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We construct a flexible lattice based scheme based on semitensor product learning with errors (STP-LWE), which is a variant
of learning with errors problem. We have proved that STP-LWE is hard when LWE is hard. Our scheme is proved to be secure
against indistinguishable chosenmessage attacks, and it can achieve a balance between the security and efficiency in the hierarchical
encryption systems. In addition, our scheme is almost as efficient as the dual encryption in GPV08.

1. Introduction

Lattices and lattice-based cryptography have become a hot
research topic in public key cryptography in recent years.
Lattice-based cryptography is attracted from provable worst-
case hardness guarantees, good asymptotic efficiency and
parallelism, and resistance to quantum attacks [1]. The first
provably secure lattice based encryption AD is present by
Ajtai and Dwork based on the worst-case hardness of lattice
problems [2]. After that, several constructions have been
proposed [3, 4]. In 2004, Regev improved ADGGH to R04
based on a harder lattice problem. But its huge key size
is unacceptable [5]. To overcome its disadvantage, Regev
successively constructed Regev05 based on learning with
errors (LWE) problem, which can be quantum reduced
from traditional SIVP𝛾 problem [6]. Since LWE problem
has been proved to be amazingly versatile, a multitude of
cryptographic schemes have been proposed, such as the
basis for secure public-key encryption under both chosen-
plaintext [6] and chosen-ciphertext attacks [7, 8], oblivious
transfer [9], identity-based encryption [10], various forms of
leakage-resilient cryptography [11], and fully homomorphic
encryption [12].

In some applications, such as hierarchical encryption
systems, the users in different levels will use private keys
with different lengths [13]. They will retrieve their private
key from their domain PKG, who has previously requested
their domain secret key from the root PKG. In traditional
encryptions, the PKG must save all security parameters and
public parameters related to the different lengths of keys for
the users in different domains [14]. So how to construct a
flexible encryption scheme to bring a balance between the
security and efficiency requirements is an open problem.

Semitensor product (STP), as a new algebraic approach,
is a generalization of the matrix product from the equal
dimension case to the multiple dimension case, and it is
designed to deal with higher-dimensional data as well as
multilinear mappings [15]. Recently, STP is applied widely
in control theory [16] and physics [17–19]. However, to the
best of our knowledge, all the works in cryptography field
based on STP are related to Boolean functions. A method for
the conversion between the truth table and the polynomial
expression of Boolean functions was proposed [20]. In [21],
the authors did research on nonlinear feedback shift register
(NLFSR), including the calculation of numbers of fixed points
and cycles with different lengths of state sequences generated.
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In this paper, we propose a variant of LWE problem
called STP-LWE problem, which is essential to extend the
standard LWE problem by using STP. In STP-LWE problem,
the dimension of public matrix 𝐴 may not be equal to
the secret 𝑠. The hardness of STP-LWE can be reduced
to the standard LWE problem. In this paper, we will take
advantage of the properties of STP-LWE to construct the
STP-GPV dual cryptosystem based on the dual encryption in
GPV08 [22]. The new scheme is more flexible in hierarchical
encryption systems since we can flexibly balance the security
and efficiency by adjusting the length of messages with the
static security parameter.

The rest of this paper is organized as follows. We first
introduce some basic concepts of lattices in Section 2. In
Section 3, we detail STP product and STP-LWE problem. In
Section 4, we propose the STP-GPV dual cryptosystem and
analyze the correctness and security. In Section 5, we discuss
the efficiency of the STP-GPV dual cryptosystem. Finally,
discussions and conclusions are presented in Section 6.

2. Preliminaries

In this section, we briefly describe the basic concepts about
lattices and the learning with errors (LWE) problem.

