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Abstract
We investigate the class of regular-ordered word equations. In such equations, each variable
occurs at most once in each side and the order of the variables occurring in both left and right
hand sides is preserved (the variables can be, however, separated by potentially distinct constant
factors). Surprisingly, we obtain that solving such simple equations, even when the sides contain
exactly the same variables, is NP-hard. By considerations regarding the combinatorial structure
of the minimal solutions of the more general quadratic equations we obtain that the satisfiability
problem for regular-ordered equations is in NP. The complexity of solving such word equations
under regular constraints is also settled. Finally, we show that a related class of simple word
equations, that generalises one-variable equations, is in P.
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1 Introduction

A word equation is an equality α = β, where α and β are words over an alphabet Σ∪X (called
the left, respectively, right side of the equation); Σ = {a, b, c, . . .} is the alphabet of constants
and X = {x1, x2, x3, . . .} is the alphabet set of variables. A solution to the equation α = β is
a morphism h : (Σ ∪X)∗ → Σ∗ that acts as the identity on Σ and satisfies h(α) = h(β). For
instance, α = x1abx2 and β = ax1x2b define the equation x1abx2 = ax1x2b, whose solutions
are the morphisms h with h(x1) = ak, for k ≥ 0, and h(x2) = b`, for ` ≥ 0.

The study of word equations (or the existential theory of equations over free monoids) is
an important topic found at the intersection of algebra and computer science, with significant
connections to, e.g., combinatorial group or monoid theory [19, 18, 2], unification [25, 11, 12],
and, more recently, data base theory [9, 8]. The problem of deciding whether a given word
equation α = β has a solution or not, known as the satisfiability problem, was shown to
be decidable by Makanin [20] (see Chapter 12 of [17] for a survey). Later it was shown
that the satisfiability problem is in PSPACE by Plandowski [22]; a new proof of this result
was obtained in [14], based on a new simple technique called recompression. However, it
is conjectured that the satisfiability problem is in NP; this would match the known lower
bounds: the satisfiability of word equations is NP-hard, as it follows immediately from,
e.g., [4]. This hardness result holds in fact for much simpler classes of word equations, like
quadratic equations (where the number of occurrences of each variable in αβ is at most
two), as shown in [3]. There are also cases when the satisfiability problem is tractable. For
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18:2 The Hardness of Solving Simple Word Equations

instance, word equations with only one variable can be solved in linear time in the size of
the equation, see [13]; equations with two variables can be solved in time O(|αβ|5), see [1].

In most cases, the NP-hardness of the satisfiability problem for classes of word equations
was shown as following from the NP-completeness of the matching problem for corresponding
classes of patterns with variables. In the matching problem we essentially have to decide
whether an equation α = β, with α ∈ (Σ ∪X)∗ and β ∈ Σ∗, has a solution; that is, only one
side of the equation, called pattern, contains variables. The aforementioned results [4, 3]
show, in fact, that the matching problem is NP-complete for general α, respectively when
α is quadratic. Many more tractability and intractability results concerning the matching
problem are known (see [24, 6, 7]). In [5], efficient algorithms were defined for, among others,
patterns which are regular (each variable has at most one occurrence), non-cross (between
any two occurrences of a variable, no other distinct variable occurs), or patterns with only a
constant number of variables occurring more than once.

Naturally, for a class of patterns that can be matched efficiently, the hardness of the
satisfiability problem for word equations with sides in the respective class is no longer
immediate. A study of such word equations was initiated in [21], where the following results
were obtained. Firstly, the satisfiability problem for word equations with non-cross sides
(for short non-cross equations) remains NP-hard. In particular, solving non-cross equations
α = β where each variable occurs at most three times, at most twice in α and exactly once in
β, is NP-hard. Secondly, the satisfiability of one-repeated variable equations (where at most
one variable occurs more than once in αβ, but arbitrarily many other variables occur only
once) having at least one non-repeated variable on each side, was shown to be trivially in P.

In this paper we mainly address the class of regular-ordered equations, whose sides are
regular patterns and, moreover, the order of the variables occurring in both sides is the
same. This seems to be one of the structurally simplest classes of equations whose number of
variables is not bounded by a constant. One central motivation for studying these equations
with a simple structure is that understanding their complexity and combinatorial properties
may help us to identify a boundary between classes of word equations whose satisfiability
is tractable and intractable. Moreover, we wish to gain a better understanding of the core
reasons why solving word equations is hard. In the following, we overview our results,
methods, and their connection to existing works from the literature.

Lower bounds. Our first result closes the main problem left open in [21]. Namely, we show
that it is (still) NP-hard to solve regular (ordered) word equations. Note that in these word
equations each variable occurs at most twice: at most once in every side. They are particular
cases of both quadratic equations and non-cross equations, so the reductions showing the
hardness of solving these more general equations do not carry over. To begin with, matching
quadratic patterns is NP-hard, while matching regular patterns can be done in linear time.
Showing the hardness of the matching problem for quadratic patterns in [3] relied on a simple
reduction from 3-SAT, where the two occurrences of each variable were used to simulate
an assignment of a corresponding variable in the SAT formula, respectively to ensure that
this assignment satisfies the formula. To facilitate this final part, the second occurrences of
the variables were grouped together, so the equation constructed in this reduction was not
non-cross. Indeed, matching non-cross patterns can be done in polynomial time. So showing
that solving non-cross equations is hard, in [21], required slightly different techniques. This
time, the reduction was from an assignment problem in graphs. The (single) occurrences of
the variables in one side of the equation were used to simulate an assignment in the graph,
while the (two) occurrences of the variables from the other side were used for two reasons:
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to ensure that the previously mentioned assignment is correctly constructed and to ensure
that it also satisfies the requirements of the problem. For the second part it was also useful
to allow the variables to occur in one side in a different order as in the other side.

