
Word Equations in Nondeterministic Linear Space∗

Artur Jeż

Institute of Computer Science, University of Wrocław, Wrocław, Poland
aje@cs.uni.wroc.pl

Abstract
Satisfiability of word equations is an important problem in the intersection of formal languages
and algebra: Given two sequences consisting of letters and variables we are to decide whether
there is a substitution for the variables that turns this equation into true equality of strings.
The computational complexity of this problem remains unknown, with the best lower and upper
bounds being, respectively, NP and PSPACE. Recently, the novel technique of recompression
was applied to this problem, simplifying the known proofs and lowering the space complexity to
(nondeterministic) O(n logn). In this paper we show that satisfiability of word equations is in
nondeterministic linear space, thus the language of satisfiable word equations is context-sensitive.
We use the known recompression-based algorithm and additionally employ Huffman coding for
letters. The proof, however, uses analysis of how the fragments of the equation depend on each
other as well as a new strategy for nondeterministic choices of the algorithm, which uses several
new ideas to limit the space occupied by the letters.

1998 ACM Subject Classification F.4.3 [Formal Languages] Decision Problems, Classes Defined
by Grammars or Automata, F.4.2 Grammars and Other Rewriting Systems, F.2.2 Nonnumerical
Algorithms and Problems

Keywords and phrases Word equations, string unification, context-sensitive languages, space
efficient computations, linear space

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.95

1 Introduction

Solving word equations was an intriguing problem since the dawn of computer science,
motivated first by its ties to Hilbert’s 10th problem. Initially it was conjectured that this
problem is undecidable, which was disproved in a seminal work of Makanin [10]. At first little
attention was given to computational complexity of Makanin’s algorithm and the problem
itself; these questions were reinvestigated in the ’90 [6, 18, 9], culminating in the EXPSPACE
implementation of Makanin’s algorithm by Gutiérrez [5].

The connection to compression was first observed by Plandowski [16], who showed that
a length-minimal solution of size N has a compressed representation of size poly(n, logN).
Plandowski further explored this approach [14] and proposed a PSPACE algorithm [13], which
is the best bound up to date; a simpler PSPACE solution also based on compression was
proposed by Jeż [8]. On the other hand, this problem is only known to be NP-hard, and it is
conjectured that it is in NP.

The importance of these mentioned algorithms lays with the possibility to extend them (in
nontrivial ways) to various scenarios: free groups [11, 1, 3], representation of all solutions [15,
8, 17], traces [12, 2], graph groups [4], terms [7] and others.

∗ Work supported under National Science Centre, Poland project number 2014/15/B/ST6/00615.

EA
T

C
S

© Artur Jeż;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 95; pp. 95:1–95:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/84869136?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.95
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

95:2 Word Equations in Nondeterministic Linear Space

While the computational complexity of word equations remains unknown, its exact
space complexity is intriguing as well: Makanin’s algorithm uses exponential space [5],
Plandowski [13] gave no explicit bound on the space usage of his algorithm, a rough estimation
is NSPACE(n5), the recent solution of Jeż [8] yields NSPACE(n logn). Moreover, for O(1)
variables a linear bound on space complexity was shown [8]; recall that languages recognisable
in nondeterministic linear space are exactly the context-sensitive languages.

In this paper we show that satisfiability of word equations can be tested in nondeterministic
linear space in terms of the number of bits of the input, thus showing that the language of
satisfiable word equations is context-sensitive (and by the famous Immerman–Szelepcsényi
theorem: the language of unsatisfiable word equations). The employed algorithm is a (variant
of) algorithm of Jeż [8], which additionally uses Huffman coding for letters in the equation.
On the other hand, the actual proof uses a different encoding of letters, which extends the
ideas used in a (much simpler) proof in case of O(1) variables [8, Section 5]; the other new
ingredient is a different strategy of compression: roughly speaking, previously a strategy
that minimised the length of the equation was used. Here, a more refined strategy is used:
it simultaneously minimises the size of a particular bit encoding, enforces that changes in
the equation (during the algorithm) are local, and limits the amount of new letters that are
introduced to the equation.

The bound holds when letters and variables in the input are encoded using an arbitrary
encoding, in particular, the Huffman coding (so the most efficient one) is allowed.

2 The (known) algorithm

We first present a slight variation of the algorithm of Jeż [8] and the notions necessary to
understand how it works. The proofs are omitted, yet they should be intuitively clear.

Notions. The word equation is a pair (U, V), written as U = V , where U, V ∈ (Γ ∪ X)∗
and Γ and X are disjoint alphabets of letters and variables, both are collectively called
symbols. By nX we denote the number of occurrences of X in the (current) equation; in
the algorithm nX does not change till X is removed from the equation, in which case nX

becomes 0. A substitution is a morphism S : X ∪ Γ→ Γ′∗, where Γ′ ⊇ Γ and S(a) = a for
every a ∈ Γ, a substitution naturally extends to (X ∪ Γ)∗. A solution of an equation U = V

is a substitution S such that S(U) = S(V); given a solution S of an equations U = V we
call S(U) the solution word. We allow the solution to use letters that are not present in
the equation, this does not change the satisfiability: all such letters can be changed to a
fixed letter from Γ, and the obtained substitution is still a solution. Yet, the proofs become
easier, when we allow the usage of such letters. The alphabet Γ′ is usually given implicitly:
as the set of letters used by the substitution. A block is a string a` with ` ≥ 1 that cannot
be extended to the left nor to the right with a.