2.1. Notation. We denote the set of real numbers by R

and the set of integers by Z. For a positive integer 𝑛, [n]
denotes {1, . . . , 𝑛}. By convention, vectors are assumed to be
in column form and written using bold lowercase letters, for
example, x. The 𝑖th component of x will be denoted by 𝑥𝑖.
Matrices are written as bold capital letters, for example, X,
and the 𝑖th column vector of a matrix X is denoted by x𝑖.
The length of a matrix is the norm of its longest column
‖X‖ = max𝑖‖x𝑖‖. We use standard big-𝑂 notation to classify
the growth of functions and say that 𝑓(𝑛) = 𝑂(𝑔(𝑛)) if
𝑓(𝑛) = 𝑂(𝑔(𝑛) ⋅ log𝑐𝑛) for some fixed constant 𝑐. We let
poly(𝑛) be an unspecified function 𝑓(𝑛) = 𝑂(𝑛𝑐) for some
constants 𝑐. A 𝑛𝑒𝑔𝑙𝑖𝑔𝑖𝑏𝑙𝑒 function, denoted generically by
negl(𝑛), is a function 𝑓(𝑛) such that 𝑓(𝑛) = 𝑜(𝑛−𝑐) for some
fixed constant 𝑐. We say that a probability (or fraction) is
𝑜V𝑒𝑟𝑤ℎ𝑒𝑙𝑚𝑖𝑛𝑔 if it is 1 − negl(𝑛). The 𝑠𝑡𝑎𝑡𝑖𝑠𝑡𝑖𝑐𝑎𝑙 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
between two distributions𝑋 and 𝑌 over a countable domain
𝐷 is defined to be (1/2)∑

𝑑∈𝐷
|𝑋(𝑑) − 𝑌(𝑑)|.

2.2. Lattices and Gaussian Measures. A lattice is a discrete
additive subgroup ofR𝑛. Let B = {b1, . . . , b𝑛} ⊂ R𝑛 consist of
𝑛 linearly independent vectors. The 𝑛-dimensional 𝑙𝑎𝑡𝑡𝑖𝑐𝑒 Λ
generated by the basis B is

Λ =L (B) = {Bc = ∑
𝑖∈[𝑛]

𝑐𝑖 ⋅ b𝑖 : c ∈ Z
𝑛
} . (1)

For any (ordered) set 𝑆 = {s1, . . . , s𝑛} ⊂ R𝑛 of linearly
independent vectors, let 𝑆 = {s̃1, . . . , s̃𝑛} be its Gram-Schmidt
orthogonalization, defined iteratively in the following way:

s̃1 = s1, and for each 𝑖 = 2, . . . , 𝑛, s̃𝑖 is the component of s𝑖
orthogonal to span(s1, . . . , s𝑖−1). Clearly, ‖s̃𝑖‖ ≤ ‖s𝑖‖.

The following useful lemma says that any full-rank set of
vectors in a lattice can be efficiently converted to a basis of the
lattice, without increasing the lengths of the Gram-Schmidt
vectors.

Lemma 1 (see [23]). There is a deterministic polynomial-time
algorithm that, given an arbitrary basis B of a n-dimensional
lattice Λ = L(B) and a full-rank set of lattice vectors S ⊂ Λ,
the output is a basis T of Λ such that ‖̃t𝑖‖ ≤ ‖s̃𝑖‖ for all 𝑖 ∈ [𝑛].

The dual lattice of Λ, denoted Λ∗, is defined as Λ∗ = {x ∈
R𝑛 : ∀k ∈ Λ, ⟨x, k⟩ ∈ Z}. By symmetry, it can be seen that
(Λ
∗
)
∗
= Λ. If B is a basis of Λ, the dual basis B∗ = (B−1)𝑇 is

in fact a basis of Λ∗.

The following standard fact relates to the Gram-Schmidt
orthogonalizations of a basis and its dual (the proof can be
found in [5]).

Lemma 2. Let {b1, . . . , b𝑛} be an ordered basis, and let
{d1, . . . , d𝑛} be its dual basis in reversed order (i.e.,d𝑖 = b∗𝑛−𝑖+1).
Then d̃𝑖 = b̃𝑖/‖b𝑖‖

2 for all 𝑖 ∈ [𝑛]. In particular, ‖d̃𝑖‖ = 1/‖b̃𝑖‖.

