
New gradient methods:
spectral properties and steplength selection

Scuola di dottorato in Ricerca Operativa

Dottorato di Ricerca in Ricerca Operativa – XXVI Ciclo

Candidate

Roberta De Asmundis
ID number 1385637

Thesis Advisor

Prof. Gerardo Toraldo

A thesis submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Operational Research

April 26 2014

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Archivio della ricerca- Università di Roma La Sapienza

https://core.ac.uk/display/74323944?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Thesis defended on May 16 2014
in front of a Board of Examiners composed by:

Prof. Luca Zanni (chairman)
Prof. Andrea Lodi
Dr. Maria Grazia Scutellà

New gradient methods: spectral properties and steplength selection
Ph.D. thesis. Sapienza – University of Rome

© 2013 Roberta De Asmundis. All rights reserved

This thesis has been typeset by LATEX and the Sapthesis class.

Author’s email: roberta.deasmundis@uniroma1.it

mailto:roberta.deasmundis@uniroma1.it

Dedicated to
my “robotic” husband, my beloved parents,

my grandma who is turning 89 thinking she is 62, and my purring cats.

v

Acknowledgments

Then said a teacher, “Speak to us of Teaching.”

And he said:

No man can reveal to you aught but that which already lies half asleep
in the dawning of our knowledge.
The teacher who walks in the shadow of the temple, among his followers,
gives not of his wisdom but rather of his faith and his lovingness.
If he is indeed wise he does not bid you enter the house of wisdom, but
rather leads you to the threshold of your own mind.
The astronomer may speak to you of his understanding of space, but he
cannot give you his understanding.
The musician may sing to you of the rhythm which is in all space, but
he cannot give you the ear which arrests the rhythm nor the voice that
echoes it.
And he who is versed in the science of numbers can tell of the regions
of weight and measure, but he cannot conduct you thither.
For the vision of one man lends not its wings to another man.
And even as each one of you stands alone in God’s knowledge, so must
each one of you be alone in his knowledge of God and in his understand-
ing of the earth.

The Prophet, Kahlil Gibran

I would like to express my whole gratitude to my supervisor, Prof. Gerardo Toraldo,
who supported my work from the beginning. His competence, patience and kindness
guided me during these years, always caring about me, as a wise teacher. I have
to thank him for having introduced me in the world of the nonlinear optimization
and numerical analysis, giving me the opportunity to learn new subjects and new
methodologies to study, plan, analyse, test, and discuss about my life. During the
first year of doctorate he decided to send me to Siena to attend a course on con-
vex optimization, where I met a shy boy, I studied, I analysed, I tested him, and I
decided to marry him two years later, changing my life. On the second year of my
doctorate, prof. Toraldo told me to go to the University of Florida for a semester, it
was a grate life experience, I had to face solitude and the distance from my beloved
and my family, a big experiment in which I succeeded, coming back stronger and

vi

happy. I also got to know a beautiful country, a different culture, and I shared my
time with some wonderful friends that I will never forget.

Prof. Toraldo has the merit of having introduced me to special and extraordinary
women, above all Prof. Daniela di Serafino, without whom my work would have
been enormously more difficult. With her energetic character, her professional be-
haviour, and her competence, she has been a guide, a lighthouse pointing on how I
should work, what I should do, how I should react, how I should look at my future,
and I will be forever grateful for all the advices and suggestions she gave me during
these three years. Other people were part of my PhD journey, all of them excellent
experts, and good fiends, who made this period more enjoyable and interesting.

I also have to thank Prof. William W. Hager, who supervised me during my
period at the University of Florida, and Prof. Hongchao Zhang. I will always re-
member their calm suggestions, their careful considerations, always at the point,
during our chats in their room in the hot summertime Floridian afternoons. Their
confidence in me is a kind note in my graduate studies.

Last, but not least, I would like to thank my family for letting me make my
own choices, always supporting me, encouraging me to move forward, reaching new
targets, and my husband Donato, who always stands proud by my side.

vii

Abstract

In the last 25 years the interest in gradient methods has been renewed after the
publication of a pioneering paper by Barzilai and Borwein, where a novel strategy
for choosing the steplength was proposed. This opened the way to other steplength
selection rules, and first order methods for continuous nonlinear optimization re-
turned on the scene, becoming a valid and useful tool for applications. As a matter
of fact, gradient methods can be successfully applied to certain ill-posed inverse
problems, arising, e.g., in image processing; furthermore, the low computational
cost of gradient methods makes them suitable for other large-scale problems, e.g.,
in machine learning and data mining.

It has become increasingly clear that the critical issue in gradient methods is the
choice of the steplength, whereas using the gradient as search direction may lead
to effective algorithms. In particular, the Cauchy steplength, henceforth denoted
by αSDk , generally produces very slow convergence, but, on the other hand, it can
provide spectral information on the Hessian matrix of the problem, which can be
put somehow in an algorithmic framework to construct faster gradient methods.

This work mainly focuses on gradient methods for the unconstrained minimiza-
tion problem

min
x∈Rn

1
2x

TAx− bTx,

where A ∈ Rn×n is symmetric positive-definite and b ∈ Rn. This simple setting
not only allows the study of the relevance of the eigenvalues of the Hessian of the
objective function to the considered methods, highlighting the effects of a particular
steplength instead of another, but it is also of practical importance, since it arises
in many applications, e.g., in image processing and compressed sensing. Further-
more, it provides the basis for the development of gradient methods for constrained
problems and it paves the way for the the minimization of general non-quadratic
functions.

This thesis, starting from the classical Steepest Descent (SD) method by Cauchy,
and going through the most recent and competitive gradient methods, investigates
how the spectral properties associated with the SD method, if suitably used to build
some special steplengths, can influence the performance of the method, dramatically
improving its poor original behavior. In this framework, two new methods are pre-
sented and analysed, the Steepest Descent method with Alignment (SDA) and the
Steepest Descent method with Constant steplength (SDC). Both of them share the
idea of fostering a selective elimination of the components of the gradient along
the eigenvectors of the Hessian matrix A, thus pushing the search in subspaces of
smaller dimensions, and speeding up the convergence of the method. This selec-

viii

tive elimination is based on new steplength selection rules, which alternate, in a
cyclic way, sequences of Cauchy steplengths with sequences of constant steplengths
containing spectral information on the Hessian.

More in detail, the SDA method alternates a sequence of Cauchy steps with a
sequence of constant steps built from the formula

αSDAk =
(

1
αSDk−1

+ 1
αSDk

)−1

,

where k refers to the last computed Cauchy step. Under non-restrictive assumptions,
it has been proved that the SDA method tends to align the search direction with the
eigendirection of A corresponding to the minimum eigenvalue, forcing the algorithm
search into a one-dimensional subspace, and hence escaping from the zigzagging
behaviour of the classical SD method [26]. Similarly, the SDC methods exploits the
Yuan steplength formula [66]

αYk = 2


√√√√√
(

1
αSDk−1

− 1
αSDk

)2

+ 4 ‖gk‖2(
αSDk−1‖gk−1‖

)2 + 1
αSDk−1

+ 1
αSDk


−1

,

in a cyclic framework, in which a sequence of SD iterates is alternated with a
sequence of steps using constant steplengths computed by using that formula, where
k refers to the last SD iterate. By studying the asymptotic behaviour of the Yuan
steplength, it has been shown that the SDC method has the ability of pushing
toward zero the eigencomponents of the gradient in a selective way, proceeding
from the component associated with the largest eigenvalue to that associated with
the smallest one [24].

Extensive numerical experiments have been performed with the SDA and the
SDC methods. They show that both methods are highly competitive with the
fastest methods among the gradient ones; in particular, the SDC method clearly
appears superior as the Hessian condition number and the accuracy requirement
increase.

We note that the behaviour of the two proposed methods is different from that
of other efficient gradient methods, where the ability to reduce all the eigencompo-
nents “at the same rate” has been experimentally observed and considered as one
of the main reasons for their effectiveness. Furthermore, the “elimination path” fol-
lowed by the SDC method produces a regularizing effect on certain ill-posed inverse
problems [25]. Therefore, in the final part of this dissertation, the application of the
SDC method to some ill-posed, inverse problems has been analysed. In particular,
it has been observed that the SDC method tends to reconstruct the solution of

ix

the selected ill-posed problems giving preference to the “significant” components of
the solution, thus showing an implicit filtering effect and allowing to obtain a good
reconstructed image with reasonable computational efficiency.

Future work will address the development of projection techniques to be com-
bined with the proposed methods, to solve constrained problems, and the develop-
ment of strategies aimed at extending the proposed methods to the more general
non-quadratic framework. This will be useful, e.g., in image reconstruction, where
non-negativity constraints are often considered, and where the functional to mini-
mize is often non-quadratic.

xi

Contents

List of Figures xii

List of Tables xv

1 From the steepest descent to some faster gradient methods 1
1.1 The steepest descent method . 2
1.2 The Barzilai and Borwein method 8
1.3 First attempts to escape from the zigzag path of the iterates 12
1.4 Alternate steplengths gradient methods 17

2 Spectral properties of gradient methods 21
2.1 A modified form of relaxation . 22
2.2 A new cyclical framework . 26
2.3 A dynamic adaptive technique . 37
2.4 Numerical Experiments . 39

3 An application to discrete ill-posed problems 55
3.1 Behaviour of the SDA and SDC methods 57
3.2 Filtering properties of the SDA and SDC methods 59
3.3 Numerical experiments . 64

4 Conclusions 73
4.1 Summary . 73
4.2 Future Directions . 74

4.2.1 Quadratic constrained problems 74
4.2.2 Minimization of general non-quadratic functions 77

xiii

List of Figures

1.1 Problem 1.9, behaviour of the normalized components of the gradient
along the eigendirection d1 and dn for the SD method. 7

1.2 Problem 1.9, values of the scalars βi at the computed solution for the
SD method. 7

1.3 Problem 1.9, behavior of the sequence {‖gk‖} for the BB, and SD
methods. 11

1.4 Problem 1.9, behavior of the sequence {f(xk)} for the BB, and SD
methods. 12

1.5 Problem 1.9, behaviour of the sequence {‖gk‖} for the RSD, BB, and
SD methods. 14

1.6 Problem 1.9, behaviour of the sequence {‖gk‖} for the CBB, and BB
methods. 15

1.7 Problem 1.9, behaviour of the sequence {f(xk)} for the CBB, and
BB methods. 16

2.1 Behaviour of the sequence xk generated by a gradient method using a
double Cauchy step at each iteration. After few iterations an evident
alignment of the search direction with one of the axis is produced. . 22

2.2 Problem 2.13, convergence history for the SD and SDM methods, red
dots represent the values of the gradient norm when a double Cauchy
step is adopted. 25

2.3 Problem 2.13, convergence history for the SD and RSD, and RSDA
methods. 26

2.4 Problem 2.31, behaviour of the sequences
{∣∣∣α̃k − 1

λ1+λn

∣∣∣}, {∣∣∣αYk − 1
λ1

∣∣∣},
and {‖gk‖} for for the first 100 iterations of the SD method. 34

2.5 Problem 2.31, values of the eigencomponents µki (i = 1, . . . , 20) of the
gradient at the solution computed by the SDA and SDC methods,
for h = 2 and m = 2 and for h = 2 and m = 6. 35

xiv List of Figures

2.6 Problem 2.31, convergence history of {f(xk)} in the SDA and SDAM
methods (top and bottom, respectively), for h = 2 and m = 2 and
for h = 2 and m = 6. 36

2.7 Problem 2.31, convergence history of {f(xk)} in the SDC and SDCM
methods (top and bottom, respectively), for h = 2 and m = 2 and
for h = 2 and m = 6. 37

2.8 RAND and NONRAND problems with κ(A) = 106: values of the
scalars βi, i = 1, . . . , n, at the last SDA (top) and SDC (bottom)
iterations (tol = 10−12). 52

3.1 Filter factors of the SDA, SDC, SD and CG methods applied to
problem heat, at iterations 5, 10, 20 and 40. 63

3.2 Satellite test problem, true image. 65
3.3 Satellite test problem, blurred and noisy images. 66
3.4 Satellite test problem, relative errors curves in the case of a noise

level of 10−2. The dots represent the first iteration (k first) and the
last iteration (k last) in Table 3.2, while the squares represent the
minimum point of the relative error (k min) in Table 3.2. 68

3.5 Satellite test problem, reconstructed images at the minimum point
of the CGLS relative error - noise level 10−2. 69

3.6 Satellite test problem, reconstructed images at the end of the flat
region (k last in Table 3.2) of the SDC method (k last = 153) - noise
level 10−2. 70

3.7 Heat test problem, relative errors curves. The dots represent the first
iteration (k first) and the last iteration (k last) in Table 3.4, while
the squares represent the minimum point of the relative error (k min)
in Table 3.4. 71

xv

List of Tables

1.1 Iteration number for the random generated problems with n = 103

and condition number ranging from 102 to 105. 14
1.2 Problem 1.9, number of times in which the gradient is almost an

eigenvector of the Hessian matrix for the CBB, RSD and BB methods
tested with different values of the tolerance in the stopping criterion. 16

1.3 Problem 1.9, values of s for different gradient methods 20

2.1 Problem 2.31, number of iterations of the SDC1 and DY methods.
Number of nonmonotone SDA steps reported in brackets. 33

2.2 Problem 2.31, number of iterations of the SDAM method. 33
2.3 Problem 2.31, number of iterations of the SDC and DY methods.

Number of nonmonotone SDC steps reported in brackets. 33
2.4 Problem 2.31, number of iterations of the SDCM method. 33
2.5 Problem 2.31, number of iterations of the SDA_ADP method. Num-

ber of double Cauchy steps reported in brackets. 39
2.6 Problem 2.31, number of iterations of the SDC_ADP method. Num-

ber of double Cauchy steps reported in brackets. 39
2.7 RAND and NONRAND problems, number of iterations of the BB,

RSD and RSDA methods. 41
2.8 RAND problems: mean number of iterations of the SDA and DY

methods. SDAM iterations in brackets if different from the SDA one. 44
2.9 RAND problems: mean number of iterations of the SDC and DY

methods. SDCM iterations in brackets if different from the SDC one. 44
2.10 NONRAND problems: mean number of iterations of the SDA and

DY methods. SDAM iterations in brackets if different from the SDA
one. 45

2.11 NONRAND problems: mean number of iterations of the SDC and
DY methods. SDCM iterations in brackets if different from the SDC
one. 45

xvi List of Tables

2.12 RAND problems: mean number of iterations of the SDA, SDC and
DY methods. SDAM and SDCM iterations in brackets if different
from the SDA and SDC one. 46

2.13 NONRAND problems: mean number of iterations of the SDA, SDC
and DYmethods. SDAM and SDCM iterations in brackets if different
from the SDA and SDC one. 46

2.14 RAND problems: mean number of iterations of the SDA and DY
methods. SDAM iterations in brackets if different from the SDA one. 47

2.15 RAND problems: mean number of iterations of the SDC and DY
methods. SDCM iterations in brackets if different from the SDC one. 47

2.16 NONRAND problems: mean number of iterations of the SDA and
DY methods. SDAM iterations in brackets if different from the SDA
one. 48

2.17 NONRAND problems: mean number of iterations of the SDC and
DY methods. SDCM iterations in brackets if different from the SDC
one. 48

2.18 RAND problems: mean number of iterations of the SDA and DY
methods. SDAM iterations in brackets if different from the SDA one. 49

2.19 RAND problems: mean number of iterations of the SDC and DY
methods. SDCM iterations in brackets if different from the SDC one. 49

2.20 NONRAND problems: mean number of iterations of the SDA and
DY methods. SDAM iterations in brackets if different from the SDA
one. 50

2.21 NONRAND problems: mean number of iterations of the SDC and
DY methods. SDCM iterations in brackets if different from the SDC
one. 50

2.22 Iterations for the Laplace problems, with stop condition ‖gk‖ <

10−2‖g0‖. 51
2.23 Iterations for the Laplace problems, with stop condition ‖gk‖ <

10−4‖g0‖. 51
2.24 Iterations for the Laplace problems, with stop condition ‖gk‖ <

10−6‖g0‖. 51
2.25 Problem 2.31, values of s for the SDA, the SDC and the DY methods. 53

3.1 Satellite test problem, values of the relative error and iteration index. 66
3.2 Satellite test problem, relative error flat region features: number of

iterations in the region (column 3), lower and upper bounds of the
region (columns 4 - 5). 67

3.3 heat test problem, values of the relative error and iteration index. . 71

List of Tables xvii

3.4 Heat test problem, relative error flat region features: number of it-
erations in the region (column 3), lower and upper bounds of the
region (columns 4 - 5). 72

4.1 Quadratic constrained problems, iteration number for the different
projected methods. 77

4.2 CUTEr problems, number of iterations for the GSD, GSDA and
GSDC methods. 79

1

Chapter 1

From the steepest descent to
some faster gradient methods

In this chapter we place the foundation for the development of the subsequent
theoretical analysis on gradient methods and step size selection techniques. More
in detail, we will consider some among the most popular gradient methods to solve
the following quadratic unconstrained minimization problem:

min
x∈Rn

f(x),

where f is a twice continuously differentiable function.
Of course, the state of the art in gradient methods is much wider than what is
reported in these pages. Currently, the literature is better focused in the develop-
ment of methodologies tailored to the applications for which they are intended. In
several fields, gradient methods appear to be attractive because of their extreme
implementative simplicity and their low memory requirements, and, in addition to
these motivations, if required by the the particular problem under consideration,
a projection into a feasible region is relatively an inexpensive operation if the con-
straints are simple. It is also well known that gradient methods may exhibit a very
slow convergence if a good stepsize selection technique is not applied. In some ap-
plications, such as the image deblurring, or the training of support vector machines,
the presence of big data has in fact pushed the research of easier and faster gradient-
based methods (see, e.g., [5, 12, 62] and the references therein). Unfortunately, the
lack of a strong underlying theory has brought researches to use faster gradient
method without having the awareness of why this or that method was going better.
For this reason we believe in the need of this work, mostly aimed in finding the
theoretical motivation for which we can build a fast gradient method using a simple
and efficient step size selection rule, making it suitable for the application at hand.

2 1. From the steepest descent to some faster gradient methods

This chapter is organized as follows, we present the classical steepest descent
(SD) method and we go through its theoretical properties in Section 1.1; we in-
troduce the Barziali and Borwein method in Section 1.2; then Section 1.3 focuses
on some attempts to produce faster gradient methods, escaping from the zigzag
path made by the iterates in the SD method. Finally, in Section 1.4 we present
one among the most competitive faster gradient method which will be used as main
benchmark in the following development of this thesis.

1.1 The steepest descent method

Gradient method was one of the first optimization methods proposed to solve the
unconstrained minimization problem,

min
x∈Rn

f(x),

where f is a twice continuously differentiable function whose gradient ∇f(xk) in the
point xk will be denoted by gk. The method is based on the use of the antigradient
of the function f at the point xk as search direction, dk = −gk which, if normalized
according to the euclidean norm, minimizes the directional derivative of f at xk
among all the normalized descent directions, therefore the method is often called
the Steepest Descent (SD) method.
A general gradient method is an iterative method which generates a sequence of
iterates {xk} by the following rule:

xk+1 = xk − αkgk,

where the steplength αk is a nonnegative scalar minimizing f(xk − αgk), and de-
pends on the particular method under consideration. Since the gradient of f is
continuous, dk = −gk vanishes if and only if xk is a stationary point, in this way,
by a suitable choice of the steplength αk (see, e.g., the Armijo [2] or the Wolfe [64]
line search procedure), global convergence can be easily ensured.

The theoretical properties of gradient methods mostly derive from the minimiza-
tion of a convex quadratic function, in this way this dissertation mainly focuses on
gradient methods applied to the following convex quadratic problem,

min
x
f(x) = min

x

(1
2x

TAx− bTx
)
, (1.1)

1.1 The steepest descent method 3

where x and b are vectors in Rn, and A is a symmetric positive definite (SDP)
n × n matrix. This setting can highlight the relevance of the eigenvalues of the
Hessian matrix A, emphasizing the effects of a particular steplength instead of
another, providing the basis for the development of gradient methods for constrained
problems or general non-quadratic minimization problems.
In the rest of this thesis we denote by {λ1, λ2, . . . , λn} the eigenvalues of the matrix
A and by {d1, d2, . . . , dn} a set of associated orthonormal eigenvectors. Since A is
positive definite, all of its eigenvalues λ1, λ2, . . . , λn are positive. Moreover in this
work we consider the following two assumptions:

Assumption 1. The eigenvalues λ1, λ2, . . . , λn of A are such that:

λ1 > λ2 > · · · > λn.

Assumption 2. Any starting point x0 is such that

gT0 d1 6= 0;

gT0 dn 6= 0.

Furthermore, we denote by µki i = 1, 2, . . . , n, the component of gk along di, i.e.,

gk =
n∑
i=1

µki di. (1.2)

Finally, for any gradient methods, it follows from the properties of a quadratic
function that the gradient can be computed iteratively according to the following
formula,

gk+1 = gk − αkAgk. (1.3)

A general scheme for the gradient method to solve Problem (1.1) is reported in
Algorithm 1. We have already noticed that the choice of the line search procedure

Algorithm 1 General scheme for the gradient method
choose x0 ∈ Rn
compute g0 = Ax0 − b
set k = 0
while not stop_condition do
choose αk > 0 with a line search procedure
update xk+1 = xk − αkgk
compute gk+1 = gk − αkAgk
update k = k + 1

end while

4 1. From the steepest descent to some faster gradient methods

(line five of Algorithm 1) is a crucial step in the development of the method. In the
SD method proposed by Cauchy1 in 1847 [13] for the solution of nonlinear systems
of equations, αk is chosen as

αk = argmin
α

f(xk − αgk). (1.4)

The exact minimization (1.4) leads, in fact, to the so called Cauchy steplength:

αSDk = gTk gk
gTk Agk

, (1.5)

and the updated new iterate is therefore,

xk+1 = xk −
gTk gk
gTk Agk

gk.

The following result states the convergence and the convergence rate of the SD
method.