As we deal with linear-space, the encoding used by the input equation matters. We
assume only that the input is given by a fixed (uniquely decodable) coding: each symbol
in the input is always given by the same bitstring and given the bitstrings representing the
sides of the equation there is only one pair of strings (over Γ∪X) that is encoded in this way.
It is folklore that among such codes the Huffman code yields the smallest space consumption
(counted in bits) and moreover the Huffman coding can be efficiently computed, also in
linear space. As we focus on space counted in bits and use encodings, by ||α|| we denote the
space consumption of the encoding of α, the encoding shall be always clear from the context.
Furthermore, whenever we talk about space complexity, it is counted in bits.

A. Jeż 95:3

Nondeterministic Linear Space. We recall some basic facts about the nondeterministic
space-bounded computation. A nondeterministic procedure is sound, when given a unsat-
isfiable word equation U = V it cannot transform it to a satisfiable one, regardless of the
nondeterministic choices; a procedure is complete, if given a satisfiable equation U = V for
some nondeterministic choices it returns a satisfiable equation U ′ = V ′. A composition of
sound (complete) procedures is sound (complete, respectively). It is enough that we show
linear-space bound for one particular computation: as the bound is known, we limit the
space available to the algorithm and reject the computations exceeding it.

The algorithm. We use (a variant of) recompression algorithm [8], which conceptually
applies the following two operations on S(U) and S(V): given a string w and alphabet Γ

the Γ block compression of w is a string w′ obtained by replacing every block a`, where
a ∈ Γ and ` ≥ 2, with a fresh letter a`;
the (Γ`,Γr) pair compression of w, where Γ`,Γr is a partition of Γ, is a string w′ obtained
by replacing every occurrence of a pair ab ∈ Γ`Γr with a fresh letter cab.

A fresh letter means that it is not currently used in the equation, nor in Γ, yet each occurrence
of a fixed ab is replaced with the same letter. The a` and cab are just notation conventions,
the actual letters in w′ do not store the information how they were obtained. For shortness,
we call Γ block compression the Γ compression or block compression, when Γ is clear from the
context; similar convention applies to (Γ`,Γr) pair compression, called (Γ`,Γr) compression
or pair compression, when (Γ`,Γr) is clear from the context. We say that a pair ab ∈ Γ`Γr is
covered by a partition Γ`,Γr.

The intuition is that the algorithm aims at performing those compression operations
on the solution word and to this end it modifies the equation a bit and then performs the
compression operations on U and V (and conceptually also on the solution, i.e. on S(X) for
each variable X). Below we describe, how it is performed on the equation.

BlockComp: For the equation U = V and the alphabet Γ of letters in this equation for
each variable X we first guess the first and last letter of S(X) as well as the lengths `, r
of the longest prefix consisting only of a, called a-prefix, and b-suffix (defined similarly) of
S(X). Then we replace X with a`Xbr (or a`br or a` when S(X) = a`br or S(X) = a`); this
operation is called popping a-prefix and b-suffix. Then we perform the Γ-block compression
on the equation (this is well defined, as we can treat variables as symbols from outside Γ).

PairComp: For the alphabet Γ, which will always be the alphabet of letters in the equation
right before the block compression we partition Γ into Γ` and Γr (in a way described in
Section 3.2) and then for each variable X guess whether S(X) begins with a letter b ∈ Γr

and if so, replace X with bX or b, when S(X) = b, and then do a symmetric action for the
last letter and Γ`; this operation is later referred to as popping letters. Then we perform the
(Γ`,Γr) compression on the equation.

LinWordEq works in phases, until an equation with both sides of length 1 is obtained:
in a single phase it establishes the alphabet Γ of letters in the equation, performs the Γ
compression and then repeats: guess the partition of Γ to Γ` and Γr and perform the (Γ`,Γr)
compression, until each pair ab ∈ Γ2 was covered by some partition.

Correctness. Given a solution S we say that some nondeterministic choices correspond to
S, if they are done as if LinWordEq knew S. For instance, it guesses correctly the first letter
of S(X) or whether S(X) = ε. (The choice of a partition does not fall under this category.)

I Lemma 1 ([8, Lemma 2.8 and Lemma 2.10]). BlockComp is sound and complete; to be
more precise, for any solution S of an equation U = V for the nondeterministic choices

ICALP 2017

95:4 Word Equations in Nondeterministic Linear Space

corresponding to S the returned equation U ′ = V ′ has a solution S′ such that S′(U ′) is the Γ
compression of S(U) and S′(X) is obtained from S(X) by removing the a-prefix and b-suffix,
where a is the first letter of S(X) and b the last, and then performing the Γ compression.

When Γ` and Γr are disjoint, the PairComp(Γ`,Γr) is sound and complete; to be more
precise, for any solution S of an equation U = V for the nondeterministic choices corres-
ponding to S the returned equation U ′ = V ′ has a solution S′ such that S′(U ′) is the (Γ`,Γr)
compression of S(U) and S′(X) is obtained from S(X) by removing the first letter of S(X),
if it is in Γr, and the last, if it is in Γ`, and then performing the (Γ`,Γr) compression.

The solution S′ from Lemma 1 is called a solution corresponding to S after (Γ`,Γr)
compression (Γ compression, respectively); we also talk about a solution corresponding to S,
when the compression operation is clear from the context and extend this notion to a solution
corresponding to S after a phase. What is important later on is how S′ is obtained from S:
it is modified as if the subprocedures knew first/last letter of S(X) and popped appropriate
letters from the variables and then compressed pairs/blocks in substitution for variables.

Lemma 1 yields the soundness and completeness of LinWordEq, for the termination we
observe that iterating the compression operations shortens the string by a constant fraction,
thus the length of a solution word shortens by a constant fraction in each phase.

