353 research outputs found

    Time division multiple access scheduling strategies for emerging vehicular ad hoc network medium access control protocols: a survey

    Full text link
    [EN] Vehicular ad hoc network (VANET) is an emerging and promising technology, which allows vehicles while moving on the road to communicate and share resources. These resources are aimed at improving traffic safety and providing comfort to drivers and passengers. The resources use applications that have to meet high reliability and delay constraints. However, to implement these applications, VANET relies on medium access control (MAC) protocol. Many approaches have been proposed in the literature using time division multiple access (TDMA) scheme to enhance the efficiency of MAC protocol. Nevertheless, this technique has encountered some challenges including access and merging collisions due to inefficient time slot allocation strategy and hidden terminal problem. Despite several attempts to study this class of protocol, issues such as channel access and time slot scheduling strategy have not been given much attention. In this paper, we have relatively examined the most prominent TDMA MAC protocols which were proposed in the literature from 2010 to 2018. These protocols were classified based on scheduling strategy and the technique adopted. Also, we have comparatively analyzed them based on different parameters and performance metrics used. Finally, some open issues are presented for future deployment.Tambawal, AB.; Noor, RM.; Salleh, R.; Chembe, C.; Anisi, MH.; Michael, O.; Lloret, J. (2019). Time division multiple access scheduling strategies for emerging vehicular ad hoc network medium access control protocols: a survey. Telecommunication Systems. 70(4):595-616. https://doi.org/10.1007/s11235-018-00542-8S59561670

    Wireless Sensor Network MAC Energy -- efficiency Protocols: A Survey

    Full text link
    Energy Efficiency in wireless sensor networks is an important topic in which the nodes rely on battery power, and efficient energy usage is a key issue for sensitive applications that require long working times. This stimulates many scientists at all levels of communication protocols Medium Access Control (MAC) who control the use of the wireless transmitter and receiver unit to create new protocols. Many protocols were suggested that primarily take energy efficiency as the primary objective of sustaining the function of the network for as long as possible into account with different objectives for wireless sensor networks. This paper will look at some of these energy efficiency protocols.Comment: 5 pages. 2020 21st International Arab Conference on Information Technology (ACIT

    Efficient medium access control protocol for vehicular ad-hoc networks

    Get PDF
    Intelligent transportation systems (ITS) have enjoyed a tremendous growth in the last decade and the advancement in communication technologies has played a big role behind the success of ITS. Inter-vehicle communication (IVC) is a critical requirement for ITS and due to the nature of communication, vehicular ad-hoc network technology (VANET) is the most suitable communication technology for inter-vehicle communications. In Practice, however, VANET poses some extreme challenges including dropping out of connections as the moving vehicle moves out of the coverage range, joining of new nodes moving at high speeds, dynamic change in topology and connectivity, time variability of signal strength, throughput and time delay. One of the most challenging issues facing vehicular networks lies in the design of efficient resource management schemes, due to the mobile nature of nodes, delay constraints for safety applications and interference. The main application of VANET in ITS lies in the exchange of safety messages between nodes. Moreover, as the wireless access in vehicular environment (WAVE) moves closer to reality, management of these networks is of increasing concern for ITS designers and other stakeholder groups. As such, management of resources plays a significant role in VANET and ITS. For resource management in VANET, a medium access control protocol is used, which makes sure that limited resources are distributed efficiently. In this thesis, an efficient Multichannel Cognitive MAC (MCM) is developed, which assesses the quality of channel prior to transmission. MCM employs dynamic channel allocation and negotiation algorithms to achieve a significant improvement in channel utilisation, system reliability, and delay constraints while simultaneously addressing Quality of Service. Moreover, modified access priority parameters and safety message acknowledgments will be used to improve the reliability of safety messages. The proposed protocols are implemented using network simulation tools. Extensive experiments demonstrated a faster and more efficient reception of safety messages compared to existing VANET technologies. Finally, improvements in delay and packet delivery ratios are presented

    An Accurate Performance Analysis of Hybrid Efficient and Reliable MAC Protocol in VANET under Non-saturated Conditions