Theorem 1.1.1 (SD convergence). For any starting point x0 ∈ Rn the SD method
converges to the unique minimum point x∗ of f . Furthermore, the error norm
satisfies:

‖xk+1 − x∗‖2A ≤
(
λ1 − λn
λ1 + λn

)2
‖xk − x∗‖2A, (1.6)

where the non euclidean A-norm is defined by ‖x‖2A = xTAx.

By using the relation Ax∗ = b is straightforward to see that

1
2‖x− x

∗‖2A = f(x)− f(x∗),

so the previous theorem states that the function values converge to the minimum
function value f∗ at a linear rate. Being

ρ = λ1 − λn
λ1 + λn

= κ(A)− 1
κ(A) + 1 , (1.7)

the convergence rate of the SD method slows down as the contours of f become
more eccentric [48] and so, as the condition number κ(A) = λ1/λn increases, the
convergence degrades.

To highlight the relationship among the condition number of the Hessian matrix,
the convergence rate of the iterations, and the size of the oscillation in the gradient
norm generated by the SD method, a deep analysis was carried out by Akaike in

1To simplify notations, the SD method using the Cauchy steplength will be simply denoted by
SD.

1.1 The steepest descent method 5

1959 [1], and then investigated in depth by Nocedal et al. in 2002 [55]. Here we
summarize the main aspects and results as follows.

Proposition 1.1.2 (Nocedal et al. 2002). Under Assumptions 1-2, let {xk} be
the sequence of iterates generated by the SD method applied to a strongly convex
quadratic function. Then,

1. the following limits hold,

lim
k→∞

(µ2k
i)2∑n

j=1(µ2k
i)2 =


c2

1+c2 , if i = 1,
0, if i = 2, . . . , n− 1,
1

1+c2 if i = n,

lim
k→∞

(µ2k+1
i)2∑n

j=1(µ2k+1
i)2

=


1

1+c2 , if i = 1,
0, if i = 2, . . . , n− 1,
c2

1+c2 if i = n,

for some non-zero constant c.

2. the components µ2k
1 , µ

2k
n , and µ2k+1

1 , µ2k+1
n have fixed signs for large k.

The constant c is also responsible of the rate of convergence in the objective
function, being

lim
k→∞

f(xk+1)
f(xk)

= c2(λ1/λn − 1)2

c2(1 + λ1/λn)2 + (c2 − 1)2λ1/λn
, (1.8)

whose right hand side is maximized when c = 1, giving the worst rate of convergence.
The value of c is connected with the spectrum of the Hessian matrix, and its value
depends on the ratio of the components of the gradient, as stated in the following
result.

Lemma 1.1.3 (Nocedal et al. 2002). Under the assumptions of Proposition 1.1.2,
the constant c satisfies

c = lim
k→∞

µ2k
1
µ2k
n

= − lim
k→∞

µ2k+1
n

µ2k+1
1

.

Moreover c is uniquely determined by the starting point x0 and by the eigenvalues
and the eigenvectors of A.

Next result is about the asymptotic behaviour of the sequence of steplengths {αk}.

6 1. From the steepest descent to some faster gradient methods

Lemma 1.1.4 (Nocedal et al. 2002). Let {xk} be the sequence of iterates generated
by the SD method, and suppose Assumptions 1-2 hold, then,

lim
k→∞

αSD2k = 1 + c2

λn(1 + c2γ) ,

lim
k→∞

αSD2k+1 = 1 + c2

λn(γ + c2),

where γ = κ(A) is the spectral condition number of A and c is the same constant as
in Proposition 1.1.2.

Equation (1.8), Proposition 1.1.2, and Lemmas 1.1.3, 1.1.4 suggest that, in the
SD method eventually

gk ≈ µk1d1 + µkndn,

i.e., the SD method asymptotically reduces its search in the two-dimensional sub-
space spanned by d1 and dn, zigzagging between this two directions without being
able to eliminate any of them from the search direction.
When λ1 = λn, the Hessian matrix A is a multiple of the identity matrix and the
antigradient direction always points at the solution which is achieved in one itera-
tion.
In Figure 1.1 we show the behaviour of the normalized components of the gradient
along the eigendirections d1 and dn for the SD method computed at the first 100
iterations, applied to a problem of type (1.1) with n = 10 variables, where,

A = diag(λ1, λ2, . . . , λn), λi = 11i− 10, g(i)
1 =

√
1 + i, i = 1, . . . , 10, (1.9)

and b is a vector of zeros.
A more accurate analysis to show the behaviour of the gradient components at the
computed solution of (1.9), can be made by mean of the following scalar quantities,

β=
i

√√√√ i∑
j=1

(µkj)2, i = 1, . . . , n. (1.10)

Figure 1.2 shows how the contribute of the components relative to the eigendirec-
tions di, with i = 2, . . . , 9, is actually negligible, since the values of the correspondent
βi are unchanged.
In addition to these considerations, the recursive Formula (1.3) can be expressed

as,
gk+1 = αk

(1
αk
gk −Agk

)
, (1.11)

suggesting that, in order to get faster convergence, a greedy approach like (1.5)

1.1 The steepest descent method 7

0 20 40 60 80 100
0.1

0.5

0.8

Iteration Number

gkdn/‖gk‖
gkd1/‖gk‖

Figure 1.1. Problem 1.9, behaviour of the normalized components of the gradient along
the eigendirection d1 and dn for the SD method.

1 2 3 4 5 6 7 8 9 10

10
−4

10
−3

i

β
i

Figure 1.2. Problem 1.9, values of the scalars βi at the computed solution for the SD
method.

might be unsatisfactory, whereas fostering the search direction to align with an
eigendirection of A could speed up the convergence of the algorithm [34]. Moreover,
Formula (1.3) allows us to express the gradient in terms of the spectrum of the

8 1. From the steepest descent to some faster gradient methods

matrix A. From (1.3), in fact, if

g0 =
n∑
i=1

µidi,

then

gk+1 =
k∏
j=0

(I − αjA)g0 =
n∑
i=1

µk+1
i di, (1.12)

where

µk+1
i = µi

k∏
j=0

(1− αjλi). (1.13)

If at the k-th iteration, µki = 0 for some i, it follows from (1.12 - 1.13) that for h > k

it will be µhi = 0, and therefore the component of the gradient along di will be zero
at all subsequent iterations. Furthermore, the condition µki = 0 holds if and only if
µi = 0 or αj = 1/λi for some j ≤ k.
Finally, next proposition holds.

Proposition 1.1.5. Under Assumptions 1-2, a gradient method defined by the fol-
lowing iteration,

xk+1 = xk −
1
λk
gk, k = 1, . . . , n,

reachs in at most n iterations the minimum point of Problem 1.1.

Note that the SD method has finite termination if and only if at some iteration
the gradient is an eigenvector of A.

Despite its implementative simplicity, because of its oscillatory behaviour, the
SD method is too slow to be used in practice. However, its theoretical properties
can give a hint on a way to modify the step selection rule, in order to enable faster
convergence.
Next section introduces a novel approach for choosing the steplength, originally pro-
posed by Barziai and Borwein in 1988 [4]. The new presented method renewed the
interest of the optimization community in gradient methods, opening new questions
and suggesting new possible ways to speed up the convergence of the SD method.

1.2 The Barzilai and Borwein method

In 1988 Barzilai and Borwein [4] proposed a gradient method with a nonstandard
strategy for choosing the steplength. The Barzilai and Borwein (BB) method follows

1.2 The Barzilai and Borwein method 9

an iterative Quasi Newton2 scheme,

xk+1 = xk −
1
σk
gk, (1.14)

where the scalar σk > 0 tends to approximate the Hessian matrix A by

B = σkI,

or its inverse matrix by
H = 1

σk
I = βI,

where I is the identity n×nmatrix. These approximations can be obtained imposing
a secant condition to find the value of σ which minimizes the error in

σsk − yk = 0, (1.15)

or the value of β which minimizes the error in

sk − βyk = 0, (1.16)

where sk = xk − xk−1, and yk = gk − gk−1.
In the first case we get,

min
σ
s(σ) = min

σ
‖σsk − yk‖2,

which leads to:
σk = sTk yk

sTk sk
,

while in the second case we get,

min h(β) = min
σ
‖sk − βyk‖2,

which, remembering that β = 1
σ , leads to

σk = yTk yk
sTk yk

.

2For a further discussion on Quasi Newton methods see [27].

10 1. From the steepest descent to some faster gradient methods

Imposing αk = 1
σk
, according to our previous notation, we have the two following

steplengths:

αBB1
k = sTk sk

sTk yk
, (1.17)

αBB2
k = sTk yk

yTk yk
. (1.18)

It is strait forward to see that the steplength αBB1
k is equal to αSDk−1, i.e., the Cauchy

steplength at the previous iteration, while αBB2
k is equal to αSDgk−1 , where

αSDgk = gTk Agk
gTk A

2gk
= argmin

α
‖∇f(xk − αgk)‖ = argmin

α
‖(I − αA)gk‖, (1.19)

therefore, both the BB steplengths (1.17) and (1.18) can be seen as steplengths with
one-step delay [24].
Since αBB1

k , which is the steplength used in the BB method to determine the point
xk+1, is the Cauchy steplength used in the SD method at iteration k, the simplicity
of the BB method lays in the fact that at each iteration, the method computes the
step that minimizes the quadratic objective function along the antigradient direction
but, instead of using this step at the k-th iteration, saves the step to be used in the
next iteration [11].
Using the Mean-Value Theorem of integral calculus, we have,

yk =
[∫ 1

0
∇2f(xk + tsk)dt

]
sk,

Therefore, (1.17, 1.18) define the inverse of a Rayleigh quotient relative to the aver-
age Hessian matrix

∫ 1
0 ∇2f(xk+ tsk)dt. These coefficient are between the reciprocal

of the minimum and the maximum eigenvalue of the average Hessian, which moti-
vates the denomination of spectral method [11]. In fact, specifically for quadratic
problems, it can be seen that, being yk = Ask, then

αBB1
k = sTk sk

sTkAsk
; αBB2

k = sTkAsk
sTkA

2sk
,

in this way αBB1
k can be seen as the inverse of the Rayleigh quotient of A at the

vector sk, while αBB2
k as the inverse of the Rayleigh quotient of A at the vector√

Ask.
Finally, αBB2

k ≤ αBB1
k , ∀k (see, e.g., lemma 2.1 in [60]), therefore,

0 < 1
λ1

< αBB2
k ≤ αBB1

k <
1
λn
, ∀k.

1.2 The Barzilai and Borwein method 11

20 40 60 80 100
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Iteration Number

‖g
k
‖

BB

SD

Figure 1.3. Problem 1.9, behavior of the sequence {‖gk‖} for the BB, and SD methods.

A consequence is that, under Assumptions 1-2, assuming that the first steplength is
different from λ1 or λn, it follows that the BB method does not have the property
of finite termination.

Convergence of the Barzilai and Borwein method applied to Problem 1.1 has
been deeply investigated. When in their original paper, Barzilai and Borwein showed
that for two-dimensional strictly convex quadratic functions the BB method con-
verges R-superlinearly, the optimization community tried to prove a similar result
for the general n-dimensional case. Chronologically, this expectation was first dis-
appointed by Fletcher in 1990 [31], who conjectured that only R-linear convergence
should be expected. This hypotesis was confirmed by Raydan in 1993 [59], and Dai
and Liao in 2002 [19], the former proving global convergence for the strictly convex
quadratic case with any number of variables, the latter, the conjectured R-linear
convergence result. Raydan also showed that the BB method is much more efficient
than the SD method in solving large scale positive definite linear systems of equa-
tions.

Figure 1.3 shows the behaviour of the sequence {‖gk‖} for the BB and the SD
method applied to Problem 1.9. Here we used the following condition,

‖gk‖ ≤ 10−5‖g0‖, (1.20)

12 1. From the steepest descent to some faster gradient methods

20 40 60 80 100
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Iteration Number

f
(x

k
)

BB

SD

Figure 1.4. Problem 1.9, behavior of the sequence {f(xk)} for the BB, and SD methods.

as stopping criterion. We tested both the SD method and the BB method, the
former converges in 70 iterations, while the latter takes more than 500 iterations,
but only the first 100 iterations are displayed to emphasize the behaviour of the BB
method.

The performance of the BB method is also examined in terms of function values
in Figure 1.4, where the nonomotonicity of the sequence {f(xk)} is clearly visible.

The best efficiency of the BB method in solving large scale quadratic problems,
opened the way to other gradient methods with retards (see, e.g., [35, 60, 22, 15, 18]
and references therein) and for years, the credit for this improved efficiency has
been given to the delay in step, rather than to other properties of the method, as
the spectral properties of the Hessian matrix, which have been however object of
study and investigation [32], but not yet embedded in an algorithmic framework to
leverage their potential.

1.3 First attempts to escape from the zigzag path of
the iterates

In 2002, Raydan and Svaiter [60] studied the positive effects of using relaxed Cauchy
steplengths ending up with the Relaxed Steepest Descent (RSD) method. A general
scheme of this method is given in Algorithm 2.

1.3 First attempts to escape from the zigzag path of the iterates 13

Algorithm 2 Relaxed Steepest Descent (RSD)
choose x0 ∈ Rn
compute g0 = Ax0 − b
set k = 0
while not stop_condition do
choose αk > 0 randomly in [0, 2αSDk]
update xk+1 = xk − αkgk
compute gk+1 = gk − αkAgk
update k = k + 1

end while

The new iterate xk+1 is computed along the antigradient direction, as in the SD
method, but with a random choice of the steplength in the range of

[
0, 2αSDk

]
, i.e.,

xk+1 = xk − ρkαSDk gk, ρk ∈ [0, 2] . (1.21)

Note that, for ρk = 1, ∀k, Formula (1.21) reduces to the SD method iteration, while
for ρk = 2, ∀k, no function reduction is produced since f(xk) = f(xk − 2αkgk). In
the main time, f(xk+1) < f(xk), ∀ρk ∈ (0, 2). In the following, αk = 2αSDk will be
called the double Cauchy step.
The RSD method is monotone, being αk ≤ 2αSDk , and its convergence can be proved
under very mild assumptions on ρk, as stated in the next theorem.

Theorem 1.3.1 (Raydan and Svaiter 2002). If the sequence {ρk} has an accumula-
tion point ρ̄k ∈ (0, 2), then the sequence of iterates {xk} converges to x∗, the optimal
solution of Problem 1.1.

The Cauchy steplength is still the best possible choice when the search direction
is an eigenvector of the Hessian matrix, but in practice, avoiding this special and
rare case, numerical experiments show that the RSD method largely outperforms
the SD method, becoming a valid tool to accelerate the convergence of the classical
SD method.
To have a better view of the behaviour of the RSD method, we compared it with
the BB and the SD methods. Figure 1.5 shows the performances of the RSD, BB,
and SD methods tested on Problem 1.9. As we can see, the BB method is still the
fastest and most effective, followed by the RSD method with 129 iterations.
Other problems under consideration were randomly generated with dimensions

n = 103. The Hessian matrix A was obtained by running the MATLAB function
sprandsym with density 0.8, kind 1, and condition number κ(A) = 102, 103, 104, 105.
For each instance of A, x∗ was generated by rand with entries in [−10, 10], and
b = Ax∗ was used in the linear term. Furthermore, for each problem, five starting

14 1. From the steepest descent to some faster gradient methods

20 40 60 80 100 120 140
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Iteration Number

‖g
k
‖

RSD

BB

SD

Figure 1.5. Problem 1.9, behaviour of the sequence {‖gk‖} for the RSD, BB, and SD
methods.

points were generated by rand with entries in [−10, 10]. Finally, condition (2.32)
was used as stopping criterion.
The results of the comparison are in Table 1.1, we can see that the BB method is
the fastest in terms of iteration number, but the improvement made by the RSD
method, with respect to the SD method, is impressive and not negligible.

κ(A) SD BB RSD
102 316 65 107
103 2162 163 333
104 > 104 401 769
105 > 104 631 1222

Table 1.1. Iteration number for the random generated problems with n = 103 and condi-
tion number ranging from 102 to 105.

To investigate on gradient methods whose steplengths do not guarantee de-
scent in the objective function, a hybrid nonmonotone method, called the Cauchy-
Barzilai-Borwein (CBB) method, was presented [60]. The CBB method is, as sug-
gested by its name, a combination of steepest descent and Barzilai-Borwein iter-
ations. Observing that for quadratics, the BB steplength is equal to the Cauchy

1.3 First attempts to escape from the zigzag path of the iterates 15

10 20 30 40 50 60 70 80
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

Iteration Number

‖g
k
‖

CBB

BB

Figure 1.6. Problem 1.9, behaviour of the sequence {‖gk‖} for the CBB, and BB methods.

steplength taken at the previous iteration, the CBB method computes the Cauchy
steplength once and uses it twice, in this way the computational cost of two con-
secutive CBB iterations is almost comparable with one steepest descent iteration3.
From their numerical experiments, the authors observed the tendency of the CBB
method to force gradient directions to approximate eigenvectors of the Hessian ma-
trix A, as then observed in [32] for the BB method. Figures 1.6-1.7 show the
behaviour of the gradient norm and the function values for the CBB and the BB
methods applied to Problem 1.9, while, to verify the tendency to approximate some
of the eigenvectors of A, we seek for the number of times in which gk is almost
parallel to Agk, in the same way as in [60], i.e., by using the cosine of the angle
between gk and Agk,

cos (gk, Agk) = gTk Agk
‖gk‖‖Agk‖

> 1− ε, (1.22)

where the variable ε was set to be equal to 5×10−4. The results obtained by running
the CBB, RSD and BB methods are shown in Table 1.2.

A bigger class of nonmonotone gradient methods with retards was previously
introduced by Friedlander, Martinez, Molina and Raydan in 1999 [35] . Given a

3The CBB method performs one more vector sum and one more inner product than the SD
method.

16 1. From the steepest descent to some faster gradient methods

10 20 30 40 50 60 70 80
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

10
4

Iteration Number

f
(x

k
)

CBB

BB

Figure 1.7. Problem 1.9, behaviour of the sequence {f(xk)} for the CBB, and BB methods.

Tol CBB RSD BB
10−5 1 0 3
10−8 5 0 7
10−12 5 1 7

Table 1.2. Problem 1.9, number of times in which the gradient is almost an eigenvector
of the Hessian matrix for the CBB, RSD and BB methods tested with different values
of the tolerance in the stopping criterion.

positive integer m, the new iteration is defined by

xk+1 = xk − ανkgk, (1.23)

where ανk is the Cauchy step taken at a previous iteration νk ∈
{
k, k − 1, . . . , k̄

}
,

with k̄ = max {0, k −m}. This can be considered as a generalization of the SD and
the BB methods, including the classical Cauchy steplength and the BB steplengths
as special cases, moreover, the following result holds.

Theorem 1.3.2 (Friedlander et al. 1999). Let {sk} = {(xk−xk−1)} be the sequence
generated by the following iterative scheme:

xk+1 = xk − αkgk,

αk = sTνk
sνk

sTνk
Asνk

.

1.4 Alternate steplengths gradient methods 17

Assume that the sequence sk
‖sk‖ is convergent to a normalized vector s ∈ Rn, then

lim
k→∞

1
αk

= sTAs, (1.24)

s is an eigenvector of A with eigenvalue sTAs and the convergence of {xk} is Q-
superlinear.

It is worth noting that Formula (1.24) relates the inverse of the steplength to
an eigenvalue of the Hessian matrix.

To conclude this section, we can observe that a first attempt to escape from the
zigzag path of the iterates, aligning the search direction with an eigendirection of
the Hessian matrix, seems to speed up the convergence of the classical SD method.
Next section completes the chapter, introducing other gradient methods whose
surprising behaviour is due to the alternation of some fixed number of Cauchy
steplengths, and other steps computed through Formula (1.5).

1.4 Alternate steplengths gradient methods

A large contribute to the problem of finding a steplength selection rule which en-
ables fast convergence, preserving the monotonicity of the method, was given by
Dai and Yuan (see, e.g., [23] and references therein).
They began their research studying the properties of the Optimal Steplength (OPT1)
method [28]:

αOPT1 = 2
λ1 + λn

, (1.25)

which comes up from the minimization of the quantity ‖I − αA‖.
Although αOPT1 has the best convergence result, it is practical useless, since λ1

and λn are normally unknown to the user, unless they can be somehow estimated
beforehand, for this reason the performance of the OPT1 method are unknown.
This fact gave a strong motivation in the design a new gradient method whose
steplength could have a connection with αOPT1, thus the following steplength was
proposed [20, 21]:

αk = ‖gk‖
‖Agk‖

. (1.26)

Formula (1.26) tends to (1.25), for k → ∞, so, as expected, the proposed method
(in the following simply denoted by OPT2) makes it possible to approximate the
behaviour of the OPT1 method. Although Formula (1.26) produces better results
compared to those obtained using the SD method, it still has the drawback that the
gradient gk tends to zero along two directions alternatively, being enable to escape

18 1. From the steepest descent to some faster gradient methods

from the zigzag path of the iterates, as for the SD method.
In order to accelerate the convergence, an hybrid gradient method, called the Al-
ternate Step (AS) method, which alternates αSDk and αBBk steps, was suggested
[15],

αASk =
{
αSDk if k is odd,

αBBk if k is even.
(1.27)

Numerical experiments showed that the AS method is a promising alternative to
the BB method, being Q-superlinear convergent for two dimensional strictly convex
quadratics, and R-linearly convergent in any dimension. Its numerical superiority
to the SD method is addressed to its nonmonotonic behaviour, but this aspect is in
contrast with the fact that, if the dimension of the problem is very large, a monotone
algorithm should be preferred to a nonmonotone one, since the object is to minimize
the function, as pointed out in [22]. The advantage of retaining monotonicity has
been further highlighted by several authors (see, e.g., [33]), especially when dealing
with non-quadratic problems.
To probe the performance of a possible monotone gradient method faster than the
SD method, the Alternate Minimization (AM) method was proposed [22]. The main
idea of this method is to alternately impose the minimization of the the gradient
norm and of the function value along the line. This leads to,

αAMk =


gTk Agk
gT
k
A2gk

if k is odd,

αSDk if k is even.
(1.28)

Furthermore, being
gTAg

gTA2g
≤ gT g

gTAg
, ∀g ∈ Rn − {0},

the AM method is monotone.
Several works have been recently devoted to design faster gradient methods

[23, 67, 33, 26, 24], many of which are monotone, whose common basic idea is
to combine Cauchy steps with other steplengths. Yuan supports this approach
through a theoretical and computational analysis leading to the conclusion that a
good gradient method would use at least one exact line search (the Cauchy step) in
every few iterations [67]. Through all his work, particular interest must be given to
the following steplength formula4 [66],

αYk = 2√(
1

αSD
k−1
− 1

αSD
k

)2
+ 4‖gk‖2

‖sk−1‖2 + 1
αSD
k−1

+ 1
αSD
k

, (1.29)

4Remember sk−1 = xk − xk−1.