I Lemma 2. Let w be a string over an alphabet Γ and w′ a string obtained from w by a Γ
compression followed by a sequence of (Γ`,Γr) compressions (where Γ`,Γr is a partition of
Γ) such that each pair ab ∈ Γ2 is covered by some partition. Then |w′| ≤ 2|w|+1

3 .

I Theorem 3. LinWordEq is sound, complete and terminates (for appropriate nondetermin-
istic choices) for satisfiable equations. It runs in linear (bit) space.

In the following, we will also need one more technical property of block compression.

I Lemma 4. Consider a solution S during a phase with nondeterministic choices corres-
ponding to S and the corresponding solution S′ of U ′ = V ′ after the block compression. Then
S′(U ′) has no two consecutive letters aa ∈ Γ.

This is true after block compression and afterwards no letters from Γ are introduced.

Compressing blocks in small space. Storing, even in a concise way, the lengths of popped
prefixes and suffixes in Γ compression makes attaining the linear space difficult. This was
already observed [8] and a linear-space implementation of BlockComp was given [8]. It
performs a different set of operations, yet the effect is the same as for BlockComp. Instead
of explicitly naming the lengths of blocks, we treat them as integer parameters; then we
declare, which maximal blocks are of the same length (those lengths depend linearly on the
parameters); verifying the validity of such a guess is done by writing a system of (linear)
Diophantine equations that formalise those equalities and checking its satisfiability. This
procedure is described in detail in [8, Section 4]. In the end, it can be implemented in linear
bitspace.

I Lemma 5 ([8, Lemma 4.7]). BlockComp can be implemented in space linear in the bit-size
of the equation

Huffman coding. At each step of the algorithm we encode letters (though not variables) in
the equation using Huffman coding. This may mean that when going from U = V to U ′ = V ′

the encoding of letters changes and in fact using the former encoding in the latter equation

A. Jeż 95:5

may lead to super-linear space (imagine that we pop from each variable a letter that has a
very long code). Using standard methods changing the encoding during a transition from
U = V to U ′ = V ′ can be done in O(||U = V ||+ ||U ′ = V ′||) bit-space.

I Lemma 6. Given a string (encoded using some uniquely decodable code), its Huffman
coding can be computed in linear bitspace.

Each subprocedure of LinWordEq that transforms an equation U = V to U ′ = V ′ can
be implemented in bit-space O(||U = V ||1 + ||U ′ = V ′||2), where || · ||1 and || · ||2 are the
Huffman codings for letters in U = V and U ′ = V ′, respectively.

3 Space consumption

In order to bound the space consumption, we will use bit-encoding of letters that depends on
the current equation. We use the term ‘encoding’ even though it may assign different codes
to different occurrences of the same letter, but two different letters never have the same
code. Since we are interested in linear space only, we do not care about the multiplicative
O(1) factors in the space consumption and can assume that our code is prefix-free, say by
terminating each encoding with a special symbol $. We show that such an encoding uses
linear space, which also shows that the Huffman encoding of the letters in the equation uses
linear space, as Huffman encoding uses the smallest space among the prefix codes.

The idea of our ‘encoding’ is: for each letter in the current equation we establish an
interval I of indices in the original equation (viewed as as string U0V0[1 . . |U0V0|]) on which
it ‘depends’ (this has to be formalised) and encode this letter as U0V0[I]#i, when it is ith in
the sequence of letters assigned I and U0V0[I] is the original equation restricted to indices in
I The dependency is formalised in Section 3.1, while Section 3.2 first gives the high-level
intuition and then upper-bound on the used space.

For technical reasons we insert into the equation ending markers at the beginning and
end of U and V , i.e. write them as @U@,@V@ for some special symbol @. Those markers
are ignored by the algorithm, yet they are needed for the encoding.

3.1 Dependency intervals

First, we need some notation. The input equation is denoted by U0 = V0, the U = V and
U ′ = V ′ are used for the current equation and equation after performing some operation. We
treat the input equation as a single string U0V0 and consider its indices, i.e. numbers from 1
to |U0V0|, denoted by letters i, i′, j and intervals of such indices, denoted by letter I, I ′ or
[i . . j]. The U0V0[I] and U0V0[i . . j] denotes the substring of U0V0 restricted to indices in [I]
or in [i . . j]. We use a partial order ≤ on intervals: [i . . j] ≤ [i′ . . j′] if i ≤ i′ and j ≤ j′.

In the current equation, i.e. the one stored by LinWordEq, we do not consider indices
but rather positions and denote them by letters p, q. We do not think of them as numbers
but rather as pointers: when U = V is transformed by some operation to U ′ = V ′ but the
letter/variable at position p was not affected by this transformation, we still say that this
letter/variable is at position p. On the other hand, the affected letters are on positions that
were not present in U = V . In the same spirit we denote by p the positions in U = V and the
corresponding position in S(U) = S(V). We still use the left-to-right ordering on positions,
use p− 1 and p+ 1 to denote the previous and next position; we also consider intervals of
positions, yet they are used rarely so that they are not confused with intervals of indices, on
which we focus mostly. Given an equation U = V and an interval of positions P by UV [P]

ICALP 2017

95:6 Word Equations in Nondeterministic Linear Space

we denote the string of letters and variables at positions in P , again, this notation is used
rarely. In the input equation the index and position is the same.