As stated in [21], showing that the satisfiability problem for regular equations seems to
require a totally different approach. Our hardness reduction relies on some novel ideas, and,
unlike the aforementioned proofs, has a deep word-combinatorics core. As a first step, we
define a reachability problem for a certain type of (regulated) string rewriting systems, and
show it is NP-complete (in Lemma 7). This is achieved via a reduction from the strongly
NP-complete problem 3-Partition [10]. Then we show that this reachability problem can be
reduced to the satisfiability of regular-ordered word equations; in this reduction (described
in the successive Lemmas 9, 10, and 11), we essentially try to encode the applications of
the rewriting rules of the system into the periods of the words assigned to the variables in
a solution to the equation. In doing this, we are able to only use one occurrence of each
variable per side, and moreover to even have the variables in the same order in both sides.

Our reduction suggests the ability of this simple class of equations to model other natural
problems in rewriting, combinatorics on words, and beyond. In this respect, our construction
seems interesting with respect to the expressibility of word equations, as studied in [15].

Upper bounds. A consequence of the results in [23] is that the satisfiability problem for
a certain class of word equations is in NP if the lengths of the minimal solutions of such
equations (where the length of the solution defined by a morphism h is the image of the
equation’s sides under h) are at most exponential. With this in mind, we show Lemma 14,
which gives us an insight in the combinatorial structure of the minimal solutions of quadratic
equations: if we follow around the minimal solutions the positions that are fixed inside the
images of the variables by each terminal of the original equation (in order, starting with
that terminal), we obtain sequences that should not contain repetitions. Consequently, in
Proposition 17, we give a simple and concise proof of the fact that the image of any variable in
a minimal solution to a regular-ordered equation is at most linear in the size of the equation.
It immediately follows that the satisfiability problem for regular-ordered equations is in NP.
While this result was expected, the approach we use to obtain it seems rather interesting
to us, and also a promising approach to showing that other, more complicated, classes of
restricted word equations can be solved in NP-time. For instance, it is an open problem to
show this for arbitrary regular or quadratic equations. It is worth noting that our polynomial
upper bound on length of minimal solutions of regular-ordered equations does not hold even
for slightly relaxed versions of such equations. More precisely, non-cross equations α = β

where the order of the variables is the same in both sides and each variable occurs exactly
three times in αβ, but never only on one side, may already have exponentially long minimal
solutions (see Proposition 2). To this end, it seems even more surprising that it is NP-hard
to solve equations with such a simple structure (regular-ordered), which, moreover, have
quadratically short solutions. As such, regular-ordered equations seem to be among the
structurally simplest word-equations, whose satisfiability problem is intractable.

Extending our ideas, we settle the complexity of solving regular-ordered equations with
regular constraints (as defined in [3], where each variable is associated with an NFA), which
is in NP for regular-ordered equations whose sides contain exactly the same variables, or
when the languages defining the scope of the variables are all accepted by NFAs with at
most c states, where c is a constant. For regular-ordered equations with regular constraints
without these restrictions, the problem remains PSPACE-complete.

Finally, we use again a reasoning on the structure of the minimal solutions of equations,
similar to the above, to show that if we preserve the non-cross structure of the sides of the
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18:4 The Hardness of Solving Simple Word Equations

considered word equations, but allow only one variable to occur an arbitrary number of times
(all the others occur exactly once in total, and hence in at most one side), we get a class of
equations whose satisfiability problem is in P. This problem is related to the one-repeated
variable equations considered in [21]; in this case, we restrict the equations to a non-cross
structure of the sides, but drop the condition that at least one non-repeated variable should
occur on each side. Moreover, this problem generalises the one-variable equations [13], while
preserving the tractability of their satisfiability problem. Last, but not least, this result shows
that the pattern searching problem, in which, given a pattern α ∈ (Σ ∪ {x1})∗ containing
constants and exactly one variable x1 (occurring several times) and a text β ∈ (Σ ∪ {x1})∗
containing constants and the same single (repeated) variable, we check whether there exists
an assignment of x1 that makes α a factor of β, is tractable; indeed, this problem is the same
as checking whether the word equation x2αx3 = β, with α, β ∈ (Σ ∪ {x1})∗, is satisfiable.

2 Preliminaries

Let Σ be an alphabet. We denote by Σ∗ the set of all words over Σ; by ε we denote the empty
word. Let |w| denote the length of a word w. For 1 ≤ i ≤ j ≤ |w| we denote by w[i] the letter
on the ith position of w and w[i..j] = w[i]w[i+ 1] · · ·w[j]. A word w is p-periodic for p ∈ N
(and p is called a period of w) if w[i] = w[i+ p] for all 1 ≤ i ≤ |w| − p; the smallest period of
a word is called its period. By extension, for a word w of period p, we sometimes call w[1..p]
the period of w. Let w = xyz for some words x, y, z ∈ Σ∗, then x is called prefix of w, y is a
factor of w, and z is a suffix of w. Two words w and u are called conjugate if there exist
non-empty words x, y such that w = xy and u = yx. The powers of w are defined by w0 = ε,
wn = wwn−1 for n ≥ 1, and wω = ww · · · , an infinite concatenation of the word w.