We now review the Gaussian measures over lattices. For
any 𝑠 > 0, the Gaussian function on R𝑛 centered at c with
parameter 𝑠 is defined as

∀x ∈ R𝑛, 𝜌𝑠,c (x) = exp(−
𝜋‖x − c‖2

𝑠2
) . (2)

The subscripts 𝑠 and c are taken to be 1 and 0 (resp.,) when
omitted.

For any c ∈ R𝑛, real 𝑠 > 0, and n-dimensional lattice Λ,
the discrete Gaussian distribution over Λ is defined as

∀x ∈ Λ, 𝐷Λ,𝑠,c (x) =
𝜌𝑠,c (x)
𝜌𝑠,c (Λ)

, (3)

where 𝜌𝑠,c(Λ) = ∑x∈Λ 𝜌𝑠,c(x).
Micciancio and Regev [24] proposed a lattice quantity

called the smoothing parameter.

Definition 3 (see [24]). For any n-dimensional lattice Λ and
a positive real 𝜖 > 0, the smoothing parameter 𝜂𝜖(Λ) is
the smallest real 𝑠 > 0 such that 𝜌1/𝑠(Λ

∗
\ 0) ≤ 𝜖, where

𝜌1/𝑠(Λ
∗
\ 0) = ∑x∈Λ∗\0 𝜌1/𝑠,0(x).

A bound on the smoothing parameter is also given in
[24].

Lemma 4 (see [25]). For any n-dimensional latticeΛ and real
𝜖 > 0, one has

𝜂𝜖 (Λ) ≤
√log (2𝑛/ (1 + 1/𝜖)) /𝜋

𝜆
∞

1
(Λ
∗
)

. (4)

Then for any 𝜔(√log 𝑛) function, there is a negligible 𝜖(𝑛)
for which 𝜂𝜖(Λ) ≤ 𝜔(√log 𝑛)/𝜆∞1 (Λ

∗
).
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We notice that a sample from a discrete Gaussian with
parameter 𝑠 is at most 𝑠√𝑛 away from its center (in the ℓ2
norm), with overwhelming probability.

Lemma 5 (see [24]). For any n-dimensional lattice Λ, c ∈
𝑠𝑝𝑎𝑛(Λ), real 𝜖 ∈ (0, 1), and 𝑠 ≥ 𝜂𝜖(Λ),

Pr x∼𝐷
Λ,𝑠,c
[‖x − c‖ > 𝑠√𝑛] ≤ 1 + 𝜖

1 − 𝜖
⋅ 2
−𝑛
. (5)

2.3. Some Lattice Problems. We now redescribe the learning
with errors (LWE) problem [6].

For an integer 𝑞 ≥ 2, some probability distribution 𝜒 over
Z𝑞, an integer dimension 𝑛 ∈ Z+, and a vector s ∈ Z𝑛

𝑞
, define

As,𝜒 as the distribution onZ
𝑛

𝑞
×Z𝑞 of the variable (a, a𝑇s+𝑥),

where a← Z𝑛
𝑞
and 𝑥 ← 𝜒 are uniform and independent, and

all operations are performed in Z𝑞.

Definition 6 (LWE). For an integer 𝑞 = 𝑞(𝑛) and a
distribution 𝜒 on Z𝑞, the goal of the (average-case)
𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑤𝑖𝑡ℎ 𝑒𝑟𝑟𝑜𝑟𝑠 problem LWE𝑞,𝜒 is to distinguish (with
nonnegligible probability) between the distribution As,𝜒 for
some uniform (secret) s ← Z𝑛

𝑞
and the uniform distribution

on Z𝑛
𝑞
× Z𝑞 (via oracle access to the given distribution).

In other words, if LWE is hard, then the collection of
distributionsAs,𝜒 is pseudorandom.

