research

Nested Distributed Gradient Methods with Adaptive Quantized Communication

Abstract

In this paper, we consider minimizing a sum of local convex objective functions in a distributed setting, where communication can be costly. We propose and analyze a class of nested distributed gradient methods with adaptive quantized communication (NEAR-DGD+Q). We show the effect of performing multiple quantized communication steps on the rate of convergence and on the size of the neighborhood of convergence, and prove R-Linear convergence to the exact solution with increasing number of consensus steps and adaptive quantization. We test the performance of the method, as well as some practical variants, on quadratic functions, and show the effects of multiple quantized communication steps in terms of iterations/gradient evaluations, communication and cost.Comment: 9 pages, 2 figures. arXiv admin note: text overlap with arXiv:1709.0299

    Similar works

    Full text

    thumbnail-image

    Available Versions

    Last time updated on 10/08/2021