With each position p in the (current) equations (including the endmarkers) we associate
dependency interval dep(p), called depint; if the depint is a single index {i}, we denote it i.
The idea is that the letter at position p is uniquely determined by U0V0[dep(I)] (and the
nondeterministic choices of the algorithm), note that it may include both variables and letters.
We use the notions of ⊆ and ⊇ for the depints with a usual meaning; we take unions of the
them, denoted by ∪, but only when the result is an interval. We say that I and I ′ are similar,
denoted as I ∼ I, if U0V0[I] = U0V0[I ′]. Given an interval I of indices in U0V0 by Pos(I) we
denote positions in the current equation whose depint is I, i.e. Pos(I) = {p | dep(p) = I}.
In the analysis it is also convenient to look at positions whose depint is a superset of I:
Pos⊇(I) = {p | dep(p) ⊇ I}, this is usually used for I = {i}

We shall ensure the following properties:
(I1) Given a depint I, the Pos(I) is an interval of positions, similarly Pos⊇(I).
(I2) Given depints I, I ′ such that Pos(I) 6= ∅ 6= Pos(I ′) either I ≤ I ′ or I ≥ I ′.
(I3) For depints I ∼ I ′ it holds that U0V0[I] = U0V0[I ′].

Assigning depints to letters. When X at position p pops a letter into position p′ then
dep(p′) ← dep(p) (which is the position of this occurrence of X in the input equation).
Whenever we perform the (Γ`,Γr) compression then in parallel for each position p such that
UV [p] ∈ Γ` we assign dep(p)← dep(p) ∪ dep(p+ 1) (p+ 1 may be a a position variable or
an endmarker). Then we perform a symmetric action for positions whose letters are in Γr

(so for p− 1).
For Γ compression, we perform in parallel the following operation for each block (perhaps

of length 1) of a letter in Γ: given a maximal block a` at positions p, p+ 1, . . . , p+ `− 1 we
set the depints of those positions to

⋃`
i=−1 dep(p+ i) (note that p− 1 and p+ ` are included).

In the following we mostly focus on Pos⊇(i). As this is an interval of positions, we
visualize that Pos⊇(I) extends to the neighbouring positions. Thus we will refer to operations
of changing the depints before the block compression and pair compression as extending of
Pos⊇(I) to new positions; those positions get their depints extended. Note that this notion
does not apply to the case when we pop letters from variables.

Depints defined in this way satisfy the conditions (I1–I3).

I Lemma 7. (I1–I3) hold during LinWordEq.

Proof. We first show (I1) for Pos⊇(i). The proof is by induction; this is true at the
beginning. If we make a union of depints, a position adjacent to a position in Pos⊇(i) symbol
can become part of Pos⊇(i) (this can be iterated when the depints are changed before the
blocks compression), which is fine. During the compression, we compress symbols on positions
with the same depints, so this is fine. When we pop a letter from variable at position p to
position p′ then dep(p′) = dep(p) ∈ Pos⊇(i) and by inductive assumption Pos⊇(i) was an
interval, which shows the claim.

We now show by induction that i ≤ i′ implies Pos⊇(i) ≤ Pos⊇(i′). Clearly this holds
at the beginning, as then Pos⊇(i) = Pos(i) = {i} and Pos⊇(i′) = Pos(i′) = {i′}. Consider
the moment, in which the condition Pos⊇(i) ≤ Pos⊇(i′) is first violated, by symmetry it is
enough to consider the case in which the first position in Pos⊇(i′) is smaller than the first
in Pos⊇(i). If this position was just popped then it cannot be popped to the right, as the
position of popping variable is in Pos⊇(i′). So it was popped to the left. But then the variable
that popped it was on position in Pos⊇(i′) and by induction assumption Pos⊇(i′) ≥ Pos⊇(i),

A. Jeż 95:7

so it had a position from Pos⊇(i) to its left, contradiction. The other option is that this
happened when a depint of a position was changed so that it got into Pos⊇(i′). But then
the position to its right was in Pos⊇(i′) and by induction assumption either this position
was in Pos⊇(i) or some position to the left of it was; in both cases the position also got into
Pos⊇(i).

Now (I1) for Pos⊇([i . . j]) for an arbitrary depint [i . . j] follows: Pos⊇([i . . j]) =
⋂j

k=i Pos⊇(k)
and as each Pos⊇(k) is an interval, also Pos⊇([i . . j]) is.

For the purpose of the proof, define Pos⊆(I) = {p | dep(p) ⊆ I} (a dual notion to
Pos⊇(I)).

I Claim 8. Pos⊆(I) consists of consecutive positions. Given two similar depints I ∼ I ′

UV [Pos⊆(I)] and UV [Pos⊆(I ′)] are equal as sequences of symbols and the corresponding
positions in them have similar depints.

The proof follows by a simple, yet tedious induction and it is omitted.
Claim 8 is stronger than (I3) and so it implies it. Concerning (I1): Pos(I) = Pos⊇(I) ∩

Pos⊆(I); as both are intervals, also Pos(I) is.
Concerning (I2), we show a stronger statement: given positions p, p + 1 it holds that

dep(p) ≤ dep(p+1). Let i, i′ be the leftmost indices in dep(p),dep(p+1), respectively. Assume
for the sake of contradiction that i > i′. We already showed that then Pos⊇(i) ≥ Pos⊇(i′).
So if p+ 1 ∈ Pos⊇(i′) ≤ Pos⊇(i) 3 p then also p ∈ Pos⊇(i′), i.e. i′ ∈ dep(p). As i′ < i then
the leftmost index in dep(p′) cannot be i. The proof for rightmost index is similar. J

Encoding of letters. Letters in Pos(I) are encoded as U0V0[I]#1, U0V0[I]#2, etc. Note,
that there is no a priori bound on the size of such numbers. Furthermore, if I ′ ∼ I then
encoding I#i and I ′#i is the same (these are the same symbols by (I3).

