244 research outputs found

    A new steplength selection for scaled gradient methods with application to image deblurring

    Get PDF
    Gradient methods are frequently used in large scale image deblurring problems since they avoid the onerous computation of the Hessian matrix of the objective function. Second order information is typically sought by a clever choice of the steplength parameter defining the descent direction, as in the case of the well-known Barzilai and Borwein rules. In a recent paper, a strategy for the steplength selection approximating the inverse of some eigenvalues of the Hessian matrix has been proposed for gradient methods applied to unconstrained minimization problems. In the quadratic case, this approach is based on a Lanczos process applied every m iterations to the matrix of the most recent m back gradients but the idea can be extended to a general objective function. In this paper we extend this rule to the case of scaled gradient projection methods applied to non-negatively constrained minimization problems, and we test the effectiveness of the proposed strategy in image deblurring problems in both the presence and the absence of an explicit edge-preserving regularization term

    Nested Distributed Gradient Methods with Adaptive Quantized Communication

    Full text link
    In this paper, we consider minimizing a sum of local convex objective functions in a distributed setting, where communication can be costly. We propose and analyze a class of nested distributed gradient methods with adaptive quantized communication (NEAR-DGD+Q). We show the effect of performing multiple quantized communication steps on the rate of convergence and on the size of the neighborhood of convergence, and prove R-Linear convergence to the exact solution with increasing number of consensus steps and adaptive quantization. We test the performance of the method, as well as some practical variants, on quadratic functions, and show the effects of multiple quantized communication steps in terms of iterations/gradient evaluations, communication and cost.Comment: 9 pages, 2 figures. arXiv admin note: text overlap with arXiv:1709.0299

    A two-phase gradient method for quadratic programming problems with a single linear constraint and bounds on the variables

    Full text link
    We propose a gradient-based method for quadratic programming problems with a single linear constraint and bounds on the variables. Inspired by the GPCG algorithm for bound-constrained convex quadratic programming [J.J. Mor\'e and G. Toraldo, SIAM J. Optim. 1, 1991], our approach alternates between two phases until convergence: an identification phase, which performs gradient projection iterations until either a candidate active set is identified or no reasonable progress is made, and an unconstrained minimization phase, which reduces the objective function in a suitable space defined by the identification phase, by applying either the conjugate gradient method or a recently proposed spectral gradient method. However, the algorithm differs from GPCG not only because it deals with a more general class of problems, but mainly for the way it stops the minimization phase. This is based on a comparison between a measure of optimality in the reduced space and a measure of bindingness of the variables that are on the bounds, defined by extending the concept of proportioning, which was proposed by some authors for box-constrained problems. If the objective function is bounded, the algorithm converges to a stationary point thanks to a suitable application of the gradient projection method in the identification phase. For strictly convex problems, the algorithm converges to the optimal solution in a finite number of steps even in case of degeneracy. Extensive numerical experiments show the effectiveness of the proposed approach.Comment: 30 pages, 17 figure

    Global and Quadratic Convergence of Newton Hard-Thresholding Pursuit

    Get PDF
    Algorithms based on the hard thresholding principle have been well studied with sounding theoretical guarantees in the compressed sensing and more general sparsity-constrained optimization. It is widely observed in existing empirical studies that when a restricted Newton step was used (as the debiasing step), the hard-thresholding algorithms tend to meet halting conditions in a significantly low number of iterations and are very efficient. Hence, the thus obtained Newton hard-thresholding algorithms call for stronger theoretical guarantees than for their simple hard-thresholding counterparts. This paper provides a theoretical justification for the use of the restricted Newton step. We build our theory and algorithm, Newton Hard-Thresholding Pursuit (NHTP), for the sparsity-constrained optimization. Our main result shows that NHTP is quadratically convergent under the standard assumption of restricted strong convexity and smoothness. We also establish its global convergence to a stationary point under a weaker assumption. In the special case of the compressive sensing, NHTP effectively reduces to some of the existing hard-thresholding algorithms with a Newton step. Consequently, our fast convergence result justifies why those algorithms perform better than without the Newton step. The efficiency of NHTP was demonstrated on both synthetic and real data in compressed sensing and sparse logistic regression
    • …
    corecore