1.4 Alternate steplengths gradient methods 19

which has the important property that for two dimensional quadratic functions if
α1 = αSD1 , α2 = αY2 , and α3 = αSD3 then x4 gives the minimum in exact arithmetic
[23]. Two monotone gradient methods were therefore proposed [66], based on the
following two different steplength selection rules ((1.30) and (1.31)).

αY 1
k =

{
αSDk if k is odd,

αYk if k is even
(1.30)

αY 2
k =

{
αSDk if mod (k, 3) 6= 0,
αYk if mod (k, 3) = 0.

(1.31)

Numerical experiments in [66] shows that this two methods are comparable with
the BB method for large scale quadratic problems, and better than the BB method
for small scale quadratic problems. Surprisingly, even if the two methods look like
each other, (1.30) behaves much worse than (1.31). A possible explanation of this
better behaviour is given in [23], where an experimental analysis is carried out to
prove that in (1.31), the gradient components with respect to the eigenvectors of the
Hessian matrix, are decreasing together. This property was called the decreasing
together property. A similar behaviour had been observed in [32, 16] for the BB
method and other cyclical variant of the SD method.
In order to confirm this particular behaviour, we consider Problem 1.9 and we look
for the size s of the following set,{

i : 1 ≤ i ≤ n
∣∣∣∣∣ |g

i
k̄
|

‖gk̄‖
> nε

}
, (1.32)

where k̄ is the iteration in which the absolute tolerance ε on the stopping criterion
in reached. This analysis is also reported in [23], but with a slightly different
definition of the set which leads, however, to similar considerations. We know that
asymptotically in the SD, RSD and OPT2 methods, the gradient belongs to the
subspace spanned by its two dominant eigencomponents, in this way we expect s to
be equals to 2, since there will be two gradient components relatively bigger than the
others. Table 1.3 reports the values of s for the SD, RSD, OPT2, AS, AM, Y1 and
Y2 methods for different values of ε. As expected, the value of s for the SD, RSD
and OPT2 methods is exactly 2 for all the values of ε, while the value of s for the
other methods increases as ε becomes smaller. The BB and the Y2 methods show
a similar behaviour, and numerical experiments confirm that this two methods give
the best results in terms of iteration number. The RSD method, despite its poor
value of s behaves much better than the SD and the OPT2 methods, suggesting
that the decreasing together property is a first-level consideration to understand the

20 1. From the steepest descent to some faster gradient methods

ε SD RSD OPT2 AS Y1 Y2 BB
10−3 2 2 2 4 4 6 6
10−6 2 2 2 6 9 10 9
10−9 2 2 2 8 9 10 10
10−12 2 2 2 9 10 10 10

Table 1.3. Problem 1.9, values of s for different gradient methods

difference among gradient methods, but, as we will see in the next chapter, it is not
the only responsible for the improved convergence speed.

More efficient gradient methods were presented in [23]. In this case the following
version of Formula (1.29) was given:

αYk = 2√(
1

αSD
k−1
− 1

αSD
k

)2
+ 4‖gk‖2

(αSDk−1‖gk−1‖)2 + 1
αSD
k−1

+ 1
αSD
k

. (1.33)

Formula (1.33) is equivalent to the former if sk−1 = −αSDk gk−1, while if αk−1 6= αSDk−1
the two formulas might be different.
The idea was to consider a larger class of gradient methods in which the steplength
(1.29) is computed for a fixed number of times after a fixed number of exact line
search iterations, following the scheme:

αDYk =

 αSDk if mod(k, h1) < h,

αYk otherwise,
(1.34)

in which αY Dk is recomputed at each iteration. The case of the choice h = 2 and
h1 = 4 (i.e., m = 2), is suggested in [23] as the most efficient one. With this choice
the method becomes:

αDYk =
{
αSDk if mod (k, 4) = 0, 1
αYk otherwise.

(1.35)

The above method, which will be henceforth simply denoted by DY, computes
the first steplength (1.33) after 2 exact line search iterations. Furthermore, it is
a monotone method, and despite the similarity among all the previous methods,
it is significantly faster than the other analysed gradient methods, being a strong
opponent of the BB method, therefore it will be used, together with the BB method,
in the following development of this dissertation as benchmark.

21

Chapter 2

Spectral properties of gradient
methods

In Chapter 1 we saw that the choice of the steplength is a critical issue in the
definition of a gradient method, while the use of the gradient as search direction
leads to very effective algorithms. In particular, we saw how, by mean of the
analysis carried out by Akaike and Nocedal, the zigzag path made by the iterates
in the steepest descent method is the main responsible for its slow convergence,
forcing the gradient in the two dimensional subspace spanned by the two dominant
eigenvectors.
Many modified steplengths are possible, producing faster gradient methods whose
surprising behaviour has only been partially explained by an experimental analysis,
conjecturing that they randomly cross the spectrum of the Hessian matrix [32], or
they have a sort of decreasing together property [23]. As a consequence, with a lack
of strong theoretical justifications, the convergence is speeded up, but no guarantee
of monotonicity is usually given.

In this chapter we show how, moving from the properties of the SD method,
highlighted in [1, 55], we can derive a deeper theoretical analysis to support the
development of new gradient methods, whose computational results are superior of
those of the most competitive methods in literature1, while preserving monotonicity.

1see the methods reviewed in Chapter 1

22 2. Spectral properties of gradient methods

Figure 2.1. Behaviour of the sequence xk generated by a gradient method using a double
Cauchy step at each iteration. After few iterations an evident alignment of the search
direction with one of the axis is produced.

2.1 A modified form of relaxation

We already noticed that Formula 1.11, reported here for sake of clarity,

gk+1 = αk

(1
αk
gk −Agk

)
, (2.1)

suggests that, in order to get faster convergence, fostering the search direction to
align with an eigendirection of A, could speed up the convergence of the classical SD
method [34]. An intuitive approach aimed at improving the SD method is shown
in Figure 2.1, where the path that a gradient method would do adopting a double
Cauchy step at each iteration is represented in red. This simple illustration shows
how, after few double Cauchy steps2, a significant alignment of the search direction
with one of the two dominant eigendirections can be reached. In this way, a double
Cauchy step, although useless in reducing the objective function of the problem,
could reveal meaningful information about the spectrum of A, as confirmed by the
next proposition.

Proposition 2.1.1. Let us consider the sequences {xk} and {gk} generated by a
gradient method using the double Cauchy steplength

αk = 2αSDk , (2.2)

2αk = 2αSDk .

2.1 A modified form of relaxation 23

at each iteration, then
lim
k

gk∏k
j=1(1− αjλ1)

= µ1d1, (2.3)

lim
k
αk = 2

λ1
, (2.4)

lim
k
∇f

(
xk − αSDk gk

)
= 0. (2.5)

Proof. It is

gk = µ1

 k∏
j=1

(1− αjλ1)

 d1 +
n∑
i=2

µi

 k∏
j=1

(1− αjλi)

 di
and hence

gk∏k
j=1(1− αjλ1)

= µ1d1 +
n∑
i=2

µi

k∏
j=1

(1− αjλi)
(1− αjλ1)di. (2.6)

Furthermore,
λn
2 ≤

1
αj
≤ λ1

2 (2.7)

and then
1− αjλn ≥ −1, 1− αjλ1 ≤ −1. (2.8)

If we set θ = λ1 − λ2, then λ1 ≥ λi + θ, and it follows that

1− αjλi ≥ 1− αj (λ1 − θ)

and hence, by (2.8),
1− αjλi
1− αjλ1

≤ 1 + θαj
1− αjλ1

. (2.9)

By using (2.7) we get

θαj
1− αjλ1

= θ
1
αj
− λ1

≤ θ
λn
2 − λ1

and thus
1− αjλi
1− αjλ1

≤ 1− ρ, (2.10)

with
ρ = 2θ

2λ1 − λn
. (2.11)

Since
1− αjλi
1− αjλ1

= −1 + 2− αj(λ1 + λi)
1− αjλ1

(2.12)

24 2. Spectral properties of gradient methods

and, by (2.7),

2− αj(λ1 + λi)
1− αjλ1

≥
2− 2

λn
(λ1 + λi)

1− αjλ1
=

2λn − 2λ1 − 2λi
λn(1− αjλ1) = 2λ1 − 2λn + 2λi

αjλ1λn − λn
≥

2θ + 2λi
2λ1 − λn

≥ ρ,

we get
−1 + ρ ≤ 1− αjλi

1− αjλ1
≤ 1− ρ.

Therefore, by (2.6), we have (2.3).

Because of (2.3)

lim
k
αk = 2 µ2

1d
T
1 d1

µ2
1d
T
1 Ad1

,

and, since Ad1 = λ1d1, we have

lim
k
αk = 2 µ2

1d
T
1 d1

µ2
1λ1dT1 d1

= 2
λ1
.

Thus (2.4) holds.

Finally, in order to prove (2.5) we first note that the sequence {‖gk‖} is bounded
above, and so is {

∏k
j=1(1− αjλ1)} because of (2.3). Then

lim
k
∇f

(
xk −

αk
2 gk

)
= lim

k

(
gk−1 −

αk
2 Agk−1

)
=

lim
k

k−1∏
j=1

(1− αjλ1)
(

gk−1∏k−1
j=1(1− αjλ1)

− αk
2 A

gk−1∏k−1
j=1(1− αjλ1)

)
=

lim
k

k−1∏
j=1

(1− αjλ1)
(
µ1d1 −

1
λ1
µ1Ad1

)
= lim

k

k−1∏
j=1

(1− αjλ1) (µ1d1 − µ1d1) = 0,

hence (2.5) holds and the proof is complete.

Proposition 2.1.1 gives strength to the intuition that a double Cauchy step has a
significant impact in terms of alignment of the gradient with the eigenvector d1.
To verify the described advantage we roughly consider a modified version of the SD
method, named the SDM method, in which 5 consecutive double Cauchy steps are
performed every 10 Cauchy steps. We apply the SDCM method to a simple, illus-
trative problem, to show how, this rough modification of the SD method, produces
a not negligible effect in decreasing the overall number of iterations. For this reason,

2.1 A modified form of relaxation 25

0 20 40 60 80 100
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Iteration Number

‖g
‖

 SDM

2α
k

SD

 SD

Figure 2.2. Problem 2.13, convergence history for the SD and SDM methods, red dots
represent the values of the gradient norm when a double Cauchy step is adopted.

we consider a problem of n = 10 variables, where,

κ(A) = 102, A = diag(λn, . . . , λ1), b = (1, . . . , 1)T , x0 = (0, . . . , 0)T , (2.13)

being λn = 1, λn = 100, and λi randomly generated in [λn, λ1] for i = n− 1, . . . , 2.
Finally, we use ‖gk‖ ≤ 10−5‖g0‖ as stop condition.

The effect of the SDM method is shown in Figure 2.2. As we can see, on one
hand, the norm of the gradient remains almost constant during the five iterations in
which the double Cauchy step is adopted, on the other hand, however, a substantial
reduction, produced at the end of these special iterations, increases the decay of the
gradient norm, thus speeding up the convergence of the method, allowing us to save
some iterations.
Starting from these considerations, Proposition 2.1.1 also suggests how to modify
the RSD method [60], considering an over-relaxation rather than an random re-
laxation of the Cauchy step in [0, 2]. To this end, we consider a steplength of the
form

αk ∈ [0.8αSDk , 2αSDk]. (2.14)

This modification gives rise to a different version of the RSD method, called the
Relaxed Steepest Descent with Alignment (RSDA), summed up in Algorithm 3.

The RSDA method is tested on Problem 2.13, and compared with the SD and

26 2. Spectral properties of gradient methods

0 40 80 120 160 200
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

10
1

Iteration Number

‖g
‖

 SD

 RSD

 RSDA

Figure 2.3. Problem 2.13, convergence history for the SD and RSD, and RSDA methods.

Algorithm 3 Relaxed Steepest Descent with Alignment (RSDA)
choose x0 ∈ Rn
compute g0 = Ax0 − b
set k = 0
while not stop_condition do
choose αk > 0 randomly in [0.8αSDk , 2αSDk]
update xk+1 = xk − αkgk
compute gk+1 = gk − αkAgk
update k = k + 1

end while

the RSD methods. The results are shown in Figure 2.3, where we can clearly see
that the RSDA method outperform the RSD method.
Due to the randomness inherent in the two methods, a careful and deeper analysis
is needed in order to evaluate the effectiveness of the RSDA method, especially to
check the validity of our claim about the advantage in using the RSDA method
rather than the RSD method. Extensive numerical tests will be considered in in the
Numerical Experiments section to get a clear picture of the numerical behaviour of
this algorithmic approach.

2.2 A new cyclical framework

We now suggest another way of modifying the SD method to force the gradients
into a one dimensional subspace as the iterations progress. We first show that
the sequence of steplengths {αSDk } in the SD method gives asymptotically some

2.2 A new cyclical framework 27

meaningful information about the spectrum of the Hessian matrix.

Proposition 2.2.1. Let us consider the sequence {xk} generated by the SD method
applied to Problem (1.1), and suppose that Assumptions 1-2 hold. Then, the se-
quences {αSD2k } and {αSD2k+1} are converging and

lim
k

(
1

αSD2k
+ 1
αSD2k+1

)
= λ1 + λn . (2.15)

Proof. By Lemma 3.3 in [55], it is

lim
k
αSD2k = 1 + c2

λn(1 + c2γ) ,

lim
k
αSD2k+1 = 1 + c2

λn(γ + c2) ,

where c is the same constant as in Proposition 1.1.2 and γ = κ(A); then (3.12)
trivially follows.

Proposition 2.2.2. Under Assumptions 1-2, the sequence {xk} generated by a
gradient method using at each step a constant step length

α̂ = 1
λ1 + λn

, (2.16)

converges to x∗. Moreover,

lim
k

µkh
µkn

= µh
µn

lim
k

(
λn
λ1

+ λ1 − λh
λ1

)k
= 0 h = 1, 2, ..., n− 1, (2.17)

where µki (i = 1, 2, ..., n) is defined in (1.13).

Proof. Since αSDk ≥ 1/λ1 for any k, then αSDk ≥ α̂; therefore, Proposition 1.3.1
applies and limk xk = x∗. From (1.13) we have that

µkh = µh

(
λ1 + λn − λh
λn + λ1

)k
, µkn = µn

(
λ1

λn + λ1

)k
and (2.17) clearly holds.

Relation (2.17) indicates that, if the hypotheses of Proposition 2.2.2 hold, then the
sequences {µkh}, for h < n, go to zero faster than {µkn}. Thus, a gradient method
with steplength (2.16) tends to align the search direction with the eigendirection of
A corresponding to the minimum eigenvalue λn.

28 2. Spectral properties of gradient methods

We note that the constant steplength (2.16) is half of the theoretically optimal
constant steplength (1.25) in [28], shown here again for reasons of clarity,

αOPT1 = 2
λ1 + λn

.

In Chapter 1 we saw that the steplength

αOPT2
k = ‖gk‖

‖Agk‖
, (2.18)

originally proposed in [21], converges to αOPT1, allowing to approximate the extreme
eigenvalues of A. However, despite its nice theoretical features, we saw that a
gradient method using (2.18) as steplength at each iterations, only leads to a slight
reduction in the number of iterations with respect to the SD method. Propositions
1.1.2 and 2.2.1 suggest an approach different from that in [21], aimed to speed up
the convergence of the SD method by forcing the algorithm search directions in the
one-dimensional subspace spanned by the eigendirection dn. Of course, computing
the exact value of (2.16) is unrealistic, but Proposition 2.2.1 suggests that, for k
sufficiently large,

α̃k =
(

1
αSDk

+ 1
αSDk+1

)−1

(2.19)

can be used as an approximate value for (2.16).
Besides the steplength (2.19), the Yuan steplength,

αYk = 2√(
1

αSD
k−1
− 1

αSD
k

)2
+ 4‖gk‖2

(αSDk−1‖gk−1‖)2 + 1
αSD
k−1

+ 1
αSD
k

, (2.20)

has also a favorable alignment property, as we can see in the following analysis.
In order to find a relationship between the asymptotic behaviour of αYk and the
eigenvalues of the matrix A, we provide a different expression of αYk , which also
highlights some connection with α̃k.

Lemma 2.2.3. The Yuan steplength (2.20) can be written as

αYk = 2

α̃−1
k +

√
α̃−2
k − 4ρk

= 2α̃k
1 +

√
1− 4ρkα̃2

k

, (2.21)

where α̃k is defined in (2.19) and

ρk = 1
αSDk−1α

SD
k

− ‖gk‖2

‖gk−1‖2
1(

αSDk−1

)2 . (2.22)

2.2 A new cyclical framework 29

Proof. We first observe that

αYk = 2


√√√√√
(

1
αSDk−1

− 1
αSDk

)2

+ 4 ‖gk‖2(
αSDk−1‖gk−1‖

)2 + 1
αSDk−1

+ 1
αSDk


−1

=

2


√√√√√
(

1
αSDk−1

+ 1
αSDk

)2

− 4 1
αSDk−1α

SD
k

+ 4 ‖gk‖2(
αSDk−1‖gk−1‖

)2 + 1
αSDk−1

+ 1
αSDk


−1

.

Then, the thesis trivially follows from the definition of α̃k.

We are now ready to analyse the asymptotic behaviour of αYk .

Proposition 2.2.4. Let {xk} be the sequence generated by the SD method applied
to problem (1.1), starting from any point x0, and suppose that Assumptions 1-2
hold. Then,

lim
k
αYk = 1

λ1
, (2.23)

lim
k
ρk = λ1λn, (2.24)

where αYk and ρk are defined in (2.20) and (2.22), respectively.

Proof. By Propositions 1.1.3 -1.1.4 we have

lim
k

1
αSDk αSDk−1

= λ2
n(γ + c2)(1 + c2γ)

(1 + c2)2 ,

lim
k

‖gk‖2

(αSDk−1‖gk−1‖)2 = λ2
nc

2(γ − 1)2

(1 + c2)2 ,

where γ = κ(A), and therefore

lim
k
ρk = λ2

n

(1 + c2)2

[
(γ + c2)(1 + c2γ)− c2(γ − 1)2

]
= (2.25)

λ2
n

(1 + c2)2

(
γ + c4γ + 2c2γ

)
= λ1λn. (2.26)

By Lemma 2.2.3 and Proposition 1.1.4, we get

lim
k
αYk = 2

λ1 + λn +
√

(λ1 + λn)2 − 4λ1λn
= 1
λ1
.

30 2. Spectral properties of gradient methods

It trivially follows from Proposition 2.2.4 that, under Assumptions 1-2, the largest
and the smallest eigenvalues of A can be approximated through αYk , α̃k and ρk.
More precisely,

lim
k

1
αYk

= λ1, lim
k
ρkα

Y
k = lim

k

1
α̃k
− 1
αYk

= λn. (2.27)

In other words, Propositions 2.2.2 and 2.2.4 show that the SD method asymptot-
ically reveals some second order information, which can be conveniently exploited
to speed up the convergence of the classical SD method. In fact, as observed in the
Chapther 1, for any gradient method if at the k-th iteration αk = 1/λi for some i,
then the component of the gradient along the eigenvector di of A will be zero at all
subsequent iterations. In particular, if we take the steplength αk = 1/λ1, the com-
ponent of the gradient along the corresponding eigenvector of A will be eliminated.
Furthermore, a decrease in the objective function is guaranteed by this choice of αk,
since

1
λ1
≤ αSDk .

Again, computing the exact value of λ1 is unrealistic, but we have a way to approx-
imate it, as a matter of fact Formula (2.27) suggests how to get an estimation of it.

Relying on this theoretical analysis, we are now able to suggest a new algorith-
mic strategy which can be adopted to use the speeding effect provided by the two
steplengths α̃k and αYk .
Our approach uses a finite sequence of Cauchy steps followed by a finite sequence of
constant steps computed through Formulas (2.19), or (2.20). It is worth noting that
the proposed strategy is in line with the consideration that a good gradient method
would use at least one exact line search (the Cauchy step) in every few iterations
by Yuan, [67]. Since Proposition 1.1.2 shows that in the SD method

gk = µk1d1 + µkndn + ζk, (2.28)

with ζk going to zero faster than µk1d1 + µkndn, our approach is based on the idea of
using sequences of Cauchy steps to force the search in a two dimensional space and,
at the same time, supply a suitable approximation of one of the two steplengths
α̃k, and αYk , to be used in aligning the search direction with dn. The use of a
finite sequence of Cauchy steps has therefore a twofold goal: forcing the search
in a two-dimensional space and getting a suitable approximation of 1/(λ1 + λn)
through α̃k, or of 1/λ1 through αYk . Once this good approximation is obtained, the
steplength providing such approximation is used, with the aim of driving toward

2.2 A new cyclical framework 31

zero the component µk1 of the gradient along d1. Note that the steplength α̃k

approximates the quantity (λ1 + λn)−1, which gets closer and closer to 1/λ1 as the
condition number of A increases, therefore we expect that the two methods will
behave similarly as the condition number of the Hessian increases. Of course, µk1
cannot generally vanish, but it follows from (1.13) that if the approximation of 1/λ1

is accurate enough, then taking the same value of α̃k or αYk for multiple steps can
significantly reduce µk1.
We also note that, in the ideal case where the component along d1 is completely
removed, the quadratic problem reduces to a (n−1)-dimensional problem and a new
sequence of Cauchy steps followed by some steps with a constant value of α̃k, or αYk ,
can drive toward zero the component along the eigenvector d2. For these reasons, a
cyclic alternation of SD steplengths and constant steplengths can be performed with
the aim of eliminating the components of the gradient, according to the decreasing
order of the eigenvalues of A, producing the desired alignment with dn. In other
words, our strategy is aimed at reducing the search in subspaces of smaller and
smaller dimensions, and forcing the gradient method to deal with problems with
better and better condition numbers. The use of SD steplengths should also help
in reducing the components of the gradient that are not addressed by the current
constant steplength.
The above strategy for the choice of the steplength can be formalized giving birth
to two new gradient methods, the Steepest Descent with Alignment (SDA) method,
and the Steepest Descent with Constant steplengths (SDC) method, as follows:

αSDAk =

 αSDk if mod(k, h1) < h,

α̃s otherwise, with s = max{i ≤ k : mod(i, h1) = h};
(2.29)

and

αSDCk =

 αSDk if mod(k, h1) < h,

αYs otherwise, with s = max{i ≤ k : mod(i, h1) = h},
(2.30)

where h1 > h ≥ 2. In both of the methods, SD steplengths are alternated with
constant ones, computed through formulas (2.19), and (2.20), respectively. In other
words, we make h consecutive exact line searches and then, using the last two SD
steplengths, we compute the steplength (2.19) or the Yuan steplength, to be applied
in m = h1−h consecutive gradient iterations. It is clear that the two parameters h
and m play complementary roles. Large values of h, which provide more accurate
approximations of 1/(λ1 +λn) and 1/λ1, are likely to work well with small values of
m. Conversely, rough approximations of 1/(λ1 + λn) and 1/λ1, due to small values

32 2. Spectral properties of gradient methods

of h, should be balanced by large values of m.