Let Σ = {a, b, c, . . .} be an alphabet of constants and let X = {x1, x2, x3, . . .} be an
alphabet of variables. We assume that X and Σ are disjoint. A word α ∈ (Σ ∪ X)∗ is
usually called pattern. For a pattern α and a letter z ∈ Σ ∪X, let |α|z denote the number of
occurrences of z in α; var(α) denotes the set of variables from X occurring in α. A morphism
h : (Σ ∪ X)∗ → Σ∗ with h(a) = a for every a ∈ Σ is called a substitution. We say that
α ∈ (Σ ∪ X)∗ is regular if, for every x ∈ var(α), we have |α|x = 1; e. g., ax1ax2cx3x4b is
regular. Note that L(α) = {h(α) | h is a substitution} (the pattern language of α) is regular
when α is regular, hence the name of such patterns. The pattern α is non-cross if between
any two occurrences of the same variable x no other variable different from x occurs, e. g.,
ax1bax1x2ax2x2b is non-cross, but x1bx2x2bx1 is not.

A word equation is a tuple (α, β) ∈ (Σ ∪X)+ × (Σ ∪X)+; we usually denote such an
equation by α = β, where α is the left-hand side (LHS, for short) and β the right-hand side
(RHS) of the equation. A solution to an equation α = β is a substitution h with h(α) = h(β),
and h(α) is called the solution word (defined by h); the length of a solution h of the equation
α = β is |h(α)|. A solution of shortest length to an equation is also called minimal.

A word equation is satisfiable if it has a solution and the satisfiability problem is to
decide for a given word equation whether or not it is satisfiable. The satisfiability prob-
lem for general word equations can be solved non-deterministically in time polynomial in
n logN , where n is the length of the equation and N the length of its minimal solution [23].
The next result follows.

I Lemma 1. Let E be a class of word equations. Suppose there exists a polynomial P such
that for any equation in E its minimal solution, if it exists, has length at most 2P (n) where n
is the length of the equation. Then the satisfiability problem for E is in NP.
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A word equation α = β is regular or non-cross, if both α and β are regular or both α
and β are non-cross, respectively; α = β is quadratic if each variable occurs at most twice
in αβ. We call a regular or non-cross equation ordered if the order in which the variables
occur in both sides of the equation is the same. That is, if x and y are variables occurring
both in α and β, then all occurrences of x occur before all occurrences of y in α if and
only if all occurrences of x occur before all occurrences of y in β. Note, however, that
variables may occur only in one side of a regular or non-cross ordered equation. For instance
x1x1ax2x3bx4 = x1ax1x2bx3 is ordered non-cross, while x1x1ax3x2b = x1ax1x2bx3 is still
non-cross but not ordered. Next we give an example of very simple word equations whose
minimal solution has exponential length, whose structure follows that in [16, Theorem 4.8].

I Proposition 2. The minimal solution to the word equation xnaxnbxn−1bxn−2 · · · bx1 =
axnx2

n−1bx2
n−2b...bx2

1ba2 has length Θ(2n).

For a word equation α = β and an x ∈ var(αβ), a regular constraint (for x) is a regular
language Lx. A solution h for α = β satisfies the regular constraint Lx if h(x) ∈ Lx. The
satisfiability problem for word equations with regular constraints is to decide on whether an
equation α = β with regular constraints Lx, x ∈ var(αβ), given as an NFA, has a solution
that satisfies all regular constraints.

Finally, we recall the 3-Partition problem (see [10]). This problem is NP-complete in
the strong sense, i.e., it remains NP-hard even when the input numbers are given in unary.

I Problem 3 (3-Partition – 3-PAR).
Instance: 3m nonnegative integers (given in unary) A = (k1, . . . , k3m), whose sum is ms
Question: Is there a partition of A into m disjoint groups of three elements, such that each
group sums exactly to s.

3 Lower bounds

In this section, we show that the highly restricted class of regular-ordered word equations is
NP-hard, and, thus, that even when the order in which the variables occur in an equation is
fixed, and each variable may only repeat once – and never on the same side of the equation –
satisfiability remains intractable. As mentioned in the introduction, our result shows the
intractability of the satisfiability problem for a class of equations considerably simpler than
the simplest intractable classes of equations known so far. Our result seems also particularly
interesting since we are able to provide a corresponding upper bound in the next section,
and even show that the minimal solutions of regular-ordered equations are “optimally short”.

I Theorem 4. The satisfiability problem for regular-ordered word equations is NP-hard.

In order to show NP-hardness, we shall provide a reduction from a reachability problem
for a simple type of regulated string-rewriting system. Essentially, given two words – a
starting point, and a target – and an ordered series of n rewriting rules (a rewriting program,
in a sense), the problem asks whether this series of rules may be applied consecutively (in
the predefined order) to the starting word such that the result matches the target. We stress
that the order of the rules is predefined, but the place where a rule is to be applied within
the sentential form is non-deterministically chosen.

I Problem 5 (Rewriting with Programmed Rules – REP).
Instance: Words ustart, uend ∈ Σ∗ and an ordered series of n substitution rules wi → w′i,
with wi, w′i ∈ Σ∗, for 1 ≤ i ≤ n.

MFCS 2017



18:6 The Hardness of Solving Simple Word Equations

Question: Can uend be obtained from ustart by applying each rule (i.e., replacing an occurrence
of wi with w′i), in order, to ustart.