    Get PDF
    Vehicular Ad Hoc Networks (VANETs) is a technology supporting two types of applications, safety and service applications with higher and lower priorities respectively. Thereby, Medium Access Control (MAC) protocol is designed to provide reliable and efficient data broadcasting based on prioritization. Different from the IEEE 1609.4 (legacy), HER-MAC protocol is a new multi-channel MAC proposed for VANETs, offering remarkable performance with regards to safety applications transmission. This paper focuses on the analysis of packet delivery ratio of the HER-MAC protocol under non-saturated conditions. 1-D and 2-D Markov chains have been developed for safety and non-safety applications respectively, to evaluate mathematically the performance of HER-MAC protocol. The presented work has taken into account the freezing of the backoff timer for both applications and the backoff stages along with short retry limit for non-safety applications in order to meet the IEEE 802.11p specifications. It highlights that taking these elements into consideration are important in modeling the system, to provide an accurate estimation of the channel access, and guarantees that no packet is served indefinitely. More precise results of the system packet delivery ratio have been yield. The probability of successful transmission and collisions were derived and used to compute the packet delivery ratio. The simulation results validate the analytical results of our models and indicate that the performance of our models outperformed the existing models in terms of the packet delivery ratio under different number of vehicles and contention window

    TDMA-based MAC Protocols for Vehicular Ad Hoc Networks: A Survey, Qualitative Analysis and Open Research Issues

    Get PDF
    International audience—Vehicular Ad-hoc NETworks (VANETs) have attracted a lot of attention in the research community in recent years due to their promising applications. VANETs help improve traffic safety and efficiency. Each vehicle can exchange information to inform other vehicles about the current status of the traffic flow or a dangerous situation such as an accident. Road safety and traffic management applications require a reliable communication scheme with minimal transmission collisions, which thus increase the need for an efficient Medium Access Control (MAC) protocol. However, the design of the MAC in a vehicular network is a challenging task due to the high speed of the nodes, the frequent changes in topology, the lack of an infrastructure, and various QoS requirements. Recently several Time Division Multiple Access (TDMA)-based medium access control protocols have been proposed for VANETs in an attempt to ensure that all the vehicles have enough time to send safety messages without collisions and to reduce the end-to-end delay and the packet loss ratio. In this paper, we identify the reasons for using the collision-free medium access control paradigm in VANETs. We then present a novel topology-based classification and we provide an overview of TDMA-based MAC protocols that have been proposed for VANETs. We focus on the characteristics of these protocols, as well as on their benefits and limitations. Finally, we give a qualitative comparison, and we discuss some open issues that need to be tackled in future studies in order to improve the performance of TDMA-based MAC protocols for vehicle to vehicle (V2V) communications

    Emergency Data Transmission Mechanism in VANETs using Improved Restricted Greedy Forwarding (IRGF) Scheme

    Get PDF
    One of the most critical tasks in Vehicular Ad-hoc Networks (VANETs) is broadcasting Emergency Messages (EMs) at considerable data delivery rates (DDRs). The enhanced spider-web-like Transmission Mechanism for Emergency Data (TMED) is based on request spiders and authenticated spiders to create the shortest route path between the source vehicle and target vehicles. However, the adjacent allocation is based on the DDR only and it is not clear whether each adjacent vehicle is honest or not. Hence, in this article, the Improved Restricted Greedy Forwarding (IRGF) scheme is proposed for adjacent allocation with the help of trust computation in TMED. The trust and reputation score value of each adjacent vehicle is estimated based on successfully broadcast emergency data. The vehicles’ position, velocity, direction, density, and the reputation score, are fed to a fuzzy logic (FL) scheme, which selects the most trusted adjacent node as the forwarding node for broadcasting the EM to the destination vehicles. Finally, the simulation results illustrate the TMED-IRGF model’s efficiency compared to state-of-the-art models in terms of different network metrics

    A Multilevel Scheduling MAC Protocol for Underwater Acoustic Sensor Networks(UASN)

    Get PDF
    Underwater acoustic sensor networks (UASNs) have attracted great attention in recent years and utilizes as a part of oceanic applications. This network has to deal with propagation delay, energy constraints and limited bandwidth which are strenuous for designing a Medium Access Control (MAC) protocol for underwater communication. There also exists an idle channel listening and overhearing problem which sets down the energy into starvation in the contention-based MAC protocols. Alternatively, lengthy time slots and time synchronization equated by schedule-based MAC protocols, outcomes the variable transmission delay and degrades the network performances. To iron out these problems, we propose a cluster-based MAC protocol, tagged as Multilevel Scheduling MAC (MLS-MAC) protocol for UASN in the paper. The cluster head is a decision maker for packet transmission and aids to inflate the lifetime of sensor nodes. To reinforce the channel efficiency, the multilevel scheduling in data phase is initiated with two queues depending on the applications fixed by the cluster head. The simulation result shows that the MLS-MAC has increased the network throughput and has decreased energy consumption
    • …
    corecore