361 research outputs found

    Hausdorff Distance Applied On Real Data Experiment For Underwater Localization

    Get PDF
    International audience— This paper addresses the problem of localizing and tracking a surface or underwater vessel with the technique called as Hausdorff Distance. Two proposed approaches, based on TDOAs comparison, were used for 2-D localization, in range and depth, with one sensor only, and have been successfully applied to localize a motionless unknown target in a tank's experiment. Results in terms of the localization accuracy have been obtained with real signal and the performance of the proposed localization techniques have been demonstrated and confirmed by simulation with respect of signal-to-noise ratio and compared with the correlation techniques used nowadays for single hydrophones

    QUERY CLIP GENRE RECOGNITION USING TREE PRUNING TECHNIQUE FOR VIDEO RETRIEVAL

    Get PDF
    ABSTRACT Optimal efficiency of the retrieval techniques depends on the search methodologies that are used in the data retrieving system. The use of inappropriate search methodologies may make the retrieval system ineffective. In recent years, the multimedia storage grows and the cost for storing multimedia data is cheaper. So there is huge number of videos available in the video repositories. It is difficult to retrieve the relevant videos from large video repository as per user interest. Hence, an effective video and retrieval system based on recognition is essential for searching video relevant to user query from a huge collection of videos. An approach, which retrieves video from repository by recognizing genre of user query clip is presented. The method extracts regions of interest from every frame of query clip based on motion descriptors. These regions of interest are considered as objects and are compared with similar objects from knowledge base prepared from various genre videos for object recognition and a tree pruning technique is employed to do genre recognition of query clip. Further the method retrieves videos of same genre from repository. The method is evaluated by experimentation over data set containing three genres i.e. sports movie and news videos. Experimental results indicate that the proposed algorithm is effective in genre recognition and retrieval

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Model-Based High-Dimensional Pose Estimation with Application to Hand Tracking

    Get PDF
    This thesis presents novel techniques for computer vision based full-DOF human hand motion estimation. Our main contributions are: A robust skin color estimation approach; A novel resolution-independent and memory efficient representation of hand pose silhouettes, which allows us to compute area-based similarity measures in near-constant time; A set of new segmentation-based similarity measures; A new class of similarity measures that work for nearly arbitrary input modalities; A novel edge-based similarity measure that avoids any problematic thresholding or discretizations and can be computed very efficiently in Fourier space; A template hierarchy to minimize the number of similarity computations needed for finding the most likely hand pose observed; And finally, a novel image space search method, which we naturally combine with our hierarchy. Consequently, matching can efficiently be formulated as a simultaneous template tree traversal and function maximization

    Learning from one example in machine vision by sharing probability densities

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 125-130).Human beings exhibit rapid learning when presented with a small number of images of a new object. A person can identify an object under a wide variety of visual conditions after having seen only a single example of that object. This ability can be partly explained by the application of previously learned statistical knowledge to a new setting. This thesis presents an approach to acquiring knowledge in one setting and using it in another. Specifically, we develop probability densities over common image changes. Given a single image of a new object and a model of change learned from a different object, we form a model of the new object that can be used for synthesis, classification, and other visual tasks. We start by modeling spatial changes. We develop a framework for learning statistical knowledge of spatial transformations in one task and using that knowledge in a new task. By sharing a probability density over spatial transformations learned from a sample of handwritten letters, we develop a handwritten digit classifier that achieves 88.6% accuracy using only a single hand-picked training example from each class. The classification scheme includes a new algorithm, congealing, for the joint alignment of a set of images using an entropy minimization criterion. We investigate properties of this algorithm and compare it to other methods of addressing spatial variability in images. We illustrate its application to binary images, gray-scale images, and a set of 3-D neonatal magnetic resonance brain volumes.Next, we extend the method of change modeling from spatial transformations to color transformations. By measuring statistically common joint color changes of a scene in an office environment, and then applying standard statistical techniques such as principal components analysis, we develop a probabilistic model of color change. We show that these color changes, which we call color flows, can be shared effectively between certain types of scenes. That is, a probability density over color change developed by observing one scene can provide useful information about the variability of another scene. We demonstrate a variety of applications including image synthesis, image matching, and shadow detection.by Erik G. Miller.Ph.D