I Example 6. Let ustart = b5 and uend = (a11bc2)5; for 1 ≤ i ≤ 10, consider the rules
wi → w′i with wi = b and w′i = aibc. We can obtain uend from ustart by first applying
w1 → w′1 to the first b, then w2 → w′2 to the second b, and further, in order for 3 ≤ i ≤ 5, by
applying wi → w′i to the ith b. Then, we apply w6 to the fifth b (counting from left to right).
Further we apply in order, for 7 ≤ i ≤ 10, wi → w′i to the (11− i)th occurrence of b.

It is not so hard to see that REP is NP-complete (the size of the input is the sum of
the lengths of ustart, uend, wi and w′i). A reduction can be given from 3-PAR, in a manner
similar to the construction in the example above. Importantly for our proof, 3-PAR is
strongly NP-complete, so it is simpler to reduce it to a problem whose input consists of words.

I Lemma 7. REP is NP-complete.

Our reduction centres on the construction, for any instance µ of REP, of a regular-ordered
word equation αµ = βµ which possesses a specific form of solution – which we shall call
overlapping – if and only if the instance of REP has a solution. By restricting the form of
solutions in this way, the exposition of the rest of the reduction is simplified considerably.
The main idea is that the applications of the rewriting rules are encoded in the periods of
each variable in the solution.

I Definition 8. Let n ∈ N, µ be an instance of REP with ustart, uend and rules wi → w′i
for 1 ≤ i ≤ n. Let # be a ‘new’ letter not occurring in any component of REP. We define
the regular-ordered equation αµ = βµ such that:
αµ := x1 w1 x2 w2 · · · xn wn xn+1 # uend, βµ := # ustart x1 w

′
1 x2 w

′
2 · · · xn w

′
n xn+1.

A solution h : (X ∪ Σ)∗ → Σ∗ is called overlapping if, for every 1 ≤ i ≤ n, there exists
zi ∈ Σ∗ such that wizi is a suffix of h(xi) and h(#ustartx1 · · ·w′i−1xi) = h(x1w1 · · ·xiwi)zi.

Of course, satisfiability of a class of word equations asks whether any solution exists,
rather than just overlapping solutions. Hence, before we prove our claim that αµ = βµ has an
overlapping solution if and only if µ satisfies REP, we present a construction of an equation
α = β which has a solution if and only if αµ = βµ has an overlapping solution. Essentially,
this shows that solving the satisfiability of regular-ordered equations is as hard as solving
the satisfiability of word equations when we restrict our search to overlapping solutions.

I Lemma 9. Let µ be an instance of REP. There exists a regular-ordered equation α = β of
size O(|αµβµ|) such that α = β is satisfiable if and only if αµ = βµ has an overlapping solution.

The rest of the proof relies on the following technical characterisation of overlapping
solutions to αµ = βµ in terms of periods vi of the images h(xi). The yi factors will correspond
to the zi factors discussed in the definition of overlapping solutions (see also Figure 1).

I Lemma 10. Let µ be a an instance of REP with ustart, uend and rules wi → w′i for
1 ≤ i ≤ n. A substitution h : (X ∪ Σ)∗ → Σ∗ is an overlapping solution to αµ = βµ if and
only if there exist prefixes v1, v2, . . . , vn of h(x1), h(x2), . . . , h(xn) such that:
1. h(xi) wi is a prefix of vωi for 1 ≤ i ≤ n, and
2. v1 = #ustart, and for 2 ≤ i ≤ n, vi = yi−1w

′
i−1, and

3. yn w′n h(xn+1) = h(xn+1) #uend,
where for 1 ≤ i ≤ n, yi is the suffix of h(xi) of length |vi| − |wi|.
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. . .

. . .

. . .

. . .

yi−1
xi xi+1

xi−1 xi xi+1

yi

vi vi+1

w′i−1 w′i

wih(αµ)

h(βµ)

Figure 1 The period of h(xi) is vi, and since wiyi is a suffix of h(xi) and |wiyi| = |vi|, we have
that wiyi is a cyclic shift of vi (i.e., they are conjugate) – so vi = swit and wiyi = wits for some s, t.
vi+1 is conjugate to sw′

it since vi+1 = yiw
′
i = tsw′

i. Thus vi+1 is obtained from vi by “applying” the
rule wi → w′

i (and conjugating, but we can keep track of this due to the unique occurrence of #).

We shall now take advantage of Lemma 10 in order to demonstrate the correctness of our
construction of αµ = βµ – i.e., that it has an overlapping solution if and only if µ satisfies
REP. In particular, the periods vi of the images h(xi) of the variables – which are obtained
as the ‘overlap’ between the two occurrences of h(xi) – store the ith stage of a rewriting
ustart → . . .→ uend. In fact, this is obtained as the conjugate of vi starting with #. Thus
the solution-word, when it exists, stores a sort-of rolling computation history.

I Lemma 11. Let µ be a an instance of REP with ustart, uend and rules wi → w′i for
1 ≤ i ≤ n. There exists an overlapping solution h : (X ∪ Σ)∗ → Σ∗ to the equation αµ = βµ
if and only if µ satisfies REP.

Proof. Suppose firstly that µ satisfies REP. Then there exist s1, s2, . . . , sn, t1, t2, . . . , tn
such that ustart = s1w1t1, for 1 ≤ i ≤ n − 1, siw′iti = si+1wi+1ti+1 and snw

′
ntn = uend.