It is worth observing that the steplength (2.30) generally differs from the one
proposed in [23], since in the latter case the Yuan steplength (2.20) is recomputed
at each iteration. In particular, when h ≥ 2, only the first of the m consecutive
Yuan steplengths is computed after two exact line searches, and hence these m
steplengths cannot be regarded as terms of a sequence for which Proposition 2.2.4
holds. This is the case of the choice h = 2 and h1 = 4 (i.e., m = 2), of the DY
method (1.35), suggested in [23] as the most efficient one.

The main drawback of a gradient method with steplengths (2.29-2.30), hence-
forth called SDA and SDC, is the non-monotonicity, which is more likely to show
up when small values of h and/or large values of m are adopted. Therefore, some
strategy aimed to ensure convergence has to be applied, e.g., we may impose that
the steplength does not exceed 2αSDk . The resulting methods, called SDA and SDC
with Monotonicity (SDAM - SDCM), use a steplength obtained from (2.29-2.30) by
substituting α̃s and αYs with

min
{
α̃s, 2αSDk

}
, or min

{
αYs , 2αSDk

}
.

Note that the SDAM and SDCM methods can be seen as a special case of the re-
laxed steepest descent method in [60].

To illustrate the behaviour of the SDA and SDC methods, and of their monotone
versions, SDAM and SDCM, we use a test problem with 1000 variables and A

diagonal, defined as follows:

Aii = 1
i
√
i
, bi = 0. (2.31)

The starting point x0 is such that

Ax0 = e, e = (1, 1, . . . , 1)T ,

and the following stopping condition is used:

‖gk‖ < tol ‖g0‖, (2.32)

where tol = 10−3, 10−6, 10−9, 10−12.
The experiments are performed by using MATLAB. We notice that the SD method
takes 5954 iterations to satisfy condition (2.32) with tol = 10−3.

2.2 A new cyclical framework 33

SDA (h,m) DY
tol (2,2) (2,4) (2,6) (8,2) (8,4) (8,6) (16,2) (16,4) (16,6)

10−3 823 (8) 609 (39) 665 (82) 1852 825 (7) 841 (18) 951 881 831 824
10−6 1907 (22) 1293 (80) 1227 (142) 3399 1658 (13) 1373 (32) 1675 1543 1409 (3) 1999
10−9 2867 (27) 1970 (124) 1619 (188) 5896 2185 (15) 2073 (54) 2195 2097 2050 (3) 2541
10−12 3945 (33) 2728 (185) 2249 (226) 7922 2788 (22) 2457 (59) 3029 2803 2443 (3) 3565

Table 2.1. Problem 2.31, number of iterations of the SDC1 and DY methods. Number of
nonmonotone SDA steps reported in brackets.

SDAM (h,m)
tol (2,2) (2,4) (2,6) (8,2) (8,4) (8,6) (16,2) (16,4) (16,6)

10−3 1035 1165 633 1852 769 872 951 881 831
10−6 2403 1862 1207 3399 1265 1333 1675 1543 1549
10−9 3431 2589 2084 5896 1833 1750 2195 2097 2476
10−12 4886 3257 2882 7922 2440 2321 3029 2803 2773

Table 2.2. Problem 2.31, number of iterations of the SDAM method.

SDC (h,m) DY
tol (2,2) (2,4) (2,6) (8,2) (8,4) (8,6) (16,2) (16,4) (16,6)

10−3 764 (11) 544 (53) 500 (102) 880 629 (6) 584 (2) 1155 823 (2) 809 (5) 824
10−6 1518 (23) 1131 (98) 899 (162) 1472 1090 (12) 1248 (20) 1782 1353 (2) 1036 (9) 1999
10−9 1854 (32) 1600 (152) 1346 (220) 2527 1514 (16) 1767 (36) 2394 1762 (3) 1541 (13) 2541
10−12 2440 (39) 1997 (180) 1644 (264) 2870 2092 (21) 2049 (40) 2880 2109 (3) 2100 (20) 3565

Table 2.3. Problem 2.31, number of iterations of the SDC and DY methods. Number of
nonmonotone SDC steps reported in brackets.

SDCM (h,m)
tol (2,2) (2,4) (2,6) (8,2) (8,4) (8,6) (16,2) (16,4) (16,6)

10−3 1040 592 580 880 634 506 1155 852 685
10−6 1276 1080 1054 1472 1150 1026 1782 1250 1250
10−9 1952 1754 1468 2527 1690 1452 2394 1782 1632
10−12 2402 2180 1962 2870 2146 1970 2880 2230 2224

Table 2.4. Problem 2.31, number of iterations of the SDCM method.

In Figure 2.4 we plot, on a log scale, the values of the sequences
{∣∣∣α̃k − 1

(λ1+λn)

∣∣∣},{∣∣∣αYk − 1
λ1

∣∣∣}, and {‖gk‖}, for k = 1, . . . , 100, against the number of iterations, com-
puted by using the Cauchy steplengths resulting from the application of the SD

34 2. Spectral properties of gradient methods

10 20 30 40 50 60 70 80 90 100
10

−8

10
−6

10
−4

10
−2

10
0

10
2

Iteration Number

|α̃k − 1/(λ1 + λn)|
|αY

k − 1/λ1|
||gk||

Figure 2.4. Problem 2.31, behaviour of the sequences
{∣∣∣α̃k − 1

λ1+λn

∣∣∣}, {∣∣∣αYk − 1
λ1

∣∣∣}, and
{‖gk‖} for for the first 100 iterations of the SD method.

method, where the stop condition ‖gk‖ < 10−5‖g0‖ has been considered. Although
the SD performs very poorly, a quite accurate approximation of 1/(λ1 + λn) and
1/λ1 is achieved after few iterations. In Tables 2.1-2.4 we report the results ob-
tained by running the SDA and SDC methods, and their monotone versions SDAM
and SDCM with 9 possible choices for the pair (h,m), obtained by varying h and
m in {2, 8, 16} and {2, 4, 6}, respectively. These tests are aimed at understanding
whether and how h and m affect the methods, in terms of number of iterations and
spectral properties. For each run we show the overall number of iterations and, for
SDA and SDC, the number of nonmonotone steps, i.e., the steps where the objec-
tive function increases. For comparison purposes, in Table 2.1 and Table 2.3 we
also report the number of iterations required by the Dai-Yuan (DY) method using
the scheme reported in (1.35). We see that the SDA and the SDC methods never
fails, despite no strategy is adopted to ensure global convergence. Although the
role of h and m is not negligible in the numerical behaviour of the methods, both of
them appear very competitive with the DY method, regardless of the choice of the
parameters. For the smallest value of h, the performance strongly improves as m
increases, while this tendency is less evident for larger values of h. Making several
consecutive exact linesearches (for instance, h = 16) fosters monotonicity, but the
overall number of iterations might tend to increase, due to the slow convergence
of the SD method. Conversely, the monotonicity of the method deteriorates as m
grows, especially when few SD steps are performed.

2.2 A new cyclical framework 35

0 2 4 6 8 10 12 14 16 18 20
10

−45

10
−40

10
−35

10
−30

10
−25

10
−20

10
−15

10
−10

10
−5

i

µ
i

 SDC, h=2, m=2

 SDC, h=2, m=6

SDA, h=2, m=2

SDA, h=2, m=6

Figure 2.5. Problem 2.31, values of the eigencomponents µki (i = 1, . . . , 20) of the gradient
at the solution computed by the SDA and SDC methods, for h = 2 and m = 2 and for
h = 2 and m = 6.

To gain a further insight into the behaviour of the SDC method, we also analyse
how the eigencomponents of the gradient are affected by m. In Figure 2.5, we plot
the values of the first 20 eigencomponents of the gradient at the solution computed
by the SDA and SDC methods, with tol = 10−9, for h = 2 andm = 2, 6 (the smallest
value of h is considered to better highlight the effects produced by different values
of m). The two methods behave similarly, but the better approximation of 1/λ1

obtained with the SDC method is clearly visible in terms of the eigencomponents
reduction. We can also notice that the order of magnitude of the eigencomponents
is smaller for m = 6, validating the role played by multiple constant steplengths in
driving toward zero the eigencomponents corresponding to the largest eigenvalues.
Finally, in Figures 2.6-2.7 we compare the convergence histories of the objec-

tive function in the SDA and SDC methods and their monotone versions, with
tol = 10−9, for h = 2 and m = 2 and for h = 2 and m = 6.
The first consideration which can be done is that the oscillating behaviour of the
SDA and SDC methods for m = 6 clearly appears, as well as their faster conver-
gence with respect to the SDAM and SDCM methods for both values of m. In
addition, it is confirmed that the SDC (and SDCM) method behaves better than
SDA (and SDAM) method, the advantage of saving around 500 iterations is in fact
due to the better approximation of 1/λi cyclically reached as the SDC (and SDCM)
method goes on, as already observed in the above considerations. The figures also

36 2. Spectral properties of gradient methods

0 500 1000 1500 2000 2500 3000
10

−15

10
−10

10
−5

10
0

10
5

10
10

10
15

10
20

Iteration Number − SDA

f(
x
)

 h=2, m=2

 h=2, m=6

0 500 1000 1500 2000 2500 3000 3500
10

−15

10
−10

10
−5

10
0

10
5

10
10

Iteration Number − SDAM

f(
x
)

 h=2, m=2

 h=2, m=6

Figure 2.6. Problem 2.31, convergence history of {f(xk)} in the SDA and SDAM methods
(top and bottom, respectively), for h = 2 and m = 2 and for h = 2 and m = 6.

confirms that imposing monotonicity does not yield a severe deterioration of conver-
gence. This is an important point which will be further exploited in the Numerical
experiments section.

2.3 A dynamic adaptive technique 37

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−20

10
−10

10
0

10
10

10
20

10
30

Iteration Number − SDC

f(
x
)

 h=2, m=2

 h=2, m=6

0 200 400 600 800 1000 1200 1400 1600 1800 2000
10

−15

10
−10

10
−5

10
0

10
5

10
10

 Iteration Number − SDCM

 f
(x

)

 h=2, m=2

 h=2, m=6

Figure 2.7. Problem 2.31, convergence history of {f(xk)} in the SDC and SDCM methods
(top and bottom, respectively), for h = 2 and m = 2 and for h = 2 and m = 6.

2.3 A dynamic adaptive technique

In [26], De Asmundis et al. proposed a novel adaptive strategy for the SDA method,
henceforth called SDA_ADP. As we saw in Section 2.2, Proposition 2.2.1 suggests
that, for k sufficiently large,

α̃k =
(

1
αSDk

+ 1
αSDk+1

)−1

(2.33)

38 2. Spectral properties of gradient methods

can be used as an approximate value for

α̂ = 1
λ1 + λn

. (2.34)

Moreover, we know that we can get a suitable approximation of (2.34) by mean of
sequences of Cauchy steps αSDk . The idea of the dynamic adaptive step selection
technique is to avoid fixing the number of SD iterations (h in the SDA scheme 2.29),
but to dynamically determine it using a so-called switch condition. More precisely,
the switch condition monitors when the sequence {α̃k} settles down, checking if the
absolute value of the differences between two consecutive computed α̃k is less than
an a priori fixed tolerance ε. SDA_ADP thus performs m consecutive iterations
using the last computed α̃k as steplength, if it produces a decrease in the objec-
tive function (otherwise, SDA_ADP adopts a double Cauchy step). In this way
the switch condition decides if the method can switch from SD iterates to constant
iterates.
The main difference between the SDA and the SDA_ADP methods is the mono-
tone behavior. The SDA_ADP method is, in fact, forced to be monotone, taking
a double Cauchy step in absence of a decrease in the objective function. When a
double Cauchy step is adopted, the method restarts with a sequence of SD iterates
until the switch condition is again satisfied. Despite their differences, both of the
methods share the idea of using a finite sequence of Cauchy steps followed by a
finite sequence of constant steps computed through Formula (2.33). Again a se-
quence of constant special steps can emphasise the alignment effect, thus speeding
up the convergence.

To play a fair game, we also consider the adaptive version of the SDC method,
named henceforth the SDC_ADP method. Following the same scheme of the
SDA_ADP method, we use the switch condition to dynamically skip from SD it-
erates to a fixed number of constant iterates computed through the Yuan formula
(2.20). We restart the method each time a double Cauchy step is adopted as a
consequence of a nonmonotone behaviour.

In Tables 2.5-2.6 we report the results obtained by running the SDA_ADP and
SDC_ADP methods on Problem 2.31, with 10 possible choices for the parameter
m, from 1 to 10. For each run we show the overall number of iterations, while
the number of times a double Cauchy step is adopted is reported in brackets. For
comparison purposes, we also report the number of iterations required by the DY
method using the scheme reported in (1.35). Here again we want to understand
how the choice of m can affect the performances of the method, in terms of number

2.4 Numerical Experiments 39

SDA_ADP (m) DY
tol (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

10−3 1466 2002 1332 1067 (2) 754 (1) 813 (4) 826 (5) 892 (7) 586 (5) 633 (4) 824
10−6 2689 3685 2638 (1) 1947 (5) 1615 (2) 1603 (9) 1492 (7) 1265 (8) 1122 (8) 1137 (7) 1999
10−9 3359 6156 3825 (1) 2454 (6) 2030 (3) 2374 (14) 1871 (10) 1902 (14) 1684 (11) 1982 (16) 2541
10−12 4298 9027 4555 (1) 3119 (6) 2730 (5) 2857 (17) 2452 (14) 2358 (18) 2003 (13) 2560 (18) 3565

Table 2.5. Problem 2.31, number of iterations of the SDA_ADP method. Number of
double Cauchy steps reported in brackets.

SDC_ADP (m) DY
tol (1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

10−3 1293 1199 661 757 657 (1) 516 (1) 600 (1) 490 (1) 588 (2) 541 (1) 824
10−6 3564 1957 1217 (1) 1330 (1) 1255 (4) 930 (2) 1102 (4) 954 (2) 1016 (5) 909 (3) 1999
10−9 5082 2972 1660 (2) 2169 (2) 1572 (4) 1380 (4) 1740 (6) 1439 (4) 1389 (7) 1227 (4) 2541
10−12 6328 4278 2147 (2) 2566 (2) 2071 (6) 1866 (6) 2187 (7) 1899 (9) 1774 (9) 1586 (6) 3565

Table 2.6. Problem 2.31, number of iterations of the SDC_ADP method. Number of
double Cauchy steps reported in brackets.

of iterations and spectral properties. The two methods appear to behave quite
differently, being the SDC_ADP faster and smoother as the parameter m increases.
Furthermore, the number of times in which a double Cauchy step is adopted is
appreciably lower in the SDC_ADP method. The role of m is not negligible in
the numerical behaviour of both of the methods, but in the SDA_ADP method it
appears to be a much more critical issue. While the SDC_ADP method becomes
more competitive with DY as the value of m increases, the SDA_ADAP gives the
worst performances for m = 2, then its performance gets better, but still we have
some oscillation, e.g. going from m = 9 to m = 10. However, for both of the
methods, making several constant steps, allowing bigger values of m, increases the
number of iterations in which a double Cauchy step is adopted, decreasing the
overall number of iterations. In [26] the authors use m = 5, this value is a good
trade-off between speed of convergence, in terms of iteration number, and number
of iterations in which the double Cauchy step is adopted.
Other tests on SDA_ADP and SDC_ADP will be carried on in the Numerical
experiments section.

2.4 Numerical Experiments

In this section we compare the performances of the methods seen in the Sections 2.1,
2.2, and 2.3. More precisely, we first analyse the numerical behaviour of the RSDA

40 2. Spectral properties of gradient methods

method, comparing it to its natural opponent, the RSD method [60], and to the
BB method [4], to have an additional valid comparison. At this point, we move our
attention through the SDA and SDC methods, and their monotone and adaptive
versions, comparing them all with their most competitive opponent, the DY method
[23], as already partially done during their theoretical descriptions in the previous
sections of this chapter.

We first considered two sets of test problems of type (1.1), with A diagonal,
b = 0 and dimension n = 104. For each set we defined

A11 = ξ, Ann = 1,

with ξ = 104, 105, 106, and built the remaining diagonal entries of A so that κ(A) =
ξ. In the first set of problems, referred to as RAND, the diagonal matrix entries
Ajj , with j = 2, . . . , n − 1, were randomly generated in [A11, Ann], while in the
second set, referred to as NONRAND, they were set as follows:

Ajj = 10
ncond
n−1 (n−j),

with ncond = log10 ξ = log10 κ(A). For each problem, 10 starting points were ran-
domly generated with entries in [−5, 5].
We note that the RAND problems, as well as the starting points, are those used
in [16] to compare different gradient methods (actually, larger condition numbers
are considered here). However, we also decided to use the NONRAND problems in
order to test our methods on a class of quadratic problems on which the SD method
exhibits very slow convergence (by running the SD method on an instance of the
RAND and NONRAND problems with condition number κ(A) = 106, we got, for
tol = 10−6, 3321 iterations in the first case, and more than 100,000 iterations in
the second case). The stopping criterion (2.32) was used by all the methods, with
tol = 10−6, 10−9, 10−12; a maximum number of 25,000 iterations was also set, but
it was never reached in our experiments.
All the methods were implemented in MATLAB (v. 7.12.0.635 - R2011a). The ran-
dom diagonal entries of the matrix A in the first set of problems, as well as the
starting points, were generated by using the MATLAB rand function.

In Table 2.7 we report the number of iterations on each RAND and NONRAND
problem, averaged over the 10 runs with different starting points3, obtained by
running the RSDA, RSD and BB methods. The last row is obtained by adding

3Because of the randomness in the methods, each problem was run 10 times.

2.4 Numerical Experiments 41

up the iterations performed on all the problems. Although the superiority of the
RSDA method over the RSD method is clearly visible, the performance of the two
algorithms deteriorates as the tolerance on the stop condition increases, while the
condition number doesn’t seems to be crucial. The BB method gives the overall
best results, but we don’t feel confident in saying that the RSDA method fails, in
fact it is impressive how a small theoretical modification can be translated in such
a practical gain.

(a) RAND problems

Problem Methods
κ(A) tol BB RSD RSDA
104 1e-06 259 451 313
104 1e-09 882 1707 1091
104 1e-12 1323 2723 1803
105 1e-06 244 486 335
105 1e-09 2238 3928 2691
105 1e-12 4256 7634 5014
106 1e-06 222 413 304
106 1e-09 4574 7156 5364
106 1e-12 10768 19566 12848
Total iters 24766 44064 29763

(b) NONRAND problems

Problem Methods
κ(A) tol BB RSD RSDA
104 1e-06 622 1136 765
104 1e-09 1221 2172 1481
104 1e-12 1664 3407 2179
105 1e-06 1509 2694 1789
105 1e-09 3519 6274 4213
105 1e-12 5684 9915 6373
106 1e-06 2712 4426 3045
106 1e-09 10228 17493 11079
106 1e-12 17378 28105 18789
Total iters 44537 75622 49713

Table 2.7. RAND and NONRAND problems, number of iterations of the BB, RSD and
RSDA methods.

In Tables 2.8, 2.9, 2.10, and 2.11 we report the number of iterations performed
by the SDA, SDC and DY methods on each RAND and NONRAND problem, av-
eraged over the 10 runs with different starting points. We decided not to run other
gradient methods, since their performances are usually not superior than the one of
the DY method [23, 26, 24]. Here again, the last row in each table is obtained by
adding up the iterations performed on all the problems. The SDA, SDC, SDAM,
and SDCM methods were run with different values of h and m, i.e., all the combi-
nations of h = 10, 20, 30, 40, 50 and m = 2, 4, 8. Here we neglected smaller values
of h to avoid too strong non-monotonicity, but this issue will be discussed in the
following pages.