    Downstream Task Self-Supervised Learning for Object Recognition and Tracking

    Get PDF
    This dissertation addresses three limitations of deep learning methods in image and video understanding-based machine vision applications. Firstly, although deep convolutional neural networks (CNNs) are efficient for image recognition applications such as object detection and segmentation, they perform poorly under perspective distortions. In real-world applications, the camera perspective is a common problem that we can address by annotating large amounts of data, thus limiting the applicability of the deep learning models. Secondly, the typical approach for single-camera tracking problems is to use separate motion and appearance models, which are expensive in terms of computations and training data requirements. Finally, conventional multi-camera video understanding techniques use supervised learning algorithms to determine temporal relationships among objects. In large-scale applications, these methods are also limited by the requirement of extensive manually annotated data and computational resources.To address these limitations, we develop an uncertainty-aware self-supervised learning (SSL) technique that captures a model\u27s instance or semantic segmentation uncertainty from overhead images and guides the model to learn the impact of the new perspective on object appearance. The test-time data augmentation-based pseudo-label refinement technique continuously trains a model until convergence on new perspective images. The proposed method can be applied for both self-supervision and semi-supervision, thus increasing the effectiveness of a deep pre-trained model in new domains. Extensive experiments demonstrate the effectiveness of the SSL technique in both object detection and semantic segmentation problems. In video understanding applications, we introduce simultaneous segmentation and tracking as an unsupervised spatio-temporal latent feature clustering problem. The jointly learned multi-task features leverage the task-dependent uncertainty to generate discriminative features in multi-object videos. Experiments have shown that the proposed tracker outperforms several state-of-the-art supervised methods. Finally, we proposed an unsupervised multi-camera tracklet association (MCTA) algorithm to track multiple objects in real-time. MCTA leverages the self-supervised detector model for single-camera tracking and solves the multi-camera tracking problem using multiple pair-wise camera associations modeled as a connected graph. The graph optimization method generates a global solution for partially or fully overlapping camera networks

    Compression, Modeling, and Real-Time Rendering of Realistic Materials and Objects

    Get PDF
    The realism of a scene basically depends on the quality of the geometry, the illumination and the materials that are used. Whereas many sources for the creation of three-dimensional geometry exist and numerous algorithms for the approximation of global illumination were presented, the acquisition and rendering of realistic materials remains a challenging problem. Realistic materials are very important in computer graphics, because they describe the reflectance properties of surfaces, which are based on the interaction of light and matter. In the real world, an enormous diversity of materials can be found, comprising very different properties. One important objective in computer graphics is to understand these processes, to formalize them and to finally simulate them. For this purpose various analytical models do already exist, but their parameterization remains difficult as the number of parameters is usually very high. Also, they fail for very complex materials that occur in the real world. Measured materials, on the other hand, are prone to long acquisition time and to huge input data size. Although very efficient statistical compression algorithms were presented, most of them do not allow for editability, such as altering the diffuse color or mesostructure. In this thesis, a material representation is introduced that makes it possible to edit these features. This makes it possible to re-use the acquisition results in order to easily and quickly create deviations of the original material. These deviations may be subtle, but also substantial, allowing for a wide spectrum of material appearances. The approach presented in this thesis is not based on compression, but on a decomposition of the surface into several materials with different reflection properties. Based on a microfacette model, the light-matter interaction is represented by a function that can be stored in an ordinary two-dimensional texture. Additionally, depth information, local rotations, and the diffuse color are stored in these textures. As a result of the decomposition, some of the original information is inevitably lost, therefore an algorithm for the efficient simulation of subsurface scattering is presented as well. Another contribution of this work is a novel perception-based simplification metric that includes the material of an object. This metric comprises features of the human visual system, for example trichromatic color perception or reduced resolution. The proposed metric allows for a more aggressive simplification in regions where geometric metrics do not simplif
    corecore