254 research outputs found

    URDP: General Framework for Direct CCA2 Security from any Lattice-Based PKE Scheme

    Full text link
    Design efficient lattice-based cryptosystem secure against adaptive chosen ciphertext attack (IND-CCA2) is a challenge problem. To the date, full CCA2-security of all proposed lattice-based PKE schemes achieved by using a generic transformations such as either strongly unforgeable one-time signature schemes (SU-OT-SS), or a message authentication code (MAC) and weak form of commitment. The drawback of these schemes is that encryption requires "separate encryption". Therefore, the resulting encryption scheme is not sufficiently efficient to be used in practice and it is inappropriate for many applications such as small ubiquitous computing devices with limited resources such as smart cards, active RFID tags, wireless sensor networks and other embedded devices. In this work, for the first time, we introduce an efficient universal random data padding (URDP) scheme, and show how it can be used to construct a "direct" CCA2-secure encryption scheme from "any" worst-case hardness problems in (ideal) lattice in the standard model, resolving a problem that has remained open till date. This novel approach is a "black-box" construction and leads to the elimination of separate encryption, as it avoids using general transformation from CPA-secure scheme to a CCA2-secure one. IND-CCA2 security of this scheme can be tightly reduced in the standard model to the assumption that the underlying primitive is an one-way trapdoor function.Comment: arXiv admin note: text overlap with arXiv:1302.0347, arXiv:1211.6984; and with arXiv:1205.5224 by other author

    A Survey on Homomorphic Encryption Schemes: Theory and Implementation

    Full text link
    Legacy encryption systems depend on sharing a key (public or private) among the peers involved in exchanging an encrypted message. However, this approach poses privacy concerns. Especially with popular cloud services, the control over the privacy of the sensitive data is lost. Even when the keys are not shared, the encrypted material is shared with a third party that does not necessarily need to access the content. Moreover, untrusted servers, providers, and cloud operators can keep identifying elements of users long after users end the relationship with the services. Indeed, Homomorphic Encryption (HE), a special kind of encryption scheme, can address these concerns as it allows any third party to operate on the encrypted data without decrypting it in advance. Although this extremely useful feature of the HE scheme has been known for over 30 years, the first plausible and achievable Fully Homomorphic Encryption (FHE) scheme, which allows any computable function to perform on the encrypted data, was introduced by Craig Gentry in 2009. Even though this was a major achievement, different implementations so far demonstrated that FHE still needs to be improved significantly to be practical on every platform. First, we present the basics of HE and the details of the well-known Partially Homomorphic Encryption (PHE) and Somewhat Homomorphic Encryption (SWHE), which are important pillars of achieving FHE. Then, the main FHE families, which have become the base for the other follow-up FHE schemes are presented. Furthermore, the implementations and recent improvements in Gentry-type FHE schemes are also surveyed. Finally, further research directions are discussed. This survey is intended to give a clear knowledge and foundation to researchers and practitioners interested in knowing, applying, as well as extending the state of the art HE, PHE, SWHE, and FHE systems.Comment: - Updated. (October 6, 2017) - This paper is an early draft of the survey that is being submitted to ACM CSUR and has been uploaded to arXiv for feedback from stakeholder

    STP-LWE: A Variant of Learning with Error for a Flexible Encryption

    Get PDF
    We construct a flexible lattice based scheme based on semitensor product learning with errors (STP-LWE), which is a variant of learning with errors problem. We have proved that STP-LWE is hard when LWE is hard. Our scheme is proved to be secure against indistinguishable chosen message attacks, and it can achieve a balance between the security and efficiency in the hierarchical encryption systems. In addition, our scheme is almost as efficient as the dual encryption in GPV08