Let h : (X ∪ Σ)∗ → Σ∗ be the substitution such that h(x1) = #s1w1t1#s1, h(xn+1) =
tn#snw′ntn#snw′ntn, and for 2 ≤ i ≤ n, h(xi) = ti−1#si−1w

′
i−1ti−1#si. We shall now show

that h satisfies Lemma 10, and hence that h is an overlapping solution to αµ = βµ.
Let v1 = #s1w1t1, let y1 := t1#s1, and for 2 ≤ i ≤ n, let vi := ti−1#si−1w

′
i−1 and

let yi := ti#si. Note that for 1 ≤ i ≤ n, vi is a prefix of h(xi), and moreover, since
si−1w

′
i−1ti−1 = siwiti, yi is the suffix of h(xi) of length |vi| − |wi|.

It is clear that h satisfies Condition (1) of Lemma 10 for i = 1. For 2 ≤ i ≤ n, we
have h(xi)witi = ti−1#si−1wi−1ti−1#siwiti = ti−1#si−1wi−1ti−1#si−1wi−1ti−1, which is a
prefix of vωi , and hence h(xi)wi is also a prefix of vωi . Thus h satisfies Condition (1) for all i.
Moreover, v1 = #ustart, and for 2 ≤ i ≤ n, yi−1w

′
i−1 = ti−1#si−1w

′
i−1 = vi, so h satisfies

Condition (2). Finally, ynw′nh(xn+1) = tn#snw′ntn#snw′ntn#snw′ntn = h(xn+1)#uend so h
also satisfies Condition (3).

Now suppose that h is an overlapping solution to αµ = βµ. Then h satisfies Condi-
tions (1), (2) and (3) of Lemma 10. Let vi, yi be defined according to the lemma for
1 ≤ i ≤ n, and let vn+1 = ynw

′
n. We shall show that µ satisfies REP as follows. We begin

with the following observations, whose proofs are omitted due to space constraints.

I Claim 12. For 1 ≤ i ≤ n, yiwi and vi are conjugate. Hence, for 1 ≤ i ≤ n+ 1, |vi|# = 1.

Let ṽi be the (unique) conjugate of vi which has # as a prefix. Then we have the following:

I Claim 13. For 1 ≤ i ≤ n, there exist si, ti such that ṽi = #siwiti and ṽi+1 = #siw′iti.

Recall from Condition (3) of Lemma 10 that vn+1h(xn+1) = ynw
′
nh(xn+1) =

h(xn+1)#uend. Consequently, vn+1 and #uend are conjugate, so ṽn+1 = #uend. Moreover,
by Condition (2) of Lemma 10, v1 = ṽ1 = #ustart. Thus, it follows from Claim 13 that µ
satisfies REP. J
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x z

y y

y

w

i k

h(α)

h(β)

a a a

j

· · ·
· · · · · ·

· · ·

j j

Figure 2 Fixing positions: since an occurrence of the ith letter of h(x) corresponds to an
occurrence of the (|h(y)| − j)th letter of y, whose other occurrences correspond to the kth letter of
h(z) and first letter of h(w), all these positions are equivalent and contain the same letter, e.g., a.

It is clear that the equation αµ = βµ (and hence also the equation α = β given in
Lemma 9) may be constructed in polynomial time, therefore our reduction from REP is
complete. So, by Lemmas 7 and 11, we have shown Theorem 4.

4 NP-upper bound

In this section, we discuss a series of results related to the satisfiability of regular-ordered
word equations. To this end, we extend the classical approach of filling the positions (see
e.g., [15] and the references therein). This method essentially comprises of assuming that for
a given equation α = β, we have a solution h with specified lengths |h(x)| for each variable x.
The assumption that h satisfies the equation induces an equivalence relation on the positions
of each h(x): if a certain position in the solution-word is produced by an occurrence of the
ith letter of h(x) on the RHS and an occurrence of the jth letter of h(y) on the LHS, then
these two positions must obviously have the same value/letter and we shall say that these
occurrences correspond. These individual equivalences can be combined to form equivalence
classes, and if no contradictions occur (i.e., two different terminal symbols a and b do not
belong to the same class), a valid solution can be derived.

Such an approach already allows for some straightforward observations regarding the
(non-)minimality of a solution h. In particular, if an equivalence class of positions is not
associated with any terminal symbol, then all positions in this class can be mapped to ε,
resulting in a strictly shorter solution. On the other hand, even for our restricted setting, this
observation is insufficient to provide a bound on the length of minimal solutions. In fact, in
the construction of the equivalence classes we ignore, or at least hide, some of the structural
information about the solution. In what follows, we shall see that by considering the exact
‘order’ in which positions are equated, we are able to give some more general conditions
under which a solution is not minimal.

For our approach, rather than just constructing these equivalence classes, we shall
construct sequences of equivalent positions, and then analyse “similar” sequences. For
example, one occurrence of a position i in h(x) might correspond to an occurrence of position
j in h(y), while another occurrence of position j in h(y) might correspond to position k in h(z),
and so on, in which case we would consider the sequence: . . .→ (x, i)→ (y, j)→ (z, k)→ . . . .