3.2 Pair compression strategy
We assume that LinWordEq makes the nondeterministic choices according to the solution,
thus the space consumption of a run depends only on the choices of the partitions during
pair compression, called a strategy. We describe a linear-space strategy.

Idea. Imagine we ensured that during one phase each variable popped O(1) letters and each
Pos⊇(i) expanded by O(1) letters. Then |Pos⊇(i)| = O(1): we introduced O(1) positions to
Pos(i), say at most k, and by Lemma 2 among positions in Pos⊇(i) at the beginning of the
phase there were at least 2/3 took part in compression, so their number dropped by 1/3;
thus |Pos⊇(i)| ≤ 3k. As a result, |Pos(I)| ≤ 3k for each depint I: as Pos(I) ⊆ Pos⊇(i) for
i ∈ I. This would yield that the whole bit-space used for the encoding is linear: each number
m used in U0V0[I]#m is at most 3k = O(1), so they increase the size by at most a constant
fraction. On the other hand, the depints consume:∑

I:depint
||U0V0[I]|| · |Pos(I)| =

∑
i:index

||U0V0[i]|| · |Pos⊇(i)|

(a simple proof is given later) and the right hand side is linear in terms of the input equation:
|Pos⊇(i)| = O(1) and

∑
i:index ||U0V0[i]|| is the the bit-size of the input equation.

It remains to ensure that Pos⊇(i) do not extend too much and variables do not pop too
much letters. Given a phase, we call a letter new, if it was introduced during this phase.
New letters cannot be popped nor can Pos⊇(i) be extended to positions with new letters.
Thus they are used to prevent extending Pos⊇(i) and popping: it is enough to ensure that

ICALP 2017

95:8 Word Equations in Nondeterministic Linear Space

the first/last letter of a variable is new and that a letter on the position to the left/right of
Pos⊇(I) is new.

Unfortunately, we cannot ensure this for all variables Pos⊇(i). We can make this true in
expectation: given a random partition there is a 1/4 probability that a fixed pair is compressed
(and the resulting letter is new). This requires formalisation and calculations.

Strategy. Given a solution S of an equation we say that a variable X is left blocked if S(X)
has at most one letter or the first or second letter in S(X) is new, otherwise a variable is
left unblocked; define right blocked and right unblocked variables similarly. An index i is left
blocked if in S(U) (or S(V), respectively) there is at most position to the left of Pos⊇(i) or
one of the letters on the positions one and two to the left of Pos⊇(i) is new, otherwise i is
left unblocked; define right blocked and right unblocked indices similarly.

I Lemma 9. Consider a solution S = S0 and consecutive solutions S1, S2, . . . corresponding
to it during a phase. If a variable X becomes left (right) blocked for some Sk, then it is left
(right, respectively) blocked for each S` for ` ≥ k and it pops to the left (right, respectively)
at most 1 letter after it became left (right, respectively) blocked. If an index i becomes left
(right) blocked for some Sk then it is left (right, respectively) blocked for each S` for ` ≥ k
and at most one letter to the left (right, respectively) will have its depint extended by i after i
became left (right, respectively) blocked.

The proof follows by a simple case inspection and it is omitted.
The strategy iterates steps 1, 2, 3 and 4. In a step i it chooses a partition so that the

corresponding i-th sum below decreases by 1/2, unless this sum is already 0:∑
X∈X left unblocked

nX · ||X||+
∑

X∈X right unblocked
nX · ||X|| (1)

∑
i: left unblocked index

||U0V0[i]||+
∑

i: right unblocked index
||U0V0[i]|| (2)

∑
X∈X left unblocked

nX +
∑

X∈X right unblocked
nX (3)

∑
i: left unblocked index

1 +
∑

i: right unblocked index
1 (4)

The idea of the steps is: (1) upper-bounds the increase of bit-size of depints in the equation
after popping letters. So by iteratively halving it we ensure that total encoding increase
caused by popping letters is small. Similarly, (2) upper-bounds the increase due to expansion
of indices to new depints. The following (3) is connected (in a more complex way) to an
increase, after popping, of number of bits used for numbers in the encoding. Similarly (4) to
an increase after the extension of depints.

I Lemma 10. During the pair compression LinWordEq can always choose a partition that at
least halves the value of a chosen non-zero sum among (1)–(4).

Proof. Consider (1) and take a random partition, in the sense that each letter a ∈ Γ goes
to the Γ` with probability 1/2 and to Γr with probability 1/2. Let us fix a variable X and
its side, say left. What happens with nX · ||X|| in (1) in the sum corresponding to left
unblocked variables? If X is left blocked then, by Lemma 9, it will stay left blocked and so
the contribution is and will be 0. If it is left unblocked, then its two first letters a, b are not
new, so they are in Γ. If S(X) has only those two letters, then with probability 1/2 the a

A. Jeż 95:9

will be in Γr and it will be popped and X will become left blocked (as S(X) has only one
letter), the same analysis applies, when the third leftmost letter is new. The remaining case
is that the three leftmost letters in S(X) are not new, let them be a, b, c ∈ Γ. By Lemma 4
a 6= b 6= c. With probability 1/4 ab ∈ Γ`Γr and with probability 1/4 bc ∈ Γ`Γr. Those
events are disjoint (as in one b ∈ Γr and in the other b ∈ Γ`) and so their union happens
with probability 1/2. In both cases X will become left blocked, as a new letter is its first or
second in S(X). In all uninvestigated cases the contribution of nX · ||X|| cannot raise, which
shows the claim in this case. The case of (3) is shown in the same way.

