture proposed by the open networking foundation, which differentiates among data-controller plane interfaces, application-controller plane interfaces, and management interfaces, in order to state how the interface type in which they operate influences TE. In addition, the impact of the SDN protocols on TE has been evaluated by comparing them with the path computation element (PCE)-based architecture. The PCE-based architecture has been selected to measure the impact of SDN on TE because it is the most novel TE architecture until the date, and because it already defines a set of metrics to measure the performance of TE solutions. We conclude that using the three types of interfaces simultaneously will result in more powerful and enhanced TE solutions, since they benefit TE in complementary ways.European Commission through the Horizon 2020 Research and Innovation Programme (GN4) under Grant 691567 Spanish Ministry of Economy and Competitiveness under the Secure Deployment of Services Over SDN and NFV-based Networks Project S&NSEC under Grant TEC2013-47960-C4-3-

    High-speed, in-band performance measurement instrumentation for next generation IP networks

    Get PDF
    Facilitating always-on instrumentation of Internet traffic for the purposes of performance measurement is crucial in order to enable accountability of resource usage and automated network control, management and optimisation. This has proven infeasible to date due to the lack of native measurement mechanisms that can form an integral part of the network‟s main forwarding operation. However, Internet Protocol version 6 (IPv6) specification enables the efficient encoding and processing of optional per-packet information as a native part of the network layer, and this constitutes a strong reason for IPv6 to be adopted as the ubiquitous next generation Internet transport. In this paper we present a very high-speed hardware implementation of in-line measurement, a truly native traffic instrumentation mechanism for the next generation Internet, which facilitates performance measurement of the actual data-carrying traffic at small timescales between two points in the network. This system is designed to operate as part of the routers' fast path and to incur an absolutely minimal impact on the network operation even while instrumenting traffic between the edges of very high capacity links. Our results show that the implementation can be easily accommodated by current FPGA technology, and real Internet traffic traces verify that the overhead incurred by instrumenting every packet over a 10 Gb/s operational backbone link carrying a typical workload is indeed negligible

    Denial of Service in Voice Over IP Networks

    Get PDF
    In this paper we investigate denial of service (DoS) vulnerabilities in Voice over IP (VoIP) systems, focusing on the ITU-T H.323 family of protocols. We provide a simple characterisation of DoS attacks that allows us to readily identify DoS issues in H.323 protocols. We also discuss network layer DoS vulnerabilities that affect VoIP systems. A number of improvements and further research directions are proposed

    SCOR: Software-defined Constrained Optimal Routing Platform for SDN

    Full text link
    A Software-defined Constrained Optimal Routing (SCOR) platform is introduced as a Northbound interface in SDN architecture. It is based on constraint programming techniques and is implemented in MiniZinc modelling language. Using constraint programming techniques in this Northbound interface has created an efficient tool for implementing complex Quality of Service routing applications in a few lines of code. The code includes only the problem statement and the solution is found by a general solver program. A routing framework is introduced based on SDN's architecture model which uses SCOR as its Northbound interface and an upper layer of applications implemented in SCOR. Performance of a few implemented routing applications are evaluated in different network topologies, network sizes and various number of concurrent flows.Comment: 19 pages, 11 figures, 11 algorithms, 3 table
    • 

    corecore