The sequence terminates when either a variable which occurs only once or a terminal
symbol is reached. For general equations, considering all such sequences leads naturally to a
graph structure where the nodes are positions (x, i) ∈ X ×N, and number of edges from each
node is determined by the number of occurrences of the associated variable. Each connected
component of such a graph corresponds to an equivalence class of positions as before. In the
case of quadratic (and therefore also regular) equations, where each variable occurs at most
twice, each ‘node’ (x, i) has at most two edges, and hence our graph is simply a set of disjoint
chains, without any loops. As before, each chain (called in the following sequence) must be
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xx

a a a

y y

x x

w w w

· · ·
· · · · · · · · ·

· · ·· · ·· · ·
· · · a

(x, 1, d1) (x, 2, d1)(x, 1, d3)

(y, 1, d2) (y, 2, d2)

(x, 2, d3)

(y, 2, d4)(y, 1, d4)

a

Figure 3 Illustration of Lemma 14 in the case of a short subsequence
. . . , (x, 1, d1), (y, 2, d2), (x, 1, d3), (y, 2, d4), . . .: since the two sequences starting at (x, 1, d1)
and (x, 1, d3) are similar, they define a common region w (shaded). Since they are consecutive, the
first and last occurrences of w are adjacent, and on opposite sides of the equation. Thus, removing
the region w from h(x) and h(y) does not alter the fact that h satisfies the equation.

associated with some occurrence of a terminal symbol, which must occur either at the start
or the end. Hence we have k < n sequences, where n is the length of the equation, such that
every position (x, i), where x is a variable and 1 ≤ i ≤ |h(x)|, occurs in exactly one sequence.
It is also not hard to see that the total length of the sequences is upper bounded by 2|h(α)|.

In order to be fully precise, we will distinguish between different occurrences of a
variable/terminal symbol by associating each with an index z ∈ N by enumerating occurrences
from left to right in αβ. When considering quadratic equations, z ∈ {1, 2} for each variable x.

Formally, we define our sequences for a given solution h to a quadratic equation α = β as
follows: a position is a tuple (x, z, d) such that x is a variable or terminal symbol occurring
in αβ, 1 ≤ z ≤ |αβ|x, and 1 ≤ d ≤ |h(x)|. Two positions (x, z, d) and (y, z′, d′) correspond
if they generate the same position in the solution-word. The positions are similar if they
belong to the same occurrence of the same variable (i.e., x = y and z = z′). For each
position p associated with either a terminal symbol or a variable occurring only once in αβ,
we construct a sequence Sp = p1, p2, . . . such that

p1 = p and p2 is the (unique) position corresponding with p1, and
for i ≥ 2, if pi = (x, z, d) such that x is a terminal symbol or occurs only once in αβ,
then the sequence terminates, and
for i ≥ 2, if pi = (x, z, d), such that x is a variable occurring twice, then pi+1 is the
position corresponding to the (unique) position (x, z′, d) with z′ 6= z (i.e., the ‘other’
occurrence of the ith letter in h(x)).

We extend the idea of similarity from positions to sequences of positions in the natural way:
two sequences p1, p2, . . . , pi and q1, q2, . . . , qi are similar whenever pj and qj are similar for
all j ∈ {1, 2, . . . , i}. Our main tool is the following lemma, which essentially shows that if
a sequence contains two similar consecutive subsequences, then the solution defining that
sequence is not minimal.

I Lemma 14. Let h be a solution to a quadratic equation α = β, and let p be a position
associated with a single-occurring variable or terminal symbol. If the sequence Sp has a
subsequence p1, p2, . . . , pt, pt+1, pt+2, . . . , p2t such that p1, p2, . . . , pt and pt+1, pt+2, . . . , p2t
are similar, then h is not minimal.

Proof. Assume that Sp has such a subsequence and assume w.l.o.g. that it is length-minimal
(so t is chosen to be as small as possible). For 1 ≤ i ≤ 2t, let pi = (xi, zi, di) and note that
by definition of similarity, for 1 ≤ i ≤ t, xi = xi+t and zi = zi+t. Assume that d1 < dt+1
(the case where d1 > dt+1 may be treated identically). We need the following two claims,
whose proofs are omitted due to space constraints.
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18:10 The Hardness of Solving Simple Word Equations

I Claim 15. Suppose that (x, z, d), (x, z, d′), (x, z, d′′) are positions with d ≤ d′ < d′′ such that
(x, z, d) and (x, z, d′′) correspond to (y, z′, e) and (y, z′, e′′) respectively. Then e′′−e = d′′−d,
and there exists e′ with e′ − e = d′ − d such that (x, z, d′) and (y, z′, e′) correspond.

A straightforward consequence of Claim 1 is that there exists a constant C ∈ N such that
for all i ∈ {1, 2, . . . , t}, di+t−di = C. Intuitively, each pair of similar positions pi = (xi, zi, di)
and pi+t = (xi, zi, di + C) are the first and last positions of a factor h(xi)[di..di + C − 1],
which as we shall see later on in the proof, can be removed to produce a shorter solution g.

It also follows from Claim 1, along with the fact that we chose t to be minimal, that
there does not exist a position pi = (x1, z1, k) in the chain such that d1 < k < d1 + C.
Symmetrically, there does not exist a position pi = (xt, zt, k) such that dt < k < dt + C:

I Claim 16. Let j ∈ {2, . . . , t, t+ 2, . . . , 2t} such that xj = x1(= xt+1) and zj = z1(= zt+1).
Then dj /∈ {d1, . . . , dt+1(= d1 + C)}. Likewise, if j ∈ {1, . . . , t − 1, t + 1, . . . , 2t − 1} such
that xj = xt and zj = zt, then dj /∈ {dt, . . . , d2t}.