For (2), the analysis for an index i that is left unblocked is similar, but this time we
consider the positions to the left of Pos⊇(i) and Pos⊇(i) can extend to them (instead of
letters being popped from variables in case of (1)) and some of them may be compressed to
one. Note that if there are no letters to the left/right then this index is blocked from this
side. The case of (4) is shown in the same way. J

Space consumption. We now give the linear space bound on the size of equation. This
formalises the intuition from the beginning of Section 3.2. As a first step, we show an
upper-bound on the encoding size of the equation; define

Hd(U, V) =
∑

i:index

||U0V0[i]|| · |Pos⊇(i)|, Hn(U, V) =
∑

i:index

2|Pos⊇(i)| · log(|Pos⊇(i)|+1) ,

and H(U, V) = Hd(U, V) +Hn(U, V). Hd corresponds to the size of U0V0[I] in the encoding
and Hd: of the numbers in the encoding.

I Lemma 11. Given the equation (U, V) it holds that ||(U, V)|| ≤ Hd(U, V) +Hn(U, V).

The proof follows by simple symbolic transformation of the definitions.
Instead of showing a linear bound on ||(U, V)|| we give a linear bound on H(U, V). Recall

that (U0, V0) denotes the input equation.

I Lemma 12. Consider an equation U = V , its solution S, a phase of LinWordEq which
makes the nondeterministic choices according to S and partitions according to the strategy.
Let the returned equation be (U ′, V ′). Then H(U ′, V ′) ≤ 5

6H(U, V) + α||(U0, V0)|| and in a
phase H on intermediate equations is at most βH(U, V) + γ||(U0, V0)|| for some constants
α, β, γ.

Proof. We separately estimate the Hd and Hn. Concerning Hd, let us first estimate
||U0V0[dep(p)]|| summed over positions p of letters popped into the equation during a
phase (note, this does not include the size of numbers used in the encoding). For each
variable we pop perhaps several letters to the left and right before block compression, but
those letters are immediately replaced with single letters, so we count each as 1; also, when
this side of a variable becomes blocked, it can pop at most one letter. Otherwise, a side of a
variable pops at most 1 letter per pair compression, in which it is unblocked from this side.
Note that the depint is the same as for variable, so the encoding size is ||X||. So in total the
bit-size of popped letters is at most:∑

X∈X
2nX · ||X||︸ ︷︷ ︸

block compression

+
∑

X∈X
2nX · ||X||︸ ︷︷ ︸

after X becomes blocked

+

+
∑

P : partition

 ∑
X∈X

left unblocked in P

nX · ||X||+
∑

X∈X
right unblocked in P

nX · ||X||

 . (5)

ICALP 2017

95:10 Word Equations in Nondeterministic Linear Space

Observe that the third sum (the one summed over all partitions) at the beginning of the
phase is equal to

∑
X 2nX · ||X||, as no side of the variable is blocked, and by the strategy

point (1) its value at least halves every 4th pair compression (and it cannot increase, as by
Lemma 9 no side of the variable can cease to be blocked). Thus (5) is at most

4
∑
X

nX · ||X||+ 8
∑
X

nX · ||X||
(

1 + 1
2 + 1

4 + · · ·
)

= 20
∑
X

nX · ||X|| ≤ 20||(U0, V0)|| .

We now similarly estimate how many positions got into Pos⊇(i) due to expansion of Pos⊇(i):
Pos⊇(i) can expand to two letters during the block compression (to be more precise: to
positions that are inside a block and to the positions to the let/right ones, but positions in a
block are replaced with a single letter and one of them was in Pos⊇(i)) to one position at
each side after i becomes blocked and by one position for each partition P in which this side
of i is not blocked. So the increase in the bit-size is∑
i: index

4||U0V0[i]||+
∑

P : partition

(∑
i: index

left unblocked in P

||U0V0[i]||+
∑

i: index
right unblocked in P

||U0V0[i]||
)
(6)

and as in (5) similarly at the beginning of the phase the second sum (so the one summed by
partitions) is

∑
i: index 2||U0V0[i]|| = 2||(U0, V0)|| and it at least halves every 4th partition,

by strategy point (2). Thus similar calculations show that (6) is at most 20||(U0, V0)||.
On the other hand, the number of positions in Pos⊇(i) drops till the end of the phase by

at least |Pos⊇(i)|
3 − 1 due to compression:

1. If U0V0[i] is a letter, then Pos⊇(i) are all positions of letters and Lemma 2 yields that
Pos⊇(i) looses at least |Pos⊇(i)|−1

3 positions.
2. If U0V0[i] is an ending marker, then the marker itself is unchanged and the remaining

positions in Pos⊇(i) are letter-positions and Lemma 2 applies to them, so Pos⊇(i) looses
at least |Pos⊇(i)|−2

3 <
|Pos⊇(i)|

3 − 1 positions.
3. If U0V0[i] is a variable then Pos⊇(i) includes the position of a variable and Lemma 2 applies

to strings of letters to the left and right, say of length `, r, where `+ r = |Pos⊇(i)| − 1.
Then due to compressions Pos⊇(i) looses at least `−1

3 + r−1
3 = |Pos⊇(i)|

3 − 1 positions.
Thus:

Hd(U ′, V ′) ≤ 40||(U0, V0)||︸ ︷︷ ︸
new positions in depints

+
∑

i: index
||U0V0[i]|| ·

(
2
3 |Pos⊇(i)|+ 1

)
︸ ︷︷ ︸

old positions lost

= 40||(U0, V0)||+
∑

i: index

2
3 ||U0V0[i]|| · |Pos⊇(i)|+

∑
i: index

||U0V0[i]||

= 41||(U0, V0)||+ 2
3Hd(U, V) .