T = R/Z as the group of reals [0, 1) with mod 1 addition.
For 𝛼 ∈ R+, Ψ𝛼 is the distribution on T of a normal variable
withmean 0 and standard deviation 𝛼/√2𝜋, reducedmodulo
1. For any probability distribution 𝜙 over T and an integer
𝑞 ∈ Z+ its discretization 𝜙 is the discrete distribution over
Z𝑞 of the random variable ⌊𝑞 ⋅ 𝑋𝜙⌉ mod 𝑞, where 𝑋𝜙 has
distribution 𝜙.

Then, we recall two standard worst-case approximation
problems on lattices. In both problems, 𝛾 = 𝛾(𝑛) is the
approximation factor as a function of the dimension.

Definition 7 (see [24] shortest vector problem (decision
version)). An input to GapSVP

𝛾
is a basis B of a full-rank

𝑛-dimensional lattice. It is a YES instance if 𝜆1(L(B)) ≤
𝑑 and is a NO instance if 𝜆1(L(B)) > 𝛾(𝑛) ⋅ 𝑑, where
𝑑 𝑖𝑠 𝑎 𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟.

Definition 8 (see [24] shortest independent vectors problem).
An input to SIVP𝛾 is a full-rank basis B of an 𝑛-dimensional
lattice. The goal is to output a set of 𝑛 linearly independent
lattice vectors S ⊂L(B) such that ‖ S ‖≤ 𝛾(𝑛) ⋅ 𝜆𝑛(L(B)).

Regev demonstrated that for certain modulo 𝑞 and
Gaussian error distributions 𝜒, LWE𝑞,𝜒 is as hard as several
standard worst-case lattice problems using a quantum algo-
rithm.

Proposition 9 (see [6]). Let 𝛼 = 𝛼(𝑛) ∈ (0, 1) and let 𝑞 = 𝑞(𝑛)
be a prime such that 𝛼 ⋅ 𝑞 > 2√𝑛. If there exists an efficient
(possibly quantum) algorithm that solves 𝐿𝑊𝐸

𝑞,Ψ
𝛼

, then there
exists an efficient quantum algorithm for approximating SIVP

and GapSVP in the 𝑙2 norm, in the worst case, within 𝑂(𝑛/𝛼)
factors.

The result can be subsequently extended to SIVP and
GapSVP in any 𝑙𝑝 norm, 2 ≤ 𝑝 ≤ ∞, for essentially the same
𝑂(𝑛/𝛼) approximation factors [25].

3. STP-LWE

3.1. Semitensor Product. In this section, we introduce the
semitensor product (STP) of matrices.The STP-formalism of
matrices not only is a generalization of a conventional matrix
product, but also makes all the fundamental properties of the
conventional matrix product remain true.

Definition 10 (see [15]). (1) Let a be a row vector of dimension
𝑘𝑙, and let b be a column vector of dimension 𝑙. Then we
split a into 𝑙 equal-size blocks named a1, . . . , a𝑙, which are row
vectors of dimension 𝑘. Define a semitensor product, denoted
by ⋉, as

a ⋉ b =
𝑙

∑

𝑖=1

a𝑖b𝑖 ∈ R
𝑘

b𝑇 ⋉ a𝑇 =
𝑙

∑

𝑖=1

b𝑖(a
𝑖
)
𝑇

∈ R
𝑘
.

(6)

(2) Let P ∈ 𝑀𝑟×𝑙 and Q ∈ 𝑀𝑠×𝑡. If either 𝑙 is a factor of
𝑠, say 𝑘𝑙 = 𝑠 and denote it by P≺𝑘Q, or 𝑠 is a factor of 𝑙, say
𝑙 = 𝑘𝑠 and denote it by P≻𝑘Q, then define the STP of P andQ,
denoted byW = P ⋉ Q, as the following:W consists of 𝑟 × 𝑡
blocks asW = (W𝑖