33 research outputs found

    (Un)Decidability Results for Word Equations with Length and Regular Expression Constraints

    Full text link
    We prove several decidability and undecidability results for the satisfiability and validity problems for languages that can express solutions to word equations with length constraints. The atomic formulas over this language are equality over string terms (word equations), linear inequality over the length function (length constraints), and membership in regular sets. These questions are important in logic, program analysis, and formal verification. Variants of these questions have been studied for many decades by mathematicians. More recently, practical satisfiability procedures (aka SMT solvers) for these formulas have become increasingly important in the context of security analysis for string-manipulating programs such as web applications. We prove three main theorems. First, we give a new proof of undecidability for the validity problem for the set of sentences written as a forall-exists quantifier alternation applied to positive word equations. A corollary of this undecidability result is that this set is undecidable even with sentences with at most two occurrences of a string variable. Second, we consider Boolean combinations of quantifier-free formulas constructed out of word equations and length constraints. We show that if word equations can be converted to a solved form, a form relevant in practice, then the satisfiability problem for Boolean combinations of word equations and length constraints is decidable. Third, we show that the satisfiability problem for quantifier-free formulas over word equations in regular solved form, length constraints, and the membership predicate over regular expressions is also decidable.Comment: Invited Paper at ADDCT Workshop 2013 (co-located with CADE 2013

    What's Decidable About Sequences?

    Full text link
    We present a first-order theory of sequences with integer elements, Presburger arithmetic, and regular constraints, which can model significant properties of data structures such as arrays and lists. We give a decision procedure for the quantifier-free fragment, based on an encoding into the first-order theory of concatenation; the procedure has PSPACE complexity. The quantifier-free fragment of the theory of sequences can express properties such as sortedness and injectivity, as well as Boolean combinations of periodic and arithmetic facts relating the elements of the sequence and their positions (e.g., "for all even i's, the element at position i has value i+3 or 2i"). The resulting expressive power is orthogonal to that of the most expressive decidable logics for arrays. Some examples demonstrate that the fragment is also suitable to reason about sequence-manipulating programs within the standard framework of axiomatic semantics.Comment: Fixed a few lapses in the Mergesort exampl

    Finite Countermodel Based Verification for Program Transformation (A Case Study)

    Get PDF
    Both automatic program verification and program transformation are based on program analysis. In the past decade a number of approaches using various automatic general-purpose program transformation techniques (partial deduction, specialization, supercompilation) for verification of unreachability properties of computing systems were introduced and demonstrated. On the other hand, the semantics based unfold-fold program transformation methods pose themselves diverse kinds of reachability tasks and try to solve them, aiming at improving the semantics tree of the program being transformed. That means some general-purpose verification methods may be used for strengthening program transformation techniques. This paper considers the question how finite countermodels for safety verification method might be used in Turchin's supercompilation method. We extract a number of supercompilation sub-algorithms trying to solve reachability problems and demonstrate use of an external countermodel finder for solving some of the problems.Comment: In Proceedings VPT 2015, arXiv:1512.0221

    Decidability and Complexity of Tree Share Formulas

    Get PDF
    Fractional share models are used to reason about how multiple actors share ownership of resources. We examine the decidability and complexity of reasoning over the "tree share" model of Dockins et al. using first-order logic, or fragments thereof. We pinpoint a connection between the basic operations on trees union, intersection, and complement and countable atomless Boolean algebras, allowing us to obtain decidability with the precise complexity of both first-order and existential theories over the tree share model with the aforementioned operations. We establish a connection between the multiplication operation on trees and the theory of word equations, allowing us to derive the decidability of its existential theory and the undecidability of its full first-order theory. We prove that the full first-order theory over the model with both the Boolean operations and the restricted multiplication operation (with constants on the right hand side) is decidable via an embedding to tree-automatic structures

    Word Equations in Nondeterministic Linear Space

    Get PDF
    Satisfiability of word equations is an important problem in the intersection of formal languages and algebra: Given two sequences consisting of letters and variables we are to decide whether there is a substitution for the variables that turns this equation into true equality of strings. The computational complexity of this problem remains unknown, with the best lower and upper bounds being, respectively, NP and PSPACE. Recently, the novel technique of recompression was applied to this problem, simplifying the known proofs and lowering the space complexity to (nondeterministic) O(n log n). In this paper we show that satisfiability of word equations is in nondeterministic linear space, thus the language of satisfiable word equations is context-sensitive. We use the known recompression-based algorithm and additionally employ Huffman coding for letters. The proof, however, uses analysis of how the fragments of the equation depend on each other as well as a new strategy for nondeterministic choices of the algorithm, which uses several new ideas to limit the space occupied by the letters

    Finding All Solutions of Equations in Free Groups and Monoids with Involution

    Full text link
    The aim of this paper is to present a PSPACE algorithm which yields a finite graph of exponential size and which describes the set of all solutions of equations in free groups as well as the set of all solutions of equations in free monoids with involution in the presence of rational constraints. This became possible due to the recently invented emph{recompression} technique of the second author. He successfully applied the recompression technique for pure word equations without involution or rational constraints. In particular, his method could not be used as a black box for free groups (even without rational constraints). Actually, the presence of an involution (inverse elements) and rational constraints complicates the situation and some additional analysis is necessary. Still, the recompression technique is general enough to accommodate both extensions. In the end, it simplifies proofs that solving word equations is in PSPACE (Plandowski 1999) and the corresponding result for equations in free groups with rational constraints (Diekert, Hagenah and Gutierrez 2001). As a byproduct we obtain a direct proof that it is decidable in PSPACE whether or not the solution set is finite.Comment: A preliminary version of this paper was presented as an invited talk at CSR 2014 in Moscow, June 7 - 11, 201

    The Hardness of Solving Simple Word Equations

    Get PDF
    We investigate the class of regular-ordered word equations. In such equations, each variable occurs at most once in each side and the order of the variables occurring in both left and right hand sides is preserved (the variables can be, however, separated by potentially distinct constant factors). Surprisingly, we obtain that solving such simple equations, even when the sides contain exactly the same variables, is NP-hard. By considerations regarding the combinatorial structure of the minimal solutions of the more general quadratic equations we obtain that the satisfiability problem for regular-ordered equations is in NP. The complexity of solving such word equations under regular constraints is also settled. Finally, we show that a related class of simple word equations, that generalises one-variable equations, is in P
    corecore