We also estimate the maximal value of Hd during the phase, as for intermediate equations
we cannot guarantee that the compression reduced the length of all letters. We already
showed that in a phase we increase Hd by 40||(U0, V0)||. This yields a bound of Hd(U, V) +
40||(U0, V0)||, which shows the part of the claim of Lemma for Hd.

Concerning Hn, for an index i let ki, oi, ei denote, respectively: |Pos⊇(i)| at the beginning
of the phase, number of positions of letters popped from a variable with depint i and number
of positions to whose depint i extended. First we estimate

∑
i: index h(oi) and

∑
i: index h(ei)

A. Jeż 95:11

and then use those estimations to calculate the bound on Hn(U ′, V ′). We first inspect the
case of oi; let P1, P2, . . . denote the consecutive partitions in phase. We show that∑

i: index

h(oi) ≤
∑

X∈X
25nX +

∑
m≥1

m ·
(∑

X∈X
left unblocked in Pm

nX +
∑

X∈X
right unblocked in Pm

nX

)
. (7)

The inequality follows as: if (one occurrence of) X popped oX letters, then it was not blocked
on left/right side for o1/o2 partitions, where o1 + o2 ≥ oX − 4 (note that one sequence can
be popped to the left and right during block compression but it is immediately replaced
with a single letter, so we treat them as one letter, also one letter can be popped to the
left/right after X became blocked). Then in right hand side of (7) the contribution from
(one occurrence of) X is at least

25 + o1(o1 + 1) + o2(o2 + 1)
2 ≥ (oX − 4)2

4 + oX − 4
2 + 25 ≥ oX log(oX + 1) ,

where the first inequality follows as o1 + o2 ≥ oX − 4 and the second can be checked by
simple numerical calculation. Lastly, in (7) each oi is equal to an appropriate oX .

The sum in braces on the right hand side of (7) initially is at most 2|U0V0| ≤ 2||(U0, V0)||
and by strategy choice (3) it is at least halved every 4th step. So this sum is at most:∑

i≥0
(16i+ 10)︸ ︷︷ ︸

4 consecutive steps

· 2||(U0, V0)||︸ ︷︷ ︸
initial size

· (1/2)i = 104||(U0, V0)||

and consequently∑
i: index

h(oi) ≤ 129||(U0, V0)|| . (8)

The analysis for ei is similar: for a single index i the estimation of the number of position
by which Pos⊇(i) extends is the same as the estimation of number of letters popped from an
occurrence of a variable, thus∑

i: index
h(ei) ≤ 129||(U0, V0)|| . (9)

We now estimate, how many positions were lost due to compression, recall that ki is
the size of Pos⊇(i) at the beginning of the phase. Using the same analysis as in the case
of Hd, from Lemma 2 it follows that at least ki

3 − 1 positions were lost in the phase due to
compression . Thus

Hn(U ′, V ′) ≤
∑

i: index
h

(
2
3ki + 1 + oi + ei

)
. (10)

Consider two subcases: if 2
3ki + 1 + oi + ei ≤ 5

6ki, then the summand can be estimated as
h(5

6ki) ≤ 5
6h(ki) and we can upper bound the sum over those cases by 5

6
∑

i: index h(ki). If
2
3ki + 1 + oi + ei >

5
6ki then 1 + oi + ei >

1
6ki and so 2

3ki + 1 + oi + ei < 5(1 + oi + ei). Thus
(10) is upper-bounded by:

Hn(U ′, V ′) ≤ 5
6
∑

i: index
h(ki) +

∑
i: index

h(5(1 + oi + ei)) .

Using simple properties of h as well as (8)–(9) we upper-bound the right hand side by
5
6Hn(U, V) + 15540||(U0, V0)||.

ICALP 2017

95:12 Word Equations in Nondeterministic Linear Space

We should estimate the maximal Hn value during the phase, as inside a phase we cannot
guarantee that letters get compressed, i.e. estimate

∑
i: index h (ki + oi + ei). Using similar

calculation as in the case of (10) and properties of h we obtain:∑
i: index

h (ki + oi + ei) ≤ 8Hn(U, V) + 2064||(U0, V0)|| ,

which shows the claim of the Lemma in the case of Hn and so also in case of H. J

3.3 Proof of Theorem 3
By Lemma 1 all our subprocedures are sound, so we never accept an unsatisfiable equation.

We now give analyse the nondeterministic choices that yield termination, completeness
and linear space consumption. Consider an equation U = V at the beginning of the phase,
let Γ be the set of letters in this equation. If it has a solution S′, then it also has a solution
S over Γ such that |S(X)| =|S′(X)| for each variable: we can replace letters outside Γ with
a fixed letter from Γ. During the phase we will make nondeterministic choices according to
this S.

Let the equation obtained at the end of the phase be U ′ = V ′ and S′ be the corresponding
solution. Then |S′(U ′)| ≤ 2|S(U)|+1

3 by Lemma 2 and we begin the next phase with S′. Hence
we terminate after O(logN) phases, where N is the length of some solution of the input
equation.