As for the problem considered in Section 2.2, the SDA and SDC method never
fail; actually, they exhibit a quite surprising monotonic behaviour for all the se-
lected combinations of h and m (i.e., the SDA and SDC methods coincide with
their monotone versions, SDAM and SDCM, respectively), except (10, 8). In this
latter case, the number of SDAM and SDCM iterations, reported in brackets, is

42 2. Spectral properties of gradient methods

comparable with the number of SDA or SDC iterations. As expected, the RAND
problems are easier to solve than the NONRAND ones. However, the SDA and
SDC methods do not perform as bad as the SD method on the NONRAND prob-
lems, and actually the number of total iterations increases by at most a factor of
2.2 when moving from the RAND to the NONRAND problems. For the SDA and
SDC methods, the overall worst performance occurs for h = 10, which is likely to
produce a steplength α̃k, or αYk , providing an approximation of 1/(λ1 +λn), or 1/λ1,
not enough accurate. In this case the choice of m appears crucial, as we can see
by comparing the results for m = 2, 4 with those for m = 8. The largest value of
m is able to make up for the effects of using a small value of h, though producing
non-monotonicity. For the other values of h, m = 8 is often less favorable than the
other values of m, especially if high accuracy in the solution is required. This is in
line with the previous observation that a large value of m is unnecessary, or even
counterproductive, when a sufficiently large value of h is selected. For the SDC
method, our conjecture is that once a Yuan steplength has been able to eliminate
a gradient eigencomponent, a further use of such steplength (which is likely to be
smaller than the values of 1/λi corresponding to the remaining eigencomponents)
can only slow down the method. For h ≥ 20, setting m = 2, 4 leads to comparable
results, with differences of less than 10% in the total number of iterations; using
m = 8 generally does not pay, especially for the NONRAND problems. The largest
value of h generally becomes more effective on the most ill-conditioned problems
when high accuracy is required in the solution. On the other hand, when the condi-
tion number is not too large and the accuracy requirement is not too high, smaller
values of h seem to be preferable. We believe that, when the problems are easy
(i.e., they just require a few hundred iterations), a large value of h is unnecessary
to get a suitable steplength, and actually it tends to increase the overall number of
iterations, doing too many SD iterates.
In order to support this argument, we define a sweep as the sequence of h SD steps
followed by m gradient steps with constant steplengths, and analyse the number
of sweeps required by the SDA and SDC methods with different values of h. For
instance, on the RAND problem with κ(A) = 106 and tol = 10−6, SDA performs,
on average, 4.7 sweeps for h = 50 and m = 4, and 7.1 sweeps for h = 30 and m = 4,
while SDC performs, on average, 5.8 sweeps for h = 50 and m = 4, and 7.3 sweeps
for h = 30 and m = 4. However, the number of SDA and SDC iterations is larger in
the first case (255 and 315 vs 243 and 249). In other words, increasing h increases
the number of iterations despite the reduction of the number of sweeps.

Concerning the comparison between the DY and the SDA and SDC methods,
we note that SDA and SDC performs worse than DY when the lowest accuracy is

2.4 Numerical Experiments 43

required. In the remaining cases, the SDA and SDC methods tend to outperform
the DY method for h ≥ 20, with a saving in the number of iterations which increases
significantly with the condition number and the accuracy requirement. This is a
remarkable result, since the literature shows that, among the gradient methods,
the DY method exhibits the best overall numerical performance [16, 26]. It is a
fact, though, that in our experiments reported in Table 2.7, both in the RAND
and NONRAND problems with κ(A) = 106 and tol = 10−12, even the BB and the
RSDA methods perform better that the DY method, saving some iterations, while
in all the other cases, the DY method is superior, as it is supposed to be.

Since the effectiveness of the BB methods has been related to their nonmono-
tone behaviour [32], we wondered if non-monotonicity also plays an important role
in determining the nice behaviour of the SDA and SDC methods. Considering,
therefore, values of m bigger than h, next tables show the numerical results tak-
ing into consideration the couples (h,m) in which m = 6, 18, 30. Here we allowed
smaller values of h (i.e. h = 2, 4) to underline how the strong non-monotonicity can
influence the performance of the methods. For comparison purposes, and to make
the tables easy to be read, the DY method was again considered.
In Tables 2.12 and 2.13 we report the number of iterations performed by the SDA,
SDC and DY methods on each RAND and NONRAND problem imposing h = 2, 4
and m = 6. The first thing to note is precisely the nonmonotone behaviour of
the SDA and SDC methods, and the fact that this nonmonotonicity works, even
comparing these results with the ones in the previous tables, especially when the
accuracy requirement is not too high. The corresponding results for the SDAM and
SDCM methods are not competitive, with few exceptions, e.g., for h = 4 and m = 6
imposing monotonicity brings a gain in terms of number of iterations when the
accuracy requirement is 10−12 for both the SDA and SDC methods. In Table 2.13
we can see that, even though the improvement brought by the nonmonotonicity is
less visible, still the performances deteriorate by running the SDAM and SDCM
methods.

Going on with our experimental analysis, we now try to increase the value of m,
consideringm = 18 andm = 30. The first set of tables, 2.14, 2.15 for the RANDOM
problems, and 2.16, 2.17 for the NONRAND problems, are relative to m = 18.
At a first sight, it can be noted how the SDA-SDAM and SDC-SDCM methods
behave different if applied to the RAND or NONRAND problems. This is also the
trend in Tables 2.18, 2.19 and Tables 2.20, 2.21 where we tested the methods using
m = 30. Especially for the RAND problems, we can see how the combination of

44 2. Spectral properties of gradient methods
Problem

SD
A

(h
,m

)
D
Y

κ(A
)

tol
(10,2)

(10,4)
(10,8)

(20,2)
(20,4)

(20,8)
(30,2)

(30,4)
(30,8)

(40,2)
(40,4)

(40,8)
(50,2)

(50,4)
(50,8)

10
4

1e-06
217

239
219

238
240

228
259

248
247

266
269

257
300

269
276

222
10

4
1e-09

757
857

709
(720)

729
722

812
719

737
731

757
753

757
773

772
759

683
10

4
1e-12

1244
1387

1114
(1189)

1149
1193

1196
1190

1123
1135

1126
1095

1172
1150

1152
1118

1140
10

5
1e-06

232
256

235
248

231
234

256
244

251
265

279
247

298
282

276
228

10
5

1e-09
2285

2552
1860

(1967)
1596

1579
1682

1711
1486

1534
1654

1539
1718

1613
1578

1672
1839

10
5

1e-12
4833

4810
3459

(3421)
3019

3012
3442

3200
2672

2920
2687

2752
2975

2774
2509

2928
3469

10
6

1e-06
217

231
212

(216)
223

217
221

235
243

239
267

244
240

274
255

258
204

10
6

1e-09
6033

6865
4400

(3469)
4015

2975
4222

3153
3101

3640
2443

2612
3383

2947
2399

2862
4283

10
6

1e-12
15212

19735
9884

(8717)
8665

7518
10275

7260
6548

8751
5164

5414
7605

5852
5370

6513
13231

Totaliters
31030

36932
22092

(20153)
19882

17687
22312

17983
16402

19448
14629

14957
18354

15981
14586

16662
25299

T
able

2.8.
R
A
N
D

problem
s:

m
ean

num
ber

ofiterations
ofthe

SD
A

and
D
Y

m
ethods.

SD
A
M

iterations
in

brackets
ifdifferent

from
the

SD
A

one.

Problem
SD

C
(h
,m

)
D
Y

κ(A
)

tol
(10,2)

(10,4)
(10,8)

(20,2)
(20,4)

(20,8)
(30,2)

(30,4)
(30,8)

(40,2)
(40,4)

(40,8)
(50,2)

(50,4)
(50,8)

10
4

10
−

6
242

229
235

238
234

232
260

272
253

270
309

268
280

341
291

222
10

4
10

−
9

840
882

678
(698)

772
658

707
740

690
719

779
734

726
894

779
855

683
10

4
10

−
12

1324
1407

1186
(1206)

1181
1105

1092
1147

1069
1135

1197
1141

1164
1224

1122
1256

1140
10

5
10

−
6

255
255

225
246

243
229

297
262

253
267

284
253

300
335

290
228

10
5

10
−

9
2209

2742
1872

(1767)
1742

1666
1619

1555
1448

1775
1576

1408
1665

1507
1398

1606
1839

10
5

10
−

12
4421

5168
3279

(3279)
2861

2739
3050

2816
2563

3025
2319

2744
2846

2607
2633

2774
3469

10
6

10
−

6
227

221
204

224
230

221
245

249
227

239
281

255
244

315
277

204
10

6
10

−
9

4999
6845

3587
(3309)

2576
2415

5118
2477

2897
3583

2614
2914

3401
2461

2520
4079

4283
10

6
10

−
12

13274
18219

8099
(7735)

5869
7620

10866
5668

7168
8774

5690
6615

8671
5345

4944
7165

13231
Totaliters

27791
35968

19365
(18658)

15709
16910

23134
15205

16618
19744

14951
16430

19249
14862

14387
18593

25299
T
able

2.9.
R
A
N
D

problem
s:

m
ean

num
ber

ofiterations
ofthe

SD
C

and
D
Y

m
ethods.

SD
C
M

iterations
in

brackets
ifdifferent

from
the

SD
C

one.

2.4 Numerical Experiments 45

Pr
ob

le
m

SD
A

(h
,m

)
D
Y

κ
(A

)
to
l

(1
0,
2)

(1
0,
4)

(1
0,
8)

(2
0,
2)

(2
0,
4)

(2
0,
8)

(3
0,
2)

(3
0,
4)

(3
0,
8)

(4
0,
2)

(4
0,
4)

(4
0,
8)

(5
0,
2)

(5
0,
4)

(5
0,
8)

10
4

1e
-0
6

63
2

59
1

53
2
(5
38
)

53
7

51
6

54
2

54
1

52
6

56
6

59
1

59
2

59
6

60
1

58
6

60
3

52
5

10
4

1e
-0
9

11
58

11
38

10
38

(1
04
1)

10
06

98
5

10
11

10
00

97
9

10
22

10
22

10
15

10
14

10
60

10
47

10
23

97
5

10
4

1e
-1
2

16
53

16
49

14
17

(1
46
2)

14
54

13
69

14
36

14
54

13
69

14
21

14
90

14
23

14
40

15
45

14
60

14
37

14
53

10
5

1e
-0
6

14
73

15
27

12
81

(1
26
3)

12
13

11
77

13
18

12
73

11
60

12
09

12
36

12
34

12
79

12
91

12
11

12
27

12
16

10
5

1e
-0
9

39
88

37
52

29
92

(2
87
9)

27
46

28
70

31
22

28
22

26
83

27
16

27
98

26
90

28
43

27
22

27
95

28
17

30
52

10
5

1e
-1
2

60
43

60
87

44
95

(4
42
5)

42
25

40
39

49
24

40
95

40
24

41
83

42
05

39
78

42
99

42
27

40
43

41
32

46
86

10
6

1e
-0
6

27
43

30
17

22
03

(2
11
3)

19
16

20
17

22
81

19
81

20
25

20
73

20
03

20
33

20
01

19
86

20
85

20
25

22
97

10
6

1e
-0
9

12
51
6

16
20
6

84
57

(8
09
0)

76
61

79
03

86
43

76
70

69
86

80
47

75
71

72
56

75
12

71
89

72
86

71
21

10
07
5

10
6

1e
-1
2

22
61
9

28
62
6

14
69
2
(1
32
78
)

11
75
8

12
64
2

14
25

5
12
83
5

11
31
5

13
08
6

12
15
2

11
87
4

12
85
0

11
60
4

11
65
6

11
48
0

18
82
4

To
ta
li
te
rs

52
82
5

62
59
3

37
10
7
(3
50
89
)

32
51
6

33
51
8

37
53

2
33
67
1

31
06
7

34
32
3

33
06
8

32
09
5

33
83
4

32
22
5

32
16
9

31
86
5

43
10
3

T
ab

le
2.
10
.
N
O
N
R
A
N
D

pr
ob

le
m
s:

m
ea
n
nu

m
be

r
of

ite
ra
tio

ns
of

th
e
SD

A
an

d
D
Y

m
et
ho

ds
.
SD

A
M

ite
ra
tio

ns
in

br
ac
ke
ts

if
di
ffe

re
nt

fr
om

th
e
SD

A
on

e.

Pr
ob

le
m

SD
C

(h
,m

)
D
Y

κ
(A

)
to
l

(1
0,
2)

(1
0,
4)

(1
0,
8)

(2
0,
2)

(2
0,
4)

(2
0,
8)

(3
0,
2)

(3
0,
4)

(3
0,
8)

(4
0,
2)

(4
0,
4)

(4
0,
8)

(5
0,
2)

(5
0,
4)

(5
0,
8)

10
4

10
−

6
59
7

55
9

55
5
(5
53
)

57
9

55
5

51
5

58
6

55
8

54
8

62
5

55
7

55
1

65
7

58
4

58
0

52
5

10
4

10
−

9
11
17

11
76

10
30

(1
01
2)

99
5

10
39

97
4

10
66

99
9

10
30

10
86

10
08

10
01

11
22

10
51

10
63

97
5

10
4

10
−

12
16
52

17
07

14
87

(1
45
7)

14
09

14
13

14
68

14
43

14
10

14
41

15
61

14
51

14
64

15
45

14
48

14
95

14
53

10
5

10
−

6
13
77

14
21

11
54

(1
17
1)

12
41

12
45

11
34

12
27

11
78

12
51

12
34

12
56

12
47

12
90

12
19

11
66

12
16

10
5

10
−

9
36
86

37
95

29
65

(3
02
2)

28
27

28
66

30
77

27
91

26
72

27
56

28
58

28
05

27
89

28
40

27
59

27
05

30
52

10
5

10
−

12
53
95

61
36

46
60

(4
55
9)

43
26

43
03

49
35

41
28

41
16

41
31

42
26

41
93

43
16

41
86

41
17

41
49

46
86

10
6

10
−

6
28
80

24
70

20
84

(1
96
1)

21
30

20
47

19
85

20
49

19
17

20
31

21
73

19
14

19
58

20
38

20
19

20
24

22
97

10
6

10
−

9
12
22
4

13
75
4

79
72

(8
26
2)

71
48

77
37

81
46

73
48

72
62

79
34

73
88

74
06

78
36

74
20

71
40

69
89

10
07
5

10
6

10
−

12
21
54
4

24
03
8

13
11
0
(1
40
45
)

11
94
5

11
87
3

14
35
6

11
65
6

12
21
2

13
93
8

11
78
6

12
14
8

12
14
9

11
48
2

11
99
1

12
22
4

18
82
4

To
ta
li
te
rs

50
47
2

55
05
6

35
01
7
(3
60
42
)

32
60
0

33
07
8

36
59
0

32
29
4

32
32
4

35
06
0

32
93
7

32
73
8

33
31
1

32
58
0

32
32
8

32
39
5

43
10
3

T
ab

le
2.
11
.
N
O
N
R
A
N
D

pr
ob

le
m
s:

m
ea
n
nu

m
be

r
of

ite
ra
tio

ns
of

th
e
SD

C
an

d
D
Y

m
et
ho

ds
.
SD

C
M

ite
ra
tio

ns
in

br
ac
ke
ts

if
di
ffe

re
nt

fr
om

th
e
SD

C
on

e.

46 2. Spectral properties of gradient methods

Problem SDA (h,m) SDC (h,m) DY
κ(A) tol (2,6) (4,6) (2,6) (4,6)
104 1e-06 239 (223) 217 222 (223) 208 (212) 222
104 1e-09 766 (813) 653 (680) 647 (787) 682 (691) 683
104 1e-12 1176 (1293) 1116 (1068) 1033 (1272) 1113 (1110) 1140
105 1e-06 228 (231) 231 (221) 211 (217) 222 (227) 228
105 1e-09 1687 (2185) 1706 (1742) 1636 (2031) 1556 (1553) 1839
105 1e-12 2945 (3798) 3275 (3375) 2690 (3930) 2731 (2856) 3469
106 1e-06 234 (204) 205 (211) 210 (213) 212 (208) 204
106 1e-09 4187 (5074) 3726 (3388) 3205 (4657) 3313 (3597) 4283
106 1e-12 8489 (12611) 10205 (8594) 6677 (12151) 9195 (7915) 13231
Total iters 19951 (26432) 21334 (19496) 16531 (25481) 19232 (18369) 25299

Table 2.12. RAND problems: mean number of iterations of the SDA, SDC and DY
methods. SDAM and SDCM iterations in brackets if different from the SDA and SDC
one.

Problem SDA (h,m) SDC (h,m) DY
κ(A) tol (2,6) (4,6) (2,6) (4,6)
104 1e-06 513 (521) 483 (502) 493 (513) 495 (483) 525
104 1e-09 984 (1062) 925 (912) 932 (984) 945 (925) 975
104 1e-12 1391 (1510) 1372 (1367) 1331 (1391) 1325 (1372) 1453
105 1e-06 1290 (1275) 1202 (1167) 1115 (1290) 1149 (1202) 1216
105 1e-09 3233 (3601) 2758 (2824) 2730 (3233) 2458 (2758) 3052
105 1e-12 4817 (5474) 4365 (4288) 4349 (4817) 3951 (4365) 4686
106 1e-06 2296 (2399) 2040 (1930) 2025 (2296) 2001 (2040) 2297
106 1e-09 8897 (11059) 8478 (8365) 7396 (8897) 7912 (8478) 10075
106 1e-12 15771 (19013) 13419 (13247) 12448 (15771) 12748 (13419) 18824
Total iters 39192 (45914) 35042 (34602) 32819 (39192) 32984 (35042) 43103

Table 2.13. NONRAND problems: mean number of iterations of the SDA, SDC and DY
methods. SDAM and SDCM iterations in brackets if different from the SDA and SDC
one.

small values of h with big values of m seems to work well, even considering the
monotone versions of the methods, SDAM and SDCM. This confirms our idea that
larger values of m are able to make up for the effects of using a small value of h,
paying the price of having an inaccurate approximation of 1/(λ1 + λn) or 1/λ1,
thus producing nonmonotonicity. Looking for the reasons of the good behaviour
of the monotone versions, SDAM and SDCM, we monitored the number of times
in which the SDAM and SDCM methods adopt a double Cauchy step to avoid
nonmonotonicity. In this way, for example, for the RAND problems, assuming
κ(A) = 106, tolerance 10−12, considering h = 4 (and m = 18), we have an average
of 1601 double Cauchy steps for the SDAM method and of 1753 double Cauchy steps
for the SDCM method over a total average of 7503 and 8086 iterations, respectively.
This means that, in this case, the SDAM and SDCM methods spent almost 1/5 of

2.4 Numerical Experiments 47

the total iterations to avoid nonmonotonicity, and this correction leads to an increase
in the final number of iterations with respect to the corresponding SDA and SDC
methods. For h = 10 we don’t have a big difference among the values of SDA-SDAM
and SDC-SDCM, here, always considering κ(A) = 106 and tolerance 10−12, we have
an average of 460 double Cauchy steps for the SDAM method, and of 511 double
Cauchy steps for the SDCM method over a total average of 6199 and 6078 iterations,
respectively. In this way the incidence of the double Cauchy step seems to play a
fundamental role in the global performance of the methods. Our conjecture is that
the massive use of the double Cauchy step, with its alignment property described in
Proposition 2.1.1, can bring an improvement in the overall decrease of the gradient
eigencomponents. This effect is less visible for the NONRAND problems, where
the SDAM and SDCM methods are comparable with the SDA and SDC methods,
respectively.

Problem SDA (h,m) DY
κ(A) tol (2,18) (4,18) (8,18) (10,18)
104 1e-06 398 (250) 310 (240) 251 (243) 247 (249) 222
104 1e-09 1041 (702) 804 (729) 683 (645) 664 (671) 683
104 1e-12 1416 (1079) 1230 (1154) 1078 (1043) 1027 (1063) 1140
105 1e-06 398 (255) 318 (249) 261 (252) 257 (250) 228
105 1e-09 1574 (1426) 1427 (1591) 1405 (1336) 1440 (1502) 1839
105 1e-12 2343 (2570) 2556 (2712) 2566 (2433) 2498 (2677) 3469
106 1e-06 388 (232) 298 (222) 259 (238) 232 (230) 204
106 1e-09 2764 (2382) 2337 (2833) 2635 (2672) 2993 (2966) 4283
106 1e-12 4729 (8006) 5102 (7503) 5467 (6229) 6012 (6199) 13231
Total iters 15051 (17802) 14382 (17233) 14605 (15091) 15370 (15807) 25299

Table 2.14. RAND problems: mean number of iterations of the SDA and DY methods.
SDAM iterations in brackets if different from the SDA one.

Problem SDC (h,m) DY
κ(A) tol (2,18) (4,18) (8,18) (10,18)
104 1e-06 289 (251) 297 (242) 249 (241) 248 (237) 222
104 1e-09 781 (658) 690 (683) 700 (650) 710 (665) 683
104 1e-12 1302 (1037) 1107 (1038) 1061 (1024) 1074 (1035) 1140
105 1e-06 404 (252) 291 (262) 243 (248) 233 (234) 228
105 1e-09 1529 (1412) 1350 (1731) 1407 (1699) 1407 (1347) 1839
105 1e-12 2100 (2708) 2224 (2915) 2302 (2662) 2463 (2399) 3469
106 1e-06 312 (244) 339 (236) 227 (222) 235 (228) 204
106 1e-09 2357 (3565) 2220 (2903) 2676 (2490) 1981 (2978) 4283
106 1e-12 4107 (8293) 4781 (8086) 5234 (5536) 4865 (6078) 13231
Total iters 13181 (18420) 13299 (18096) 14099 (14772) 13216 (15201) 25299

Table 2.15. RAND problems: mean number of iterations of the SDC and DY methods.
SDCM iterations in brackets if different from the SDC one.

48 2. Spectral properties of gradient methods

Problem SDA (h,m) DY
κ(A) tol (2,18) (4,18) (8,18) (10,18)
104 1e-06 757 (524) 615 (518) 534 (505) 515 (495) 525
104 1e-09 1337 (930) 1054 (959) 961 (925) 970 (933) 975
104 1e-12 1861 (1357) 1564 (1378) 1364 (1360) 1346 (1363) 1453
105 1e-06 1530 (1097) 1307 (1124) 1169 (1162) 1141 (1158) 1216
105 1e-09 3391 (2663) 2920 (2656) 2672 (2724) 2560 (2584) 3052
105 1e-12 4865 (4155) 4229 (4001) 4018 (4005) 3991 (3936) 4686
106 1e-06 2505 (1895) 2104 (1957) 1876 (1983) 1919 (1830) 2297
106 1e-09 8152 (7070) 7466 (7359) 7348 (7356) 7467 (6939) 10075
106 1e-12 13532 (12355) 12053 (13008) 11833 (12201) 11985 (11675) 18824
Total iters 37930 (32046) 33312 (32960) 31775 (32221) 31894 (30913) 43103

Table 2.16. NONRAND problems: mean number of iterations of the SDA and DY meth-
ods. SDAM iterations in brackets if different from the SDA one.