Using the observations above, we shall remove parts of the solution h to obtain a new,
strictly shorter solution and thus show that h is not minimal as required.

To do this, we shall define a new equation α′ = β′ obtained by replacing the second
occurrence of each variable x (when it exists) with a new variable x′. The reason is so
we may delete factors independently from different occurrences of h(xi), and more easily
keep track of the equivalence of the left and right hand side of the equation. Note that we
can derive a solution h′ to α′ = β′ from the solution h to our original equation by simply
setting h′(x) = h′(x′) = h(x) for all x ∈ var(αβ). Likewise, any solution to α′ = β′ for which
this condition holds (i.e., h′(x) = h′(x′) for all x ∈ var(αβ)) induces a solution g to our
original equation α = β given by g(x) = h′(x)(= h′(x′)). Finally, for each position (x, z, d)
in the original solution h, there exists a unique “associated position” in h′ given by h(x)[d] if
z = 1 and h(x′)[d] if z = 2. Furthermore, it follows from the definitions that for any pair of
positions p, q which correspond (in terms of h), we can remove the associated positions from
h′ and the result will still be a valid solution to our modified equation α′ = β′ (although
such a solution may no longer induce a valid solution to our original equation, since it is no
longer necessarily the case where h′(x) = h′(x′) for all x).

We construct our shorter solution g to α = β as follows. Let h′ be the solution to
α′ = β′ derived directly from h. Recall from the definition of Sp that, for 1 ≤ i < t, the
positions (xi, zi, di) and (xi+1, zi+1, di+1) correspond, where z = (z + 1) mod 2 (i.e., so that
z 6= z). Moreover, (xi, zi, di +C) and (xi+1, zi+1, di+1 +C) correspond, and thus by Claim 1,
(xi, zi, di + k) and (xi+1, zi+1, di+1 + k) correspond for 0 ≤ k ≤ C − 1. Since corresponding
positions must have the same value/letter, it follows that there exists a factor w ∈ Σ+ such
that w = h(xi)[di..di + C − 1](= h′(x)[di..di + C − 1] = h′(x′)[di..di + C − 1]) for 1 ≤ i ≤ t.

We now produce a new solution, h′′ to α′ = β′ as follows. For each i such that 1 ≤ i ≤ t−1
and for each k such that di ≤ k ≤ di + C − 1, delete from h′ the pair of positions associated
with (xi, zi, di + k) and (xi+1, zi+1, di+1 + k). Note that since these positions correspond, in
deleting them, we continue to have a valid solution to α′ = β′. Notice also that for every
position associated with (xi, zi, di + k) such that 1 < i ≤ t, we also delete the position
associated with (xi, zi, di + k). Hence, for all x /∈ {x1, xt}, h′′(x) = h′′(x′). The same does
not necessarily hold for x1 and xt, however. In particular, we deleted positions associated
with (x1, z1, d1 + k) and (xt, zt, dt + k) for 0 ≤ k ≤ C − 1, but not their counterparts
(x1, z1, d1 + k) and (xt, zt, dt + k). Hence, to derive a valid solution g, we must also delete
these positions. To see that, in doing so, we still have a valid solution to α′ = β′, note
firstly that, by Claim 2, we have not deleted any of these positions already. Moreover, it
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follows from the sequence Sp that (xt, zt, dt) corresponds to (x1, z1, d1 + C). Assume z1 = 1
(the case z1 = 2 is symmetric). It follows that zt = 1 (since zt 6= z1). Thus there exists
an index m such that h′′(x1)[d1..d1 + C − 1] generates the factor w starting at position
m in h′′(α′) and h′′(xt)[dt..dt + C − 1] generates the (same) factor w starting at position
m+ |w| in h′′(β). It is straightforward to see that removing these factors (i.e., deleting the
positions associated with (x1, z1, d1 + k) and (xt, zt, dt + k) for 0 ≤ k ≤ C − 1) does not
affect the agreement of the two sides of the equation. Thus we obtain a shorter solution h′′
to α′ = β′ such that h(x) = h(x′) for all variables x, hence a shorter solution g given by
g(x) = h′′(x) to α = β. J

An important fact related to the representation of the minimal solutions of quadratic
equations as oriented sequences of positions, that start or end with a terminal symbol, is
that the number of such sequences is linear in the size of the equation. Also, for variables
that occur only once in a quadratic equation (so, only in one side), each of their positions is
the start or end of a chain, so their length can be at most linear in the size of the equation.
Thus, when interested in showing that a certain class of quadratic equation is in NP, we can
assume that these equations do not contain variables occurring only once. Such variables
could be non-deterministically replaced by words of at most linear size, and we would have
to solve a new equation, whose size is at most quadratic in the size of the original one.

Further, using Lemma 14 and the observations above, we obtain immediately that minimal
solutions to regular-ordered equations are at most linear in the length of the equation.

I Proposition 17. Let E be a regular-ordered word equation with length n, and let h be a
minimal solution to E. Then |h(x)| < n for each variable x occurring in E.

Proof. Every position of a minimal solution h to E occurs somewhere in one of the associated
sequences Sp, and there are no more than n such sequences. So, it is sufficient to show
that each one contains at most one position (x, z, d) for each variable x. This follows easily
from the fact that E is regular and ordered and h is minimal, so it fulfils the restrictions of
Lemma 14. J

We can see that, in terms of restricting the lengths of individual variables, the result in
Proposition 17 is optimal. For instance, in a minimal solution h to the equation wcx1 = x1cw,
with w ∈ {a, b}∗, the variable x1 is mapped to w, so |h(x)| = |E| − 2 ∈ O(|E|). Furthermore,
Theorem 18 follows now as a direct consequence of Proposition 17 and Lemma 1, as the
length of a minimal solution to a regular-ordered equation α = β is O(|αβ|2).