Let the run also choose the partitions according to the strategy. We show by induction
that for an equation (U, V) at the beginning of a phase H(U, V) ≤ δ||(U0, V0)||, where
δ is a constant. Initially Hn(U0, V0) = ||(U0, V0)|| and Hd(U0, V0) = 2||(U0, V0)||, as for
each index dep(i) = {i}; hence the claim holds. By Lemma 12 the inequality at the
end of each phase holds for δ = 6α for α from Lemma 12. For intermediate equations
H(U, V) ≤ (6αγ + β)||(U0, V0)||, by Lemma 12, where β, γ are the constants from Lemma 12.

To upper-bound the space consumption, we also estimate other stored information: we
also store the alphabet from the beginning of the phase (this is linear in the size of the
equation at the beginning of the phase) and the mapping of this alphabet to the current
symbols (linear in the equation at the beginning of the phase plus the size of the current
equation). The terminating condition that some pair of letters in Γ2 was not covered is guessed
nondeterministically, we do not store Γ2. The pair compression and block compression can
be performed in linear space, see Lemma 6. Note that this includes the change of Huffman
coding.

References
1 Volker Diekert, Claudio Gutiérrez, and Christian Hagenah. The existential theory of

equations with rational constraints in free groups is PSPACE-complete. Inf. Comput.,
202(2):105–140, 2005.

2 Volker Diekert, Artur Jeż, and Manfred Kufleitner. Solutions of word equations over par-
tially commutative structures. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval
Rabani, and Davide Sangiorgi, editors, ICALP, volume 55 of LIPIcs, pages 127:1–127:14.
Schloss Dagstuhl – Leibniz-Zentrum fuer Informatik, 2016. doi:10.4230/LIPIcs.ICALP.
2016.127.

3 Volker Diekert, Artur Jeż, and Wojciech Plandowski. Finding all solutions of equations in
free groups and monoids with involution. Inf. Comput., 251:263–286, 2016. doi:10.1016/
j.ic.2016.09.009.

http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.127
http://dx.doi.org/10.4230/LIPIcs.ICALP.2016.127
http://dx.doi.org/10.1016/j.ic.2016.09.009
http://dx.doi.org/10.1016/j.ic.2016.09.009

A. Jeż 95:13

4 Volker Diekert and Markus Lohrey. Word equations over graph products. International
Journal of Algebra and Computation, 18(3):493–533, 2008.

5 Claudio Gutiérrez. Satisfiability of word equations with constants is in exponential space. In
FOCS, pages 112–119. IEEE Computer Society, 1998. doi:10.1109/SFCS.1998.743434.

6 Joxan Jaffar. Minimal and complete word unification. J. ACM, 37(1):47–85, 1990.
7 Artur Jeż. Context unification is in PSPACE. In Elias Koutsoupias, Javier Esparza, and

Pierre Fraigniaud, editors, ICALP, volume 8573 of LNCS, pages 244–255. Springer, 2014.
doi:10.1007/978-3-662-43951-7_21.

8 Artur Jeż. Recompression: a simple and powerful technique for word equations. J. ACM,
63(1):4:1–4:51, Mar 2016. doi:10.1145/2743014.

9 Antoni Kościelski and Leszek Pacholski. Complexity of Makanin’s algorithm. J. ACM,
43(4):670–684, 1996.

10 Gennadií Makanin. The problem of solvability of equations in a free semigroup. Matem-
aticheskii Sbornik, 2(103):147–236, 1977. (in Russian).

11 Gennadií Makanin. Equations in a free group. Izv. Akad. Nauk SSR, Ser. Math. 46:1199–
1273, 1983. English transl. in Math. USSR Izv. 21 (1983).

12 Yuri Matiyasevich. Some decision problems for traces. In Sergej Adian and Anil Nerode,
editors, LFCS, volume 1234 of LNCS, pages 248–257. Springer, 1997. Invited lecture.

13 Wojciech Plandowski. Satisfiability of word equations with constants is in NEXPTIME. In
STOC, pages 721–725. ACM, 1999. doi:10.1145/301250.301443.

14 Wojciech Plandowski. Satisfiability of word equations with constants is in PSPACE.
J. ACM, 51(3):483–496, 2004. doi:10.1145/990308.990312.

15 Wojciech Plandowski. An efficient algorithm for solving word equations. In Jon M. Klein-
berg, editor, STOC, pages 467–476. ACM, 2006. doi:10.1145/1132516.1132584.

16 Wojciech Plandowski and Wojciech Rytter. Application of Lempel-Ziv encodings to the
solution of word equations. In Kim Guldstrand Larsen, Sven Skyum, and Glynn Winskel,
editors, ICALP, volume 1443 of LNCS, pages 731–742. Springer, 1998. doi:10.1007/
BFb0055097.

17 Alexander A. Razborov. On Systems of Equations in Free Groups. PhD thesis, Steklov
Institute of Mathematics, 1987. In Russian.

18 Klaus U. Schulz. Makanin’s algorithm for word equations – two improvements and a gen-
eralization. In Klaus U. Schulz, editor, IWWERT, volume 572 of LNCS, pages 85–150.
Springer, 1990. doi:10.1007/3-540-55124-7_4.

ICALP 2017

http://dx.doi.org/10.1109/SFCS.1998.743434
http://dx.doi.org/10.1007/978-3-662-43951-7_21
http://dx.doi.org/10.1145/2743014
http://dx.doi.org/10.1145/301250.301443
http://dx.doi.org/10.1145/990308.990312
http://dx.doi.org/10.1145/1132516.1132584
http://dx.doi.org/10.1007/BFb0055097
http://dx.doi.org/10.1007/BFb0055097
http://dx.doi.org/10.1007/3-540-55124-7_4

	Introduction
	The (known) algorithm
	Space consumption
	Dependency intervals
	Pair compression strategy
	Proof of Theorem 3