Problem SDC (h,m) DY
κ(A) tol (2,18) (4,18) (8,18) (10,18)
104 1e-06 726 (505) 593 (508) 511 (527) 522 (512) 525
104 1e-09 1158 (921) 1004 (947) 934 (953) 943 (923) 975
104 1e-12 1607 (1321) 1416 (1354) 1324 (1338) 1329 (1338) 1453
105 1e-06 1608 (1120) 1157 (1200) 1188 (1138) 1085 (1139) 1216
105 1e-09 2861 (2633) 2566 (2719) 2474 (2544) 2578 (2476) 3052
105 1e-12 4225 (4103) 3903 (4090) 3859 (3679) 3885 (4007) 4686
106 1e-06 2174 (1897) 1946 (2072) 1881 (2015) 2023 (1975) 2297
106 1e-09 7334 (7514) 6777 (7343) 7072 (7341) 6972 (6885) 10075
106 1e-12 11237 (11823) 11158 (11782) 12173 (11529) 11497 (11666) 18824
Total iters 32930 (31837) 30520 (32015) 31416 (31064) 30834 (30921) 43103

Table 2.17. NONRAND problems: mean number of iterations of the SDC and DY meth-
ods. SDCM iterations in brackets if different from the SDC one.

Finally, we considered another set of test problems, consisting of the Laplace1(a)
and Laplace1(b) problems described in [32], which arise from a uniform 7-point
finite-difference discretization of the 3D Poisson equation on a box, with homo-
geneous Dirichlet boundary conditions. These problems have 106 variables and
a highly sparse Hessian matrix with condition number 103.61. For each problem 5
starting points were generated by rand with entries in [0, 1]; the iteration was termi-
nated when the stopping criterion (2.32) was satisfied, using tol = 10−2, 10−4, 10−6,
to check the effects of different accuracy requirements.
We decided to use this set of problems to test the RSDA method and adaptive
versions of SDA and SDC using m = 5, as suggested in [26]. We did not test the
SDA_ADP and SDC_ADP on the RAND and NONRAND problems since this
analysis was partially implicitly done, being the switch condition usually satisfied
for small value of h, always less than 20. The algorithms were also compared with
the CG method implemented in the MATLAB pcg function, the BB, the DY and

2.4 Numerical Experiments 49

Problem SDA (h,m) DY
κ(A) tol (2,30) (4,30) (8,30) (10,30) (20,30)
104 1e-06 503 (274) 400 (282) 329 (267) 284 (260) 269 (286) 222
104 1e-09 1437 (799) 948 (703) 773 (713) 818 (727) 708 (729) 683
104 1e-12 2049 (1140) 1348 (1108) 1164 (1076) 1088 (1053) 1089 (1086) 1140
105 1e-06 455 (289) 377 (284) 355 (288) 294 (275) 287 (274) 228
105 1e-09 2390 (1603) 2067 (1463) 1365 (1498) 1434 (1407) 1290 (1536) 1839
105 1e-12 2876 (2697) 2522 (2360) 2238 (2630) 2530 (2381) 2244 (2651) 3469
106 1e-06 473 (280) 382 (256) 300 (268) 286 (255) 271 (258) 204
106 1e-09 3568 (2915) 2583 (2910) 2299 (2516) 2560 (2826) 2891 (2343) 4283
106 1e-12 4712 3883 (6099) 4533 (6837) 5072 (6362) 6169 (5448) 13231
Total iters 18463 (16096) 14510 (16203) 13356 (14874) 14366 (15546) 15218 (14611) 25299
Table 2.18. RAND problems: mean number of iterations of the SDA and DY methods.

SDAM iterations in brackets if different from the SDA one.

Problem SDC (h,m) DY
κ(A) tol (2,30) (4,30) (8,30) (10,30) (20,30)
104 1e-06 394 (305) 353 (268) 273 (255) 287 (263) 288 (268) 222
104 1e-09 1238 (777) 972 (679) 717 (680) 730 (653) 703 (714) 683
104 1e-12 1483 (1135) 1253 (1064) 1142 (1037) 1054 (1056) 1066 (1087) 1140
105 1e-06 428 (310) 376 (264) 302 (268) 322 (282) 289 (267) 228
105 1e-09 1349 (1427) 1738 (1329) 1363 (1546) 1322 (1229) 1269 (1553) 1839
105 1e-12 2079 (2526) 2610 (2553) 2078 (2569) 2173 (2282) 2269 (2581) 3469
106 1e-06 397 (290) 354 (248) 317 (265) 309 (279) 265 (257) 204
106 1e-09 2580 (2563) 2701 (2966) 2003 (3075) 2405 (2626) 2699 (2617) 4283
106 1e-12 3557 (4950) 3920 (6120) 3944 (6572) 5120 (6402) 6330 (5240) 13231
Total iters 13505 (14283) 14277 (15491) 12139 (16267) 13722 (15072) 15470 (14584) 25299
Table 2.19. RAND problems: mean number of iterations of the SDC and DY methods.

SDCM iterations in brackets if different from the SDC one.

the RSD methods, in our implementations. In Tables 2.22-2.24, for each problem,
we report the average number of iterations for the six algorithms, as in the previous
set of test problems, for each starting point, RSD and RSDA were run 10 times
varying the seed in the rand function used in the choice of the steplength.
The results in Table 2.24 show that CG outperforms the other methods when high
accuracy is required. In this case, the RSDA and RSD methods achieve the poorest
results, with the RSDA method showing a significant improvement over the RSD
method; the BB, DY, SDA_ADP and SDC_ADP methods take a smaller number
of iterations than the RSDA and RSD methods, but are still much slower than
the CG method. Very interesting are the results in Tables 2.22 and 2.23, which
suggest that, for low accuracy requirements, gradient methods, especially the DY,
SDA_ADP and SCD_ADP methods, provide reasonable alternatives to the CG
method, for instance in the computational contexts outlined in [32] and [46]. The

50 2. Spectral properties of gradient methods

Problem SDA (h,m) DY
κ(A) tol (2,30) (4,30) (8,30) (10,30) (20,30)
104 1e-06 1402 (575) 863 (528) 646 (550) 627 (548) 564 (555) 525
104 1e-09 1868 (1001) 1512 (970) 1124 (955) 1084 (987) 959 (937) 975
104 1e-12 2485 (1401) 1998 (1353) 1565 (1395) 1521 (1400) 1355 (1381) 1453
105 1e-06 2056 (1207) 1607 (1184) 1301 (1114) 1241 (1153) 1166 (1174) 1216
105 1e-09 4752 (2648) 3620 (2641) 2959 (2575) 2704 (2732) 2568 (2638) 3052
105 1e-12 6764 (3932) 5191 (4002) 4356 (3986) 4149 (3970) 4054 (4045) 4686
106 1e-06 3912 (1953) 2682 (2032) 2159 (1985) 2043 (1889) 1918 (1829) 2297
106 1e-09 10556 (7245) 8279 (6913) 7458 (7678) 7298 (7429) 6922 (6839) 10075
106 1e-12 17572 (12278) 12882 (10946) 12332 (11887) 11902 (12687) 11421 (11282) 18824
Total iters 51367 (32240) 38634 (30569) 33900 (32125) 32569 (32795) 30927 (30680) 43103
Table 2.20. NONRAND problems: mean number of iterations of the SDA and DY meth-

ods. SDAM iterations in brackets if different from the SDA one.

Problem SDC (h,m) DY
κ(A) tol (2,30) (4,30) (8,30) (10,30) (20,30)
104 1e-06 1402 (556) 918 (558) 614 (541) 568 (571) 579 (538) 525
104 1e-09 1645 (997) 1246 (984) 1066 (948) 990 (984) 989 (992) 975
104 1e-12 2296 (1447) 1689 (1386) 1442 (1395) 1404 (1397) 1353 (1399) 1453
105 1e-06 2044 (1144) 1542 (1140) 1196 (1174) 1165 (1169) 1125 (1157) 1216
105 1e-09 4550 (2659) 2985 (2584) 2634 (2735) 2712 (2615) 2709 (2605) 3052
105 1e-12 6411 (4117) 4235 (3983) 3966 (4120) 3982 (3992) 3939 (4069) 4686
106 1e-06 4159 (2056) 2556 (1875) 2044 (2110) 1911 (1984) 1949 (1820) 2297
106 1e-09 9027 (7232) 7108 (6879) 6846 (7075) 6522 (6986) 6755 (6805) 10075
106 1e-12 14585 (12139) 11641 (11572) 10928 (11717) 10937 (11510) 11952 (11758) 18824
Total iters 46119 (32347) 33920 (30961) 30736 (31815) 30191 (31208) 31350 (31143) 43103
Table 2.21. NONRAND problems: mean number of iterations of the SDC and DY meth-

ods. SDCM iterations in brackets if different from the SDC one.

results in Table 2.24 show that the performance of the gradient algorithms with
respect to the CG method seriously deteriorates as the stopping condition becomes
stronger. About the SDA_ADP and SDC_ADP methods, we note that their be-
haviour depends on the SD ability to provide a good approximation of 1/(λ1 + λn)
through α̃k (Proposition 2.2.1), and of 1/λ1 through (2.20) (Proposition 2.2.4).
A rather inaccurate approximation (which, in our experience, is usually achieved
very soon using the SDA_ADP and SDC_ADP methods) can be sufficient to get
a low-accuracy solution in few iterations. Conversely, getting high accuracy in the
solution requires a good approximation of 1/(λ1 +λn) and 1/λ1, and therefore many
SD iterates, which can be counterproductive increasing the total iterations of the
methods.

We conclude this chapter by observing that the ability of the SDA and SDC

2.4 Numerical Experiments 51

Problem CG BB DY RSDA RSD SDA_ADP SDC_ADP
Laplace1(a) 16 14 12 14 18 17 14
Laplace1(b) 16 14 12 14 18 17 14

Table 2.22. Iterations for the Laplace problems, with stop condition ‖gk‖ < 10−2‖g0‖.

Problem CG BB DY RSDA RSD SDA_ADP SDC_ADP
Laplace1(a) 135 225 185 269 406 186 181
Laplace1(b) 135 205 196 282 397 184 184

Table 2.23. Iterations for the Laplace problems, with stop condition ‖gk‖ < 10−4‖g0‖.

Problem CG BB DY RSDA RSD SDA_ADP SDC_ADP
Laplace1(a) 181 484 389 596 900 392 417
Laplace1(b) 181 495 397 593 913 416 393

Table 2.24. Iterations for the Laplace problems, with stop condition ‖gk‖ < 10−6‖g0‖.

methods to eliminate the eigencomponents corresponding to the largest eigenvalues,
already pointed out in Section 2.2, is confirmed by the experiments on the RAND
and NONRAND problems. A clear picture of this feature is provided in Figure 2.8,
where the scalars

βki =

√√√√ i∑
j=1

(
µkj

)2
, i = 1, . . . , n,

are plotted at the last iteration of the SDA and SDC methods, using h = 30
and m = 8, applied to specific instances of the RAND and NONRAND problems
with κ(A) = 106 and tol = 10−12. Such ability is especially apparent for the
RAND problem, for which the size of the gradient at the last iteration (‖gk‖ '
10−5) is mainly determined by the eigencomponents µki associated with few smallest
eigenvalues. Even though this phenomenon is visible in both pictures of Figure 2.8,
it clearly emerges that the initial values of βki are smaller for the SDC method; this
is due to the most efficient approximation of 1/λi provided by the use of the Yuan
steplengths.
The asymptotic properties of the SDA and SDC methods are also confirmed by

the fact that they own the decreasing together property [23], as the fast gradient
methods presented in Chapter 1. To highlight how the gradient components with
respect to the eigenvectors of the Hessian matrix are decreasing together, we again

52 2. Spectral properties of gradient methods

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−25

10
−20

10
−15

10
−10

10
−5

10
0

i

β
i

 RAND

 NONRAND

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
10

−20

10
−15

10
−10

10
−5

10
0

i

β
i

 RAND

 NONRAND

Figure 2.8. RAND and NONRAND problems with κ(A) = 106: values of the scalars βi,
i = 1, . . . , n, at the last SDA (top) and SDC (bottom) iterations (tol = 10−12).

show the values of s (see Formula (1.32) in Chapter 1) for Problem 2.31 in Table 2.25.
We set h = 2 and m = 2, 4, 6. As expected, s increases almost always as ε becomes
smaller, reaching its maximum value in the SDC method for ε = 10−12 and m = 4.
The behaviour of the SDA and the SDC methods for m = 2 confirms the fact
that is the number of constant steps which plays the main role in the methods, the
improvement brought by m = 4 and m = 6 is in fact not negligible. Conversely,
the DY method, even if it exhibits a good behaviour, demonstrating that it has the

2.4 Numerical Experiments 53

ε SDA (h,m) SDC (h,m) DY
(2, 2) (2, 4) (2,6) (2, 2) (2, 4) (2,6)

10−3 292 510 209 178 188 183 192
10−6 473 793 883 521 508 619 473
10−9 481 860 980 387 907 907 754
10−12 367 854 984 754 987 975 761

Table 2.25. Problem 2.31, values of s for the SDA, the SDC and the DY methods.

decreasing property, does not succeed in increasing the size of s, restraining as ε
becomes smaller.

55

Chapter 3

An application to discrete
ill-posed problems

In this chapter we consider discrete linear problems of the form

b = Ax + n, (3.1)

where A ∈ Rm×n and b ∈ Rm (m ≥ n) are known data, n ∈ Rm is unknown
and represents perturbations in the data, and x ∈ Rn represents an object to be
recovered. Such problems arise in many application fields, such as signal and image
processing, statistical inference, geophisics, and astronomy (see, e.g., [29]).
For example, in image restoration the matrix A models the blurring effect produced
by the image acquisition process, b is the observed blurred and noisy image, n is
some additive noise, and x is the original image. We assume that A is ill-conditioned,
with singular values decaying to zero, as it is usually the case in the above-mentioned
applications; we also assume that A is full rank.

Because of the ill-conditioning of A, computing the solution of the least squares
problem

min
x∈Rn

1
2‖b−Ax‖2 (3.2)

does not provide a meaningful solution of (3.1), since it amplifies the noise contained
in the data. Therefore, a regularization method is applied to compute a reasonable
approximation to the exact solution. Roughly speaking, a regularization method
replaces the original problem with a family of close better-conditioned (regularized)
problems, depending on a parameter, such that, for an appropriate choice of the
parameter, the solution of the corresponding regularized problem converges to the
exact solution when the noise tends to zero [29]. The regularized problems can be
obtained by adding to the objective function in (3.2) a penalty term based on some

56 3. An application to discrete ill-posed problems

norm or seminorm of the solution, such as in the Tikhonov and l1 regularizations, or
by exploting the truncated SVD and GSVD decompositions, or by applying iterative
methods (for more details see, e.g., [7, 29, 30, 45] and the references therein).

As observed in [7], iterative regularization methods for the solution of (3.2)
are very flexible (e.g., they can be efficiently applied to both spatially variant and
invariant blurs), allow easy integration of other regularization techniques, and easy
treatment of constraints such as nonnegativity. These methods generally show a
semiconvergence behaviour of the relative error, i.e., this error decreases in the early
iterations and then begins to increase, due to the fact that the method eventually
converges to the solution of (3.2), therefore a suitable early stop of the iterations is
needed to obtain a good approximation to the solution. The choice of the iteration
index where the method has to be stopped plays a fundamental role and it is based
on further information on the problem. For example, the Morozov’s discrepancy
principle [51] requires terminating the iterations as soon as

|Axk − b| ≤ τδ, (3.3)

where δ is the so-called noise norm and τ > 1.
The regularizing properties of the classical Landweber, steepest descent (SD)

and conjugate gradient (CG) methods have been widely investigated (see, e.g.,
[29, 43, 52]). In particular, it is well known that the Landweber and SD meth-
ods generally exhibit very slow convergence, requiring a relatively large number
of iterations before the discrepancy principle is satisfied, and thus they are rarely
used in practice. Conversely, CG methods, such as CGLS and LSQR, rapidly com-
pute a good approximation to the solution; however, they show a fast transition
from convergence to divergence, hence being sensitive to the accuracy of the noise
norm estimation. On the other hand, as we saw in Chapter 1, starting from the
innovative Barzilai-Borwein approach [4], several new gradient methods have been
developed that use suitable steplengths to achieve a significant speedup over SD
[15, 22, 66, 23, 16, 33, 34, 35, 26, 24, 67]. This has motivated the interest toward
their possible use as regularization methods, and recent work has been devoted to
understand the behaviour of some of them in the solution of discrete inverse prob-
lems [3, 14].

In this chapter we analyse the regularization properties of the SDA and SDC
methods, which have shown to be highly competitive with the above-mentioned fast
gradient methods in terms of speed1. Both the SDA and SDC methods share the
idea of fostering a selective elimination of the components of the gradient along the

1For further details see Section 2.4 in Chapter 2.

3.1 Behaviour of the SDA and SDC methods 57

eigenvectors of the Hessian matrix, thus pushing the search in subspaces of smaller
dimensions and speeding up the convergence of the method.

Following [52], we first perform a filter factor analysis of the two methods, show-
ing that, when they are applied to the least squares problem (3.2), they tend to
approximate first the components of the solution corresponding to large singular
values of the matrix A, thus producing a useful filtering effect.

The rest of the chapter is organised as follows. In Section 3.1 we apply the SDA
and SDC methods to Problem 3.2, highlighting the change in their main features. In
Section 3.2 we analyse the regularizing properties of the two methods, by studying
the associated filter factors. In Section 3.3 we present the results of numerical
experiments concerning the application of the SDA and SDC methods to some well
known test problems, confirming the previous findings and showing that the new
gradient methods can provide an effective alternative to the CG methods.

3.1 Behaviour of the SDA and SDC methods

Gradient methods can be applied to Problem 3.2 generating a sequence of iterates
{xk} by using

xk+1 = xk − αkgk, (3.4)

where
gk = AT (Axk − b) (3.5)

is the gradient at xk of the objective function in (3.2) and αk > 0 is, as usual, a
steplength computed by applying a suitable rule.

In order to analyse the behaviour of the SDA and the SDC methods, we consider
the singular value decomposition of A,

A = UΣV T , (3.6)

where U = [u1,u2, . . . ,um] ∈ Rm×m, V = [v1,v2, . . . ,vn] ∈ Rn×n, and Σ =
(σ1, σ2, . . . , σn) ∈ Rm×n. Note that the squares of the singular values σi are the
eigenvalues of the Hessian matrix of the objective function in (3.2), and the right
singular vectors vi are a set of associated orthogonal eigenvectors. According to
this, the Assumption 1 in Chapter 1 becomes,

σ1 > σ2 > · · · > σn. (3.7)

58 3. An application to discrete ill-posed problems

By using (3.4) and (3.5), it is easy to verify that if

g0 =
n∑
i=1

µ0
ivi,

then

gk =
n∑
i=1

µki vi, µki = µ0
i

k∏
j=0

(1− αjσ2
i), (3.8)

which are Formulas (1.12)-(1.13) in Chapter 1 referred here to Problem 3.2.
In this way it follows again that, if at the k-th iteration µki = 0 for some i, then
for l > k it will be µli = 0, i.e., the component of the gradient along vi will be zero
at all subsequent iterations. Moreover, the condition µki = 0 holds if and only if
µ0
i = 0 or αj = 1/σ2

i for some j ≤ k.
In Chapter 2 we introduced the SDA and the SDC methods as follows:

αSDAk =

 αSDk if mod(k, h1) < h,

α̃s otherwise, with s = max{i ≤ k : mod(i, h1) = h};
(3.9)

and

αSDCk =

 αSDk if mod(k, h1) < h,

αYs otherwise, with s = max{i ≤ k : mod(i, h1) = h},
(3.10)

where h1 > h ≥ 2.
The proposed steplength

α̃s =
(

1
αSDs−1

+ 1
αSDs

)−1

(3.11)

is related to the largest and smallest singular values of A being2

lim
k
α̃k = 1

σ2
1 + σ2

n

. (3.12)

As discussed in Chapter 2, this characteristic and the properties of the SD method
suggest that the SDA method combines the tendency of the SD method to choose
its search direction in the two-dimensional space spanned by v1 and vn with the
tendency of a gradient method with constant steplength 1/(σ2

1 + σ2
n) to align the

search direction with vn. This yields a significant improvement of convergence speed
over the SD method, as shown by the numerical experiments reported at the end of
the chapter.

2See Proposition 2.2.1 in Chapther 2 for further details.

3.2 Filtering properties of the SDA and SDC methods 59

The SDCmethod, proposed in [24], uses as special constant step the Yuan steplength
αYs , where3

lim
k
αYk = 1

σ2
1
. (3.13)

By using this result and (3.8), we can conclude that the better the approximation of
1/σ2

1 provided by αSDk , the smaller the component along vn of the gradient computed
by using that steplength. According to (3.8), a multiple application of the step αYh
can drive toward zero the component of the gradient along v1, i.e., µk1. In the ideal
case where the component along v1 is completely removed, Problem 3.2 reduces to
a (n − 1)-dimensional problem, and a new sequence of Cauchy steps followed by
some steps with a fixed value of αYh can drive toward zero the component along
v2. This procedure can be repeated with the aim of eliminating the components
of the gradient according to the decreasing order of the singular values of A. The
effectiveness of this approach is confirmed by the numerical experiments reported
in the previous chapter and in [24].
Finally, we observe that if Problem 3.2 is ill conditioned, then

1
σ2

1 + σ2
n

≈ 1
σ2

1
;

therefore, the SDA method tends to eliminate the components of the gradient along
v1 similarly to the SDC method. More generally, it fosters the elimination of the
components corresponding to the singular values σi >> σn.

3.2 Filtering properties of the SDA and SDC methods

We can express the solution of the least squares problem (3.2) by using an SVD
decomposition (3.6) of A:

x† = A†b =
n∑
i=1

uTi b
σi

vi = xtrue +
n∑
i=1

uTi n
σi

vi, (3.14)

where xtrue is the true solution of (3.1). Since the singular values of A decay to zero,
the division by small singular values amplifies the corresponding noise components,
and the solution x† results useless.