I Theorem 18. The satisfiability problem for regular-ordered equations is in NP.

It is a simple consequence of Proposition 17 that the satisfiability of a regular-ordered
equation E with a constant number k of variables can be checked in P-time.

We now consider the satisfiability problem for regular equations with regular constraints,
where we can make further use of the ideas presented so far in this section. Firstly, we
observe that the problem is, in general, PSPACE-complete, even for regular-ordered equations
(the proof given in [21] that the problem is PSPACE-complete for regular equations is also
sufficient for the regular-ordered case).

I Proposition 19. The satisfiability of regular-ordered equations with regular constraints is
PSPACE-complete

However, when considering regular equations whose sides contain exactly the same
variables, and, moreover, in the same order, we get the following result, which shows an
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18:12 The Hardness of Solving Simple Word Equations

important difference between the unrestricted regular-ordered equations, where the variables
occurring only on one side do not affect the complexity of the satisfiability problem, and the
same type of equations subject to regular constraints.

I Theorem 20. The satisfiability of regular-ordered equations whose sides contain exactly
the same variables, with regular constraints, is in NP.

The same upper bound holds also for regular-ordered equations with regular constraints,
when the regular constraints are regular languages accepted by NFAs with at most c states,
where c is a constant (called constant regular constraints in the following).

I Theorem 21. The satisfiability problem for regular-ordered equations with constant regular
constraints is in NP.

The proofs of the last two results rely also on the approach outlined in Lemma 14, but
they are more involved. We first define the sequences of positions fixed by the terminals in a
minimal solution of an equation. While this time the sequences may contain repetitions, we
show that they cannot contain repetitions of non-constant exponent (where the constant,
however, depends exponentially on c). This provides, again, a polynomial upper bound on
the length of minimal solutions of such equations.

5 Tractable equations

Finally, we discuss a class of equations for which satisfiability is in P. Tractability was
obtained so far from two sources: bound the number of variables by a constant (e.g., one
or two-variable equations [13, 1]), or heavily restrict their structure (e.g., regular equations
whose sides do not have common variable, or equations that only have one repeated variable,
but at least one non-repeated variable on each side [21]). The class we consider slightly relaxes
the previous restrictions. As the satisfiability of quadratic or even regular-ordered equations
is NP-hard it seems reasonable to consider here patterns where the number of repeated
variables is bounded by a constant (but may have an arbitrary number of non-repeated
variables). More precisely, we consider here non-cross equations with only one repeated
variable. This class generalises naturally the class of one-repeated variables.

I Theorem 22. Let x ∈ X be a variable and D be the class of word equations α = β such
that α, β ∈ (Σ ∪X)∗ are non-cross and each variable of X other than x occurs at most once
in αβ. Then the satisfiability problem for D is in P.

In the light of the results from [21], it follows that the interesting case of the above theorem
is when the equation α = β is such that α = xu1xu2 · · ·ukx and β = β′v0xv1xv2 · · ·xvkβ′′
where v0, v1, . . . , vk, u1, u2, . . . , uk ∈ Σ∗ and β′, β′′ are regular patterns that do not contain
x and are variable disjoint. Essentially, this is a matching problem in which we try to align
two non-cross patterns, one that only contains a repeated variable and constants, while the
other contains the repeated variable, constants, and some wild-cards that can match any
factor. As the proofs of [21] used essentially the non-repeated variables occurring in each of
the sides, a novel and much more involved approach was needed here. The idea of our proof
is to first show that such equations have minimal solutions of polynomial length. Further,
we note that if we know the length of β′ (w.r.t. the length of α) then we can determine the
position where the factor v0xv1xv2 · · ·xvk occurs in α, so the problem boils down to seeing
how the positions of x are fixed by the constant factors vi. Once this is done, we check if
there exists an assignment of the variables of β′ and β′′ such that the constant factors of
these patterns fit correctly to the corresponding prefix, respectively, suffix of α.
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6 Conclusions and Prospects

The main result of this paper is the NP-completeness of the satisfiability problem for regular-
ordered equations. While the lower bound seems remarkable to us because it shows that
solving very simple equations, which also always have short solutions, is NP-hard, the upper
bound seems more interesting from the point of view of the tools we developed to show it. We
expect the combinatorial analysis of sequences of equivalent positions in a minimal solution to
an equation (which culminated here in Lemma 14) can be applied to obtain upper bounds on
the length of the minimal solutions to more general equations than just the regular-ordered
ones. It would be interesting to see whether this type of reasoning leads to polynomial upper
bounds on the length of minimal solutions to regular (not ordered) or quadratic equations,
or to exponential upper bounds on the length of minimal solutions of non-cross or cubic
equations. In the latter cases, a more general approach should be used, as the equivalent
positions can no longer be represented as linear sequences, but rather as directed graphs.

Regarding the final section our paper, it seems interesting to us to see whether deciding
the satisfiability of word equations with one repeated variable (so without the non-cross sides
restriction) is still tractable. Also, it seems interesting to analyse the complexity of word
equations where the number of repeated variables is bounded by a constant.
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