    Encriptação parcialmente homomórfica CCA1-segura

    Get PDF
    Orientadores: Ricardo Dahab, Diego de Freitas AranhaTese (doutorado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: Nesta tese nosso tema de pesquisa é a encriptação homomórfica, com foco em uma solução prática e segura para encriptação parcialmente homomórfica (somewhat homomorphic encryption - SHE), considerando o modelo de segurança conhecido como ataque de texto encriptado escolhido (chosen ciphertext attack - CCA). Este modelo pode ser subdividido em duas categorias, a saber, CCA1 e CCA2, sendo CCA2 o mais forte. Sabe-se que é impossível construir métodos de encriptação homomórfica que sejam CCA2-seguros. Por outro lado, é possível obter segurança CCA1, mas apenas um esquema foi proposto até hoje na literatura; assim, seria interessante haver outras construções oferecendo este tipo de segurança. Resumimos os principais resultados desta tese de doutorado em duas contribuições. A primeira é mostrar que a família NTRU de esquemas SHE é vulnerável a ataques de recuperação de chave privada, e portanto não são CCA1-seguros. A segunda é a utilização de computação verificável para obter esquemas SHE que são CCA1-seguros e que podem ser usados para avaliar polinômios multivariáveis quadráticos. Atualmente, métodos de encriptação homomórfica são construídos usando como substrato dois problemas de difícil solução: o MDC aproximado (approximate GCD problem - AGCD) e o problema de aprendizado com erros (learning with errors - LWE). O problema AGCD leva, em geral, a construções mais simples mas com desempenho inferior, enquanto que os esquemas baseados no problema LWE correspondem ao estado da arte nesta área de pesquisa. Recentemente, Cheon e Stehlé demonstraram que ambos problemas estão relacionados, e é uma questão interessante investigar se esquemas baseados no problema AGCD podem ser tão eficientes quanto esquemas baseados no problema LWE. Nós respondemos afirmativamente a esta questão para um cenário específico: estendemos o esquema de computação verificável proposto por Fiore, Gennaro e Pastro, de forma que use a suposição de que o problema AGCD é difícil, juntamente com o esquema DGHV adaptado para uso do Teorema Chinês dos Restos (Chinese remainder theorem - CRT) de forma a evitar ataques de recuperação de chave privadaAbstract: In this thesis we study homomorphic encryption with focus on practical and secure somewhat homomorphic encryption (SHE), under the chosen ciphertext attack (CCA) security model. This model is classified into two different main categories: CCA1 and CCA2, with CCA2 being the strongest. It is known that it is impossible to construct CCA2-secure homomorphic encryption schemes. On the other hand, CCA1-security is possible, but only one scheme is known to achieve it. It would thus be interesting to have other CCA1-secure constructions. The main results of this thesis are summarized in two contributions. The first is to show that the NTRU-family of SHE schemes is vulnerable to key recovery attacks, hence not CCA1-secure. The second is the utilization of verifiable computation to obtain a CCA1-secure SHE scheme that can be used to evaluate quadratic multivariate polynomials. Homomorphic encryption schemes are usually constructed under the assumption that two distinct problems are hard, namely the Approximate GCD (AGCD) Problem and the Learning with Errors (LWE) Problem. The AGCD problem leads, in general, to simpler constructions, but with worse performance, wheras LWE-based schemes correspond to the state-of-the-art in this research area. Recently, Cheon and Stehlé proved that both problems are related, and thus it is an interesting problem to investigate if AGCD-based SHE schemes can be made as efficient as their LWE counterparts. We answer this question positively for a specific scenario, extending the verifiable computation scheme proposed by Fiore, Gennaro and Pastro to work under the AGCD assumption, and using it together with the Chinese Remainder Theorem (CRT)-version of the DGHV scheme, in order to avoid key recovery attacksDoutoradoCiência da ComputaçãoDoutor em Ciência da Computação143484/2011-7CNPQCAPE

    From Pre-Quantum to Post-Quantum IoT Security: A Survey on Quantum-Resistant Cryptosystems for the Internet of Things

    Get PDF
    © 2020 IEEE. This version of the article has been accepted for publication, after peer review. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.[Absctract]: Although quantum computing is still in its nascent age, its evolution threatens the most popular public-key encryption systems. Such systems are essential for today's Internet security due to their ability for solving the key distribution problem and for providing high security in insecure communications channels that allow for accessing websites or for exchanging e-mails, financial transactions, digitally signed documents, military communications or medical data. Cryptosystems like Rivest-Shamir-Adleman (RSA), elliptic curve cryptography (ECC) or Diffie-Hellman have spread worldwide and are part of diverse key Internet standards like Transport Layer Security (TLS), which are used both by traditional computers and Internet of Things (IoT) devices. It is especially difficult to provide high security to IoT devices, mainly because many of them rely on batteries and are resource constrained in terms of computational power and memory, which implies that specific energy-efficient and lightweight algorithms need to be designed and implemented for them. These restrictions become relevant challenges when implementing cryptosystems that involve intensive mathematical operations and demand substantial computational resources, which are often required in applications where data privacy has to be preserved for the long term, like IoT applications for defense, mission-critical scenarios or smart healthcare. Quantum computing threatens such a long-term IoT device security and researchers are currently developing solutions to mitigate such a threat. This article provides a survey on what can be called post-quantum IoT systems (IoT systems protected from the currently known quantum computing attacks): the main post-quantum cryptosystems and initiatives are reviewed, the most relevant IoT architectures and challenges are analyzed, and the expected future trends are indicated. Thus, this article is aimed at providing a wide view of post-quantum IoT security and give useful guidelines...This work was supported in part by the Xunta de Galicia under Grant ED431G2019/01, in part by the Agencia Estatal de Investigación of Spain under Grant TEC2016-75067-C4- 1-R and Grant RED2018-102668-T, and in part by ERDF funds of the EU (AEI/FEDER, UE).Xunta de Galicia; ED431G2019/0

    NewHope: A Mobile Implementation of a Post-Quantum Cryptographic Key Encapsulation Mechanism

    Get PDF
    NIST anticipates the appearance of large-scale quantum computers by 2036 [34], which will threaten widely used asymmetric algorithms, National Institute of Standards and Technology (NIST) launched a Post-Quantum Cryptography Standardization Project to find quantum-secure alternatives. NewHope post-quantum cryptography (PQC) key encapsulation mechanism (KEM) is the only Round 2 candidate to simultaneously achieve small key values through the use of a security problem with sufficient confidence its security, while mitigating any known vulnerabilities. This research contributes to NIST project’s overall goal by assessing the platform flexibility and resource requirements of NewHope KEMs on an Android mobile device. The resource requirements analyzed are transmission size as well as scheme runtime, central processing unit (CPU), memory, and energy usage. Results from each NewHope KEM instantiations are compared amongst each other, to a baseline application, and to results from previous work. NewHope PQC KEM was demonstrated to have sufficient flexibility for mobile implementation, competitive performance with other PQC KEMs, and to have competitive scheme runtime with current key exchange algorithms

    Homomorphic Encryption — Theory and Application

    Get PDF
    corecore