A regularized solution can be obtained by modifying the least squares solu-
tion (3.14) as

xreg =
n∑
i=1

φi
uTi b
σi

vi, (3.15)

3See Proposition 2.2.4 in Chapter 2 for further details.

60 3. An application to discrete ill-posed problems

where the scalars φi, called filter factors, are such that the components of the
solution corresponding to large singular values are preserved (φi ≈ 1) and those
corresponding to small singular values are filtered out (φi ≈ 0) [45]. Their choice is
peculiar to discriminate among the existing filtering techniques. Well known meth-
ods are the Tikhonov and the truncated singular values decomposition methods,
where the filter factors are respectively written as,

φi = σ2
i

σ2
i + ε

, and φi =
{

1 if i ≤ r,
0 if i > r

,

where ε is a nonnegative constant, and r ∈ {1, . . . , n} is called the regularization
parameter.

As observed in [10, 8, 63, 7], iterative methods have many advantages over
simple filtering techniques, having a cost depending on the amount of computation
needed per iteration, as well as on the number of iterations needed to reach a good
restoration of the image, and their convergence, often too slow, is usually accelerated
using preconditioning. Preconditioning can be however a dangerous choice if not
done carefully, it can indeed lead to erratic convergence behavior that results in fast
convergence to a poor approximate solution. Therefore the need of fast gradient
methods, with the aim of reaching a good approximate solution with a reasonable
cost, without using any preconditioning thecnique.
To analyse the behaviour of our two gradient methods, the SDA and the SDC
methods, we start with the following proposition4, which gives the expression of the
filter factors associated to a general gradient method.

Proposition 3.2.1. Let {xk} be the sequence of iterates produced by a general gra-
dient method, assuming x0 = 0 to be the starting iterate, and using Formulas (3.4),
(3.5); suppose to have a singular value decomposition of A (3.6), then we get the
following expression of the (k + 1)-th iterate:

xk+1 =
n∑
i=1

(
1−

k∏
l=0

(
1− αlσ2

i

)) uTi b
σi

vi,

where the scalars

φk+1
i = 1−

k∏
l=0

(
1− αlσ2

i

)
, i = 1, . . . , n, (3.16)

4Its proof is already known and used in [14, 58], we report it here to familiarize with the
terminology which will be used in the following development of our analysis.

3.2 Filtering properties of the SDA and SDC methods 61

play the role of the filter factors associated with the (k + 1)-th iterate.

Proof. We can write

x1 = x0 − α0g0 = x0 − α0A
T (Ax0 − b) =

= α0A
Tb = α0A

T
n∑
i=1

(uTi b)ui =

=
n∑
i=1

α0σ
2
i

uTi b
σi

vi =

=
n∑
i=1
{1− (1− α0σ

2
i)}

uTi b
σi

vi,

in this way,

x1 =
n∑
i=1
{1−

∏
l=0

(1− αlσ2
i)}

uTi b
σi

vi =
n∑
i=1

φi
uTi b
σi

vi, (3.17)

and we can use (3.17) as base case.
We now show that if the thesis is true for xk, so it is for xk+1.
Being

xk =
n∑
i=1

φi
uTi b
σi

vi, with φi = 1−
k−1∏
l=0

(1− αlσ2
i),

we get,

xk+1 = (3.18)

= (I − αkATA)xk + αkA
Tb =

= (I − αkATA)
n∑
i=1
{1−

k−1∏
l=0

(1− αlσ2
i)}

uTi b
σi

vi + αk

n∑
i=1

(uTi b)ATui =

=
n∑
i=1
{1−

k−1∏
l=0

(1− αlσ2
i)}

uTi b
σi

(1− αkσ2
i)vi + αk

n∑
i=1

(uTi b)ATui =

=
n∑
i=1
{1−

k−1∏
l=0

(1− αlσ2
i)}

uTi b
σi

(1− αkσ2
i)vi + αk

n∑
i=1

uTi b
σi

σ2
i vi =

=
n∑
i=1

{
1−

k∏
l=0

(1− αlσ2
i)
}

uTi b
σi

vi =
n∑
i=1

φi
uTi b
σi

vi. (3.19)

Putting together (3.18) and (3.19) the proof is complete.

From (3.16) it follows that if αm = 1/σ2
i for some m ≤ k, then φk+1

i = 1 at the

62 3. An application to discrete ill-posed problems

(k + 1)-th iteration and all subsequent ones. In fact we would have

φk+1
i = 1−

k∏
l=0

(
1− αlσ2

i

)
= 1−(1−α0σ

2
i)(1−α1σ

2
i) · · · (1−αmσ2

i) · · · (1−αkσ2
i) = 1,

and of course that filter factor would be one at all subsequent iterations. More gen-
erally, the better αm approximates 1/σ2

i the closer φk+1
i will be to 1; furthermore,

multiple values of αm close to 1/σ2
i push φk+1

i to go toward 1 quickly. We also note
that 1/αm >> σ2

i implies φki ≈ 0, therefore, the SDA and SDC methods, thanks
to the use of the respective constant steplengths, are expected to (approximately)
reconstruct the components of the pseudoinverse solution (3.14) according to the
decreasing order of the associated singular values, thus producing a regularization
effect. In order to illustrate this behaviour, in Figure 3.1 we plot the filter factors of
SDA and SDC at the k-th iteration, with k = 5, 10, 20, 40, for the test problem heat

from Hansen’s Regularization Tools [44], using n = 64 and kappa = 1. For compar-
ison purposes, we also plot the filter factors of SD and CG at the same iterations;
more precisely, we consider the CGLS method and compute the corresponding filter
factors as in [52]. In SDA and SDC we set h = 4 andm = 2. As shown in Section 2.4
of Chapter 2, the SDA and SDC methods work well for small values of m, such as
m = 2, 4, when the constant steplengths provide fairly good approximations of the
inverses of the squared singular values, i.e., when h is sufficiently large. Note that
this leads in practice to the monotonicity of the methods, which can be lost as m
increases with respect to h. On the other hand, too large values of h slow down the
method because of the low efficiency of the Cauchy steps. Furthermore, the choice
of h is also related to the size of the problem and to the accuracy requirement, and
small values of h are effective when the size and the accuracy are modest, as in this
case.
The plots show that the filter factors of the SDA and SDC methods behave as

expected. Furthermore, as k increases the two methods produce a larger number of
filter factors close to 1 than the SD method, i.e., they are faster in providing good
approximations of the components of the solution corresponding to large singular
values (note also that the SDC method is slightly faster than the SDA method).
As well known, the filter factors of the CG method become soon oscillating. We
observe that we get similar results with h = 8 and h = 10, but the SDA and SDC
methods tend to reconstruct a slightly smaller number of solution components than
with h = 4, according to the fact that larger values of h do not necessarily imply
convergence acceleration. We are in fact able to give a theoretical characterization
of the approximate solution computed through the SDA and SDC methods.

3.2 Filtering properties of the SDA and SDC methods 63

10 20 30 40 50 60
−2

−1

0

1

2

k = 5

 SDA

 SDC

 SD

 CG

10 20 30 40 50 60
−1

−0.5

0

0.5

1

1.5

2

k = 10

 SDA

 SDC

 SD

 CG

10 20 30 40 50 60
−1

−0.5

0

0.5

1

1.5

2

k = 20

 SDA

 SDC

 SD

 CG

10 20 30 40 50 60
−1

−0.5

0

0.5

1

1.5

2

k = 40

 SDA

 SDC

 SD

 CG

Figure 3.1. Filter factors of the SDA, SDC, SD and CG methods applied to problem heat,
at iterations 5, 10, 20 and 40.

Being xk+1 = xk − αkgk, using (3.4) and (3.8), we have that

xk+1 = xk − αk
n∑
i=1

µ0
i

k−1∏
j=0

(
1− αjσ2

i

)
vi. (3.20)

Since the asymptotic behavior of the SDC methods, if αm = 1/σ2
i for somem ≤ k, it

can drive toward zero the component of the gradient along vi, fostering (1−αmσ2
i)

to go to zero. Without loss of generality, in order to simplify our notation, we can
suppose i = 1. In the ideal case in which αm is exactly 1/σ2

1, then (3.20) becomes,

xk+1 = xk − αk
n∑
i=2

µ0
i

k−1∏
l=0

(
1− αlσ2

i

)
vi. (3.21)

Iterating the algorithm, the gradient components related to the eigenvectors vi as-
sociated to the largest eigenvalues will be neatly vanished, and so, by following this
scheme, we are able to reconstruct the approximate solution xk+1 by fixing those

64 3. An application to discrete ill-posed problems

components of the solution relative to the largest eigenvalues, obtaining an implicit
filtering effect, which amplifies the regularization effect held by the method itself.
Note that a similar but veiled analysis could be carrie out for the SDA method.

The effects of this kind of reconstruction, added to the ones coming from a faster
convergence speed, made the SDA and the SDC competitive with the CGLS, if, for
example, applied to an image deblurring problem, as it will be shown in the next
section. Similar and further considerations can be found in [25].

3.3 Numerical experiments

The following tests are aimed at showing the behaviour of the SDA and SDC meth-
ods as regularization methods in two test problems. In this context they can rep-
resent an alternative to the CGLS method because of their fast convergence, with
respect to the slow SD method, and the absence of any preconditioning technique.
In addition to this, they also have a more stable semiconvergence property that the
one held by the CGLS method, and this can be an attracting feature when a good
estimation of the stop condition is not available. The CGLS relative error curve
usually decreases very rapidly, reaching its minimum point after few iterations, but
soon after it increases again, making a very delicate question where to stop the
method to get a good restored image. Conversely, the SDA and the SDC methods
exhibit a better behaviour, in terms of semiconvergence trend, the relative error
stands in fact in an almost flat region for a larger number of iterations.
Looking ahead, the presence of constraints, useful in some cases, may inhibit taking
a full step size in the calculated direction, and methods such as CG or Newton-type
can lose efficiency [3, 17], while in this case, gradient-based method, thus the SDA
and the SDC methods, can be advised.

The first problem to be analysed is an image deblur problem, we choose the
image satellite5 as test image. This image has been wildly used to test image
restoration algorithms (see, e.g, [52, 53, 46, 6]). We used a Gaussian blur with σ = 2,
and a noise level ranging in {5 · 10−3, 10−2, 5 · 10−2, 10−1}. The true and blurred
images have 256× 256 pixels, and are shown in Figure 3.2 and 3.3 respectively.

We tested the SDA and SDC methods, comparing them with the CGLS method.
In this case, we set to be 200 the maximum number of iterations for all the methods.

5This image is included in the image restoration package, RestoreTools which can be obtained
from http://www.mathcs.emory.edu/~nagy/RestoreTools. A software documentation can be
found in [54]

http://www.mathcs.emory.edu/~nagy/RestoreTools

3.3 Numerical experiments 65

true image

50 100 150 200 250

50

100

150

200

250

Figure 3.2. Satellite test problem, true image.

Table 3.1 shows the results of the comparison among the three methods. More
precisely we show the value of the relative error ek and the iteration index in two
cases, when the discrepancy principle is satisfied (columns 3 and 5), and when
it reaches its minimum point (columns 4 and 6). We can see that the SDA and
SDC methods become more competitive with the CGLS as the noise level increases;
the SDC method performs better than the SDA method as expected, reaching the
iteration in which the discrepancy principle is satisfied earlier than the SDA method.
About the values of the relative error we can see that there is not a great difference,
but it is worth noting that in the case of the minimum relative error, the SDC
method seems to give the best results.
To measure the number of iterations in which the relative error is relatively flat,

we monitored the number of iterations in which

|ek − e∗k|
e∗k

< tol, (3.22)

where ek is the relative error at iteration k, and e∗k is the minimum of the rela-
tive error; we fixed tol to be the noise level in each experiment. Table 3.2 shows
the number of iterations in which (3.22) helds and the iterations in which (3.22) is
satisfied for the first and the last time, respectively. In this way Table 3.2 can give
a measure of the range length corresponding to the flat region of the relative error
curve, while Figure 3.4 gives the trends of the relative error for the three methods
using 10−2 as noise level to have a visual idea of what the table describes. The
minimum point of each curve is in fact empathized by a square, while the bounds
of the flat region are denoted by a dot. By this figure it is clearly visible the semi-
convergence property of the methods, and the advantage concerning the choice of

66 3. An application to discrete ill-posed problems

noise level = 5*10
−3

50 100 150 200 250

50

100

150

200

250

noise level = 10
−2

50 100 150 200 250

50

100

150

200

250

noise level = 5*10
−2

50 100 150 200 250

50

100

150

200

250

noise level = 10
−1

50 100 150 200 250

50

100

150

200

250

Figure 3.3. Satellite test problem, blurred and noisy images.

Noise Level Method ek dp ek min k dp k min
SDA 1.886920e-01 1.798140e-01 58 145

0.005 SDC 1.879430e-01 1.793376e-01 43 147
CGLS 1.876028e-01 1.799671e-01 36 79
SDA 1.991304e-01 1.903892e-01 34 77

0.01 SDC 1.991511e-01 1.888869e-01 27 69
CGLS 1.983198e-01 1.897039e-01 22 45
SDA 2.236895e-01 2.185623e-01 10 17

0.05 SDC 2.236079e-01 2.186493e-01 10 17
CGLS 2.256961e-01 2.195784e-01 8 12
SDA 2.455619e-01 2.384617e-01 6 11

0.1 SDC 2.437739e-01 2.362801e-01 6 11
CGLS 2.407307e-01 2.372897e-01 6 8

Table 3.1. Satellite test problem, values of the relative error and iteration index.

the SDA and SDC method is understandable by looking at the flat region of the
curves. This region starts almost at the same time for the three methods, but it

3.3 Numerical experiments 67

Noise Level Method #k k first k last
SDA 132 70 >200

0.005 SDC 148 54 >200
CGLS 78 43 120
SDA 129 33 161

0.01 SDC 124 30 153
CGLS 55 21 75
SDA 58 4 61

0.05 SDC 34 4 37
CGLS 24 4 27
SDA 48 2 49

0.1 SDC 24 2 25
CGLS 18 2 19

Table 3.2. Satellite test problem, relative error flat region features: number of iterations
in the region (column 3), lower and upper bounds of the region (columns 4 - 5).

is much wider for the SDA and the SDC methods, as expected. From the results
of Table 3.2 we can notice that, for all the values of the noise level, the SDA and
SDC methods provide a clear improvement in the length of the flat region, even if a
higher number of iterations is required by the two methods to reach the minimum
point of the relative error. To better appreciate the effects of the methods on the
reconstructions, Figure 3.5 reports the restored images by the different methods at
the iteration in which the CGLS method reaches its minimum point using 10−2 as
noise level, i.e. k = 45 (see the sixth row of Table 3.1). We are already in the
flat region of the relative error curves, in fact this region started at iteration 33 for
the SDA method, and at iteration 30 for the SDC method. The three images are
comparable, but of course, being 45 closer to 69 than to 77, which are the iterations
in which the SDC and the SDA methods reach the minimum relative error, the re-
stored picture obtained using the SDC method is better than the one produced by
the SDA method. This is confirmed by the analysis of the Improved Signal to Noise
ratio (ISNR), which is 3.1674 for the SDA method, for 3.2533 the SDC method, and
3.3031 for the CGLS method. In Figure 3.6 we can see how at iteration k = 153,
which is the upper bound of the flat region for the SDC method, the restored im-
ages of SDC and SDA are still comparable with the one obtained by stopping the
methods in the minimum value of the CGLS relative error (Figure 3.5). Conversely
this is not true for the CGLS method, giving back a worse restored image. Here
again the values of the ISNR confirm what is appreciable to naked eye, being 2.8627
for the SDA method, 2.6279 for the SDC method, and -0.2875 for the CGLS method.

68 3. An application to discrete ill-posed problems

0 20 40 60 80 100 120 140 160 180 200

10
0

Iteration Number

e
k

 SDC (h=2, m=2)

 SDA (h=2, m=2)

 CGLS

Figure 3.4. Satellite test problem, relative errors curves in the case of a noise level of
10−2. The dots represent the first iteration (k first) and the last iteration (k last) in
Table 3.2, while the squares represent the minimum point of the relative error (k min)
in Table 3.2.

The second test problem is heat, the same problem we used in the filtering
factor analysis in Section 3.2. Here again we set n = 64 and kappa = 1, but we
used 1000 as maximum number of iterations. Table 3.3 shows the results of the
comparison among the three methods, in terms of values of the relative error and
the iteration index, when the discrepancy principle is satisfied (columns 3 and 5),
and when it reaches its minimum point (columns 4 and 6), as already done for
the satellite test problem. Again the SDC method behaves better than the SDA
method, satisfying the discrepancy principle and reaching the minimum point of
the relative error in fewer iterations, but in Table 3.4 there is a reverse trend, being
the number of iterations included in the flat region of the SDA method bigger than
the one associated to the SDC method.
Figure 3.7 shows the trend of the relative error curves for the SDA, SDC and CGLS
methods using 10−3 as noise level. As we can see, the semiconvergence behaviour of
the three methods clearly emerges. The curves of the SDA and SDC methods have
a smoother behaviour, the region where they stand flat is emphasized by two dots,
while the minimum point of each curve is again denoted by a square. Note that the
same thing was also done for the CGLS method, but the flat region is inconsistent,
being composed by just a few iterations, as it can be seen by the results in Table 3.4,
where again (3.22) was used to estimate the range length.

3.3 Numerical experiments 69

SDA (h=2, m=2)

50 100 150 200 250

50

100

150

200

250

SDC (h=2, m=2)

50 100 150 200 250

50

100

150

200

250

CGLS

50 100 150 200 250

50

100

150

200

250

Figure 3.5. Satellite test problem, reconstructed images at the minimum point of the
CGLS relative error - noise level 10−2.

70 3. An application to discrete ill-posed problems

SDA (h=2, m=2)

50 100 150 200 250

50

100

150

200

250

SDC (h=2, m=2)

50 100 150 200 250

50

100

150

200

250

CGLS

50 100 150 200 250

50

100

150

200

250

Figure 3.6. Satellite test problem, reconstructed images at the end of the flat region (k
last in Table 3.2) of the SDC method (k last = 153) - noise level 10−2.

3.3 Numerical experiments 71

Noise Level Method ek dp ek min k dp k min
SDA 8.949351e-02 8.319592e-02 99 157

0.005 SDC 9.436135e-02 8.347170e-02 78 102
CGLS 8.914768e-02 8.683880e-02 15 16
SDA 1.206892e-01 1.081965e-01 70 96

0.01 SDC 1.203297e-01 1.086671e-01 55 85
CGLS 1.147467e-01 1.147185e-01 13 14
SDA 2.262340e-01 2.125727e-01 34 49

0.05 SDC 2.357672e-01 2.178166e-01 26 45
CGLS 2.240534e-01 2.109199e-01 8 9
SDA 3.460194e-01 2.862764e-01 26 34

0.1 SDC 3.445608e-01 2.891912e-01 18 26
CGLS 2.841307e-01 2.736020e-01 7 8

Table 3.3. heat test problem, values of the relative error and iteration index.

0 100 200 300 400 500 600 700 800 900 1000
10

−2

10
−1

10
0

10
1

Iteration Number

e
k

 SDC (h=2, m=2)

 SDA (h=2, m=2)

 CGLS

Figure 3.7. Heat test problem, relative errors curves. The dots represent the first iteration
(k first) and the last iteration (k last) in Table 3.4, while the squares represent the
minimum point of the relative error (k min) in Table 3.4.

72 3. An application to discrete ill-posed problems

Noise Level Method #k k first k last
SDA 52 106 157

0.005 SDC 52 86 137
CGLS 3 15 17
SDA 56 86 141

0.01 SDC 55 59 113
CGLS 3 13 15
SDA 68 30 97

0.05 SDC 34 26 59
CGLS 5 7 11
SDA 32 26 57

0.1 SDC 24 18 41
CGLS 3 7 9

Table 3.4. Heat test problem, relative error flat region features: number of iterations in
the region (column 3), lower and upper bounds of the region (columns 4 - 5).

73

Chapter 4

Conclusions

There are many potential applications for fast gradient based methods, capable
of good performances, with a limited cost per iteration, and a low memory re-
quirement. Examples include image processing, denoising and deblurring problems,
compressed sensing, machine learning, and data analysis.
This thesis focused on two new gradient methods for unconstrained nonlinear min-
imization problems, based on the use of some spectral properties associated with
the Steepest Descent (SD) method. These properties can be suitably used to build
some special steplengths to influence the performance of the SD method, dramati-
cally improving its poor original behavior. To this end, we have considered different
strategies, well known in literature, and we have developed a theoretical base above
which we founded our two new methods, the Steepest Descent with Alignment
(SDA) method, and the Steepest Descent with Constant steplength (SDC) method.
We have tested our methods comparing them to some among the most competitive
existing methods, and finally, we have exhibited a possible field of application in
which our methods seem to have good and attractive features.

4.1 Summary

In Chapter 1 we formally introduced the unconstraint nonlinear quadratic prob-
lem, and we gave an overview of some methodologies to solve it. Starting from the
spectral analysis made by Nocedal et al. [55], we moved from the classical Steepest
Descent (SD) method, to the most recent Dai-Yuan (DY) method, through a long
history of attempts to improve the performances of the too slow SD method, while
keeping the antigradient as search direction.

In Chapter 2 we presented a theoretical analysis to support the development of
two new gradient methods, the Steepest Descent with Alignment (SDA) method,

74 4. Conclusions

and the Steepest Descent with Constant steplength (SDC) method. More in detail,
we saw how a cyclical alternation of Cauchy steplengths and of constant steps com-
puted through two “special” formula with favorable spectral properties, give birth
to an algorithmic framework whose computational results are superior of those of
the most competitive methods in literature. This alternation fosters a selective
elimination of the components of the gradient along the eigenvectors of the Hessian
matrix, thus pushing the search in subspaces of smaller dimensions, speeding up the
convergence of the method. Furthermore we saw how monotony can be preserved
without affecting the performances of the methods, but adding other spectral infor-
mations.

Finally, in Chapter 3 we considered the regularization properties of the SDA and
SDC method. We first performed a filter factor analysis of the two methods, show-
ing how they tend to approximate first the components of the solution corresponding
to large singular values, producing an implicit filtering effect. We then presented
the results of some numerical experiments highlighting the behaviour of the two
methods.

4.2 Future Directions

In this thesis we looked at the following unconstrained quadratic minimization prob-
lem,

min
x∈Rn

1
2x

TAx− bTx,

where A ∈ Rn×n is symmetric positive-definite and b ∈ Rn. Although its apparent
simplicity, this setting allowed us to develop a theoretical analysis to study of the
relevance of the eigenvalues of the Hessian of the objective function to the considered
methods, highlighting the effects of the use of a particular steplength instead of
another. Furthermore, we decided to consider this setting since it puts up the basis
for the development of gradient methods for constrained problems and it can easily
lead to the minimization of general non-quadratic functions. These two directions
are briefly described here.

4.2.1 Quadratic constrained problems

We consider the box-constrained quadratic programming problem

min f(x) = 1
2x

TAx− bTx (4.1)

s.t. l ≤ x ≤ u,

4.2 Future Directions 75

where A ∈ Rn×n is symmetric positive-definite, and b, l, u (with l ≤ u) are vectors
in Rn. Some interesting applications of this problem may be found in [49, 36, 37].
The peculiar characteristic of Problem 4.1 is that once the optimal face of the box
is identified, it reduces to the unconstrained minimization of a quadratic function.
Thus an algorithm for solving Problem 4.1 has to identify the optimal face and to
minimize the quadratic (unconstrained) function on the face. Projected gradient
(PG) methods can provide an efficient way of solving Problem 4.1 since they have
the advantage that many constraints can be added or deleted from the working
set on each iteration [17]. The need of faster projected gradient methods is due
to the fact that even in this case the SD method proceeds very slow once the
optimal face is identified. Early attempts in producing PG methods can be found
in [38, 47, 9], while alternative developments fo PG methods improved the former by
incorporating fast gradient based methods for unconstrained optimization. Among
all is remarkable the use of the conjugate gradient (CG) method [57, 65, 50]. In
particular, in [50] a new algorithm called the GPCG method is proposed. This
method uses the PG method until either a suitable face is identified, or the PG
method fails to make reasonable progress. If one of these two situations happened,
the current face is explored by using the CG method, reserving the possibility
to switch back to the PG method, if the CG method does not make significant
progress. Other efficient PG methods are the Projected Barzilai-Borwein (PBB) and
the Projected Alternate Barzilai-Borwein methods [17], and the Spectral Projected
Gradient (SPG) method [11].
We started studying the behaviour of the SDA and SDC methods incorporated into
a projected framework, therefore calling them the PSDA and PSDC methods.
If we define Ω to be the feasible set of Problem 4.1

Ω = {x ∈ Rn : l ≤ x ≤ u} ,

and P to be the projection on to Ω,

P [x] = mid(l, u, x)

where mid(l, u, x) is the vector whose i-th component is the median of the set
{li, ui, xi}, assuming xk to be a feasible point, the next feasible iterate xk+1 is then
given by,

xk+1 = P [xk − αkgk] ,

where αk is a positive steplength.
Preliminary results were obtained making one projection every time a cycle, formed
by h iterates computed through the Cauchy step and m iterates computed through

76 4. Conclusions

Formulas (2.33)-(2.20), is completed. We followed a scheme similar to the one
proposed in [61], incorporating this with our cyclical framework.
We defined the set of the ε-binding variables,

A = A(x) = {i : li ≤ xi ≤ li + ε(x) and gi > 0, or ui − ε(x) ≤ xi ≤ ui and gi < 0} ,

where w(x) = ‖x − P [x− g] ‖, ε(x) = min{ε, w(x)}, and we set I to be the com-
plement of A. A projection onto the feasible set, involving the variables which are
not ε-binding, is performed every time an inner cycle is completed. In this way the
algorithm is divided in outer and inner iterations. Let xinn be an iterate computed
in an inner iteration and xout be the one computed in the last outer iteration (thus
xout is feasible), the search direction d = ‖xinn − xout‖ is chosen if it satisfies the
following conditions:

〈d, gout〉I ≤ −σ1‖gout‖2I
‖d‖I ≤ σ2‖gout‖I . (4.2)

where gout is the gradient computed in xout, and σ1 and σ2 are two parameters. If
d is not a descent direction, the last computed descent direction is taken and the
inner cycle ends. Strict monotonicity is required at the outer iterations, and this is
granted by an Armijo line search procedure [2].
We generated a test problem by using the Matlab function sprandsym, setting
density = 0.3, kind = 1, and condition number κ(A) = 105. x∗ was generated
by rand with entries in [−10, 10], and b = Ax∗ was used to build the linear term.
The lower and upper bounds were set to be the constant vectors of −1 and 1,
respectively, while the starting point was set to be a vector of zeros.
Table 4.1 shows the results of the application of this projected framework to the
problem described above, where we multiplied both the lower and the upper bounds
for a factor µ ∈ {0.1, 0.2, . . . , 1}. In the PSDA and PSDC methods we set h = 4 and
m = 61. We compared them with the PBB and the PABB methods, implemented
using the same framework, making a projection every t = 10 inner BB or ABB
iterations (these methods will be denoted by PBBt and PABBt), and with the PBB
and PABB implemented using the scheme and the nonmonotone line search reported
in [17]. For the PSDA, PSDC, PBBt and PABBt methods we used ‖gk‖Ik ≤ 10−5,

as in [61], as stop condition, while the PBB and PABB methods used,

‖∇fΩ(xk)‖ ≤ 10−5,

1We used σ1 = 0.1, σ2 = 10, and ε = 10−5.

4.2 Future Directions 77

where

[∇fΩ(xk)]i =


(gk)i if (xk)i ∈ (li, ui),

min{(gk)i, 0} if (xk)i = li,

max{(gk)i, 0} if (xk)i = ui.

As we can see, the PSDC gives the best results, followed by the PSDA method.

µ PSDA PSDC PBBt PABBt PBB PABB
1 795 736 1357 680 1249 937
0.9 1100 926 1032 1050 1447 629
0.8 1069 1011 1456 1267 781 770
0.7 1107 951 1354 1145 1804 1184
0.6 1250 1008 1786 1068 1865 1321
0.5 1176 1002 1314 1976 1301 914
0.4 476 535 754 708 715 916
0.3 453 448 592 427 352 898
0.2 292 267 327 381 251 551
0.1 363 216 136 206 84 126

Total Iters 8081 7100 10108 8909 9849 8246

Table 4.1. Quadratic constrained problems, iteration number for the different projected
methods.

Both the PABBt and the PABB methods are competitive with the PSDA and PSDC
methods, and behave better than the correspondent PBBt and PBB methods, as
expected.
This was a rough version of a possible strategy to extend the SDA and SDC meth-
ods in the contest of constrained quadratic problems, a future careful work will
be devoted in designing a new projected framework similar to that of the GPCG
method to better use the properties of the SDA and SDC methods.

4.2.2 Minimization of general non-quadratic functions

To generalize the SDA and SDC methods to nonlinear non-quadratic problems, we
consider the following general unconstrained nonlinear minimization problem,

min f(x)

s.t. x ∈ Rn,

where f : Rn → R is a continuously differentiable function.
In order to use our methods, we look for a good candidate to approximate the

78 4. Conclusions

Cauchy steplength. This can be given by,

argmin
α
φ(α) = f(xk − αgk), (4.3)

where xk is the iterate at iteration k and gk is the gradient of f in the point xk.
Given an initial steplength α0, we can perform a quadratic interpolation [56] of
the function φ(α) by interpolating the points φ(0), φ(α0) and φ′(0) obtaining the
following expression,

φ2(α) =
(
φ(α0)− φ(0)− α0φ

′(0)
α2

0

)
α2 + φ′(0)α+ φ(0), (4.4)

whose minimum is reached in:

ᾱ0 = − φ′(0)α2
0

2 [φ(α0)− φ(0)− α0φ′(0)] . (4.5)

We define the new candidate point to be, x̄1 = x0 − ᾱ0g0.

if the Armijo or the Wolfe conditions are satisfied in this point, then we set x1 = x̄1,
otherwise we divide ᾱ0 by a factor of 2 and we check again the line search conditions
until they are satisfied. Once a new point and a new gradient becomes available,
the procedure is iterated computing a new quadratic interpolation. We iterate this
procedure, summarized in Algorithm 4, until a suitable stop condition is satisfied.

Algorithm 4 General gradient method for non-quadratics (GSD method)
choose α0 > 0, x0 ∈ Rn
compute g0, f0
set k = 0
while not stop_condition do
compute the quadratic interpolation to select ᾱk > 0
xk+1 = xk − ᾱkgk
compute f(xk+1), gk+1
while not line_search_condition do
ᾱk = ᾱk/2
update xk+1 = xk − ᾱkgk
compute f(xk+1), gk+1

end while
update k = k + 1

end while

Starting from Algorithm 4, we implemented the SDA and SDC variants.
When a new approximation of the Cauchy step, given by the quadratic interpo-
lation, becomes available, Formulas (2.33)-(2.20) are computed and used as new

4.2 Future Directions 79

steplengths, respecting the scheme presented in Chapter 2. The SDA and SC meth-
ods for general non-quadratics will be denoted by GSDA and GSDC respectively.

To have a brief overview of the methods, we analyse the behaviour of the GSDA
and GSDC on some problem contained in the CUTEr package [39]. In particular,
we analysed the following problems:

1. AKIVA, CUTEr classification code OUR2-AN-2-0

2. BARD, CUTEr classification code SUR2-AN-3-0

3. DENSCHND, CUTEr classification code SUR2-AN-3-0

4. DENSCHNE, CUTEr classification code SUR2-AN-3-0

The results are given in Table 4.2. We can see that the GSDA and GSDC methods
show a promising behaviour. For this reason future works will be devoted in the
design of a better nonlinear framework, to compare the methods with the most
efficient limited memory Conjugate Gradient and the CG_DESCENT methods [40,
41, 42].

Problem GSD GSDA GSDC
AKIVA 6422 30 29
BARD 7127 258 235

DENSCHND 2207 266 249
DENSCHNE 1369 75 84

Table 4.2. CUTEr problems, number of iterations for the GSD, GSDA and GSDC meth-
ods.

81

Bibliography

[1] Akaike, H. On a successive transformation of probability distribution and
its application to the analysis of the optimum gradient method. Annals of the
Institute of Statistical Mathematics, 11 (1959), 1.

[2] Armijo, L. Minimization of functions having Lipschitz continuous first partial
derivatives. Pacific Journal of mathematics, 16 (1966), 1.

[3] Ascher, U., van den Doel, K., Huang, H., and Svaiter, B. Gradient
descent and fast artificial time integration. ESAIM: Mathematical Modelling
and Numerical Analysis, 43 (2009), 689.

[4] Barzilai, J. and Borwein, J. M. Two-point step size gradient methods.
IMA Journal of Numerical Analysis, 8 (1988), 141.

[5] Beck, A. and Teboulle, M. A fast iterative shrinkage-thresholding al-
gorithm for linear inverse problems. SIAM Journal on Imaging Sciences, 2
(2009), 183.

[6] Benvenuto, F., Zanella, R., Zanni, L., and Bertero, M. Nonnega-
tive least-squares image deblurring: improved gradient projection approaches.
Inverse Problems, 26 (2010), 025004.

[7] Berisha, S. and Nagy, J. G. Iterative methods for image restoration. In
Academic Press Library in Signal Processing: Volume 4. Image, Video Process-
ing and Analysis, Hardware, Audio, Acoustic and Speech Processing (edited by
R. Chjellappa and S. Theodoridis), chap. 7, pp. 193–247. Academic Press, first
edn. (2014).

[8] Bertero, M. and Boccacci, P. Introduction to inverse problems in imaging.
CRC press (1998).

[9] Bertsekas, D. P. On the goldstein-levitin-polyak gradient projection
method. IEEE Transactions on Automatic Control, 21 (1976), 174.

82 Bibliography

[10] Biemond, J., Lagendijk, R. L., and Mersereau, R. M. Iterative methods
for image deblurring. Proceedings of the IEEE, 78 (1990), 856.

[11] Birgin, E. G., Martínez, J. M., and Raydan, M. Nonmonotone spectral
projected gradient methods on convex sets. SIAM Journal on Optimization,
10 (2000), 1196.

[12] Bonettini, S., Zanella, R., and Zanni, L. A scaled gradient projection
method for constrained image deblurring. Inverse problems, 25 (2009), 015002.

[13] Cauchy, A. Méthode générale pour la résolution des systemes d’équations
simultanées. Comp. Rend. Sci. Paris, 25 (1847), 536.

[14] Cornelio, A., Porta, F., Prato, M., and Zanni, L. On the filtering
effect of iterative regularization algorithms for linear least-squares problems.
Inverse Problems, 29 (2013), 125013.

[15] Dai, Y. H. Alternate step gradient method. Optimization, 52 (2003), 395.

[16] Dai, Y. H. and Fletcher, R. On the asymptotic behaviour of some new
gradient methods. Mathematical Programming, 103 (2005), 541.

[17] Dai, Y. H. and Fletcher, R. Projected Barzilai-Borwein methods for large-
scale box-constrained quadratic programming. Numerische Mathematik, 100
(2005), 21.

[18] Dai, Y. H., Hager, W. W., Schittkowski, K., and Zhang, H. The
cyclic Barzilai-Borwein method for unconstrained optimization. IMA Journal
of Numerical Analysis, 26 (2006), 604.

[19] Dai, Y. H. and Liao, L. Z. R-linear convergence of the Barzilai and Borwein
gradient method. IMA Journal of Numerical Analysis, 22 (2002), 1.

[20] Dai, Y. H. and Yang, X. A new gradient method with an optimal step-
size property. Research report, Institute of Computational Mathematics and
Scientific/Engineering Computing, (2001).

[21] Dai, Y. H. and Yang, X. A new gradient method with an optimal stepsize
property. Computational optimization and applications, 33 (2006), 73.

[22] Dai, Y. H. and Yuan, Y. X. Alternate minimization gradient method. IMA
Journal of Numerical Analysis, 23 (2003), 377.

[23] Dai, Y. H. and Yuan, Y. X. Analysis of monotone gradient methods. Journal
of Industrial and Management Optimization, 1 (2005), 181.

Bibliography 83

[24] De Asmundis, R., di Serafino, D., Hager, W. W., Toraldo, G.,
and Zhang, H. An efficient gradient method using the Yuan steplength.
Tech. Rep. available from Optimization Online (http://www.optimization-
online.org/DB_HTML/2013/10/4098.html) (2013).

[25] De Asmundis, R., di Serafino, D., and Landi, G. On the regulariz-
ing behaviour of recent gradient methods in the resolution of linear ill-posed
problems. (In preparation).

[26] De Asmundis, R., di Serafino, D., Riccio, F., and Toraldo, G. On
spectral properties of steepest descent methods. IMA Journal of Numerical
Analysis, 33 (2013), 1416.

[27] Dennis, J. J. E. and Schnabel, R. B. Numerical methods for unconstrained
optimization and nonlinear equations, vol. 16. Siam (1983).

[28] Elman, H. C. and Golub, G. H. Inexact and preconditioned Uzawa algo-
rithms for saddle point problems. SIAM Journal on Numerical Analysis, 31
(1994), 1645.

[29] Engl, H., Hanke, M., and Neubauer, A. Regularization of inverse prob-
lems, vol. 375. Springer (1996).

[30] Figueiredo, M., Nowak, R., and Wright, S. Gradient projection for
sparse reconstruction: application to compressed sensing and other inverse
problems. IEEE J. Sel. Top. Signal Process., 1 (2007), 586.

[31] Fletcher, R. Low storage methods for unconstrained optimization. Lectures
in Applied Mathematics (AMS), 26 (1990), 165.

[32] Fletcher, R. On the Barzilai-Borwein method. In Optimization and control
with applications, pp. 235–256. Springer (2005).

[33] Fletcher, R. A limited memory steepest descent method. Math. Program.,
Ser. A, 135 (2012), 413.

[34] Frassoldati, G., Zanni, L., and Zanghirati, G. New adaptive stepsize
selections in gradient methods. J. Ind. Manag. Optim., 4 (2008), 299.

[35] Friedlander, A., Martínez, J., Molina, B., and Raydan, M. Gra-
dient method with retards and generalizations. SIAM Journal on Numerical
Analysis, 36 (1998), 275.

84 Bibliography

[36] Friedlander, A. and Martínez, J. M. On the maximization of a concave
quadratic function with box constraints. SIAM Journal on Optimization, 4
(1994), 177.

[37] Galligani, E., Ruggiero, V., and Zanni, L. Variable projection methods
for large-scale quadratic optimization in data analysis applications. In Equilib-
rium Problems and Variational Models, pp. 185–211. Springer (2003).

[38] Goldstein, A. A. Convex programming in hilbert space. Bulletin of the
American Mathematical Society, 70 (1964), 709.

[39] Gould, N. I., Orban, D., and Toint, P. L. CUTEr and SifDec: A con-
strained and unconstrained testing environment, revisited. ACM Transactions
on Mathematical Software (TOMS), 29 (2003), 373.

[40] Hager, W. W. and Zhang, H. A new conjugate gradient method with
guaranteed descent and an efficient line search. SIAM Journal on Optimization,
16 (2005), 170.

[41] Hager, W. W. and Zhang, H. Algorithm 851: Cg_descent, a conjugate
gradient method with guaranteed descent. ACM Transactions on Mathematical
Software (TOMS), 32 (2006), 113.

[42] Hager, W. W. and Zhang, H. The limited memory conjugate gradient
method. SIAM Journal on Optimization, 23 (2013), 2150.

[43] Hanke, M. Conjugate Gradient Type Methods for Ill-Posed Problems. Pit-
man Research Notes in Mathematics. Longman Scientific & Technical, Harlow,
Essex (1995).

[44] Hansen, P. Regularization tools: A Matlab package for analysis and solution
of discrete ill-posed problems. Numer. Algorithms, 6 (1994), 1.

[45] Hansen, P. Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadel-
phia (1998).

[46] Huang, H. and Ascher, U. Faster gradient descent and the efficient recovery
of images. Vietnam Journal of Mathematics, (2013), 1.

[47] Levitin, E. S. and Polyak, B. T. Constrained minimization methods.
USSR Computational mathematics and mathematical physics, 6 (1966), 1.

[48] Luenberger, D. G. Linear and nonlinear programming. Springer (2003).

Bibliography 85

[49] Moré, J. J. and Toraldo, G. Algorithms for bound constrained quadratic
programming problems. Numerische Mathematik, 55 (1989), 377.

[50] Moré, J. J. and Toraldo, G. On the solution of large quadratic program-
ming problems with bound constraints. SIAM Journal on Optimization, 1
(1991), 93.

[51] Morozov, V. Regularization Methods for Ill-Posed Problems. CRC Press,
Boca Raton, FL (1993).

[52] Nagy, J. and Palmer, K. Steepest descent, CG, and iterative regularization
of ill-posed problems. BIT, 43 (2003), 1003.

[53] Nagy, J. G. and Palmer, K. Quasi-Newton methods for image restoration.
In Optical Science and Technology, the SPIE 49th Annual Meeting, pp. 412–
422. International Society for Optics and Photonics (2004).

[54] Nagy, J. G., Palmer, K., and Perrone, L. Iterative methods for im-
age deblurring: a matlab object-oriented approach. Numerical Algorithms, 36
(2004), 73.

[55] Nocedal, J., Sartenaer, A., and Zhu, C. On the behavior of the gra-
dient norm in the steepest descent method. Computational Optimization and
Applications, 22 (2002), 5.

[56] Nocedal, J. and Wright, S. J. Conjugate gradient methods. Springer
(2006).

[57] Polyak, B. T. The conjugate gradient method in extremal problems. USSR
Computational Mathematics and Mathematical Physics, 9 (1969), 94.

[58] Porta, F., Cornelio, A., Zanni, L., and Prato, M. Filter factor analysis
of scaled gradient methods for linear least squares. In Journal of Physics:
Conference Series, vol. 464. IOP Publishing (2013).

[59] Raydan, M. On the Barzilai and Borwein choice of steplength for the gradient
method. IMA Journal of Numerical Analysis, 13 (1993), 321.

[60] Raydan, M. and Svaiter, B. F. Relaxed steepest descent and Cauchy-
Barzilai-Borwein method. Computational Optimization and Applications, 21
(2002), 155.

[61] Schwartz, A. and Polak, E. Family of projected descent methods for
optimization problems with simple bounds. Journal of Optimization Theory
and Applications, 92 (1997), 1.

86 Bibliography

[62] Serafini, T., Zanghirati, G., and Zanni, L. Gradient projection methods
for quadratic programs and applications in training support vector machines.
Optimization Methods and Software, 20 (2005), 353.

[63] Vogel, C. R. Computational methods for inverse problems, vol. 23. Siam
(2002).

[64] Wolfe, P. Convergence conditions for ascent methods. Siam Review, 11
(1969), 226.

[65] Wright, S. J. Implementing proximal point methods for linear programming.
Journal of optimization Theory and Applications, 65 (1990), 531.

[66] Yuan, Y. A new stepsize for the steepest descent method. Journal of Com-
putational Mathematics, 24 (2006), 149.

[67] Yuan, Y. Step-sizes for the gradient method. AMS/IP Studies in Advanced
Mathematics, 42 (2008), 785.

	List of Figures
	List of Tables
	From the steepest descent to some faster gradient methods
	The steepest descent method
	The Barzilai and Borwein method
	First attempts to escape from the zigzag path of the iterates
	Alternate steplengths gradient methods

	Spectral properties of gradient methods
	A modified form of relaxation
	A new cyclical framework
	A dynamic adaptive technique
	Numerical Experiments

	An application to discrete ill-posed problems
	Behaviour of the SDA and SDC methods
	Filtering properties of the SDA and SDC methods
	Numerical experiments

	Conclusions
	Summary
	Future Directions
	Quadratic constrained problems
	Minimization of general non-quadratic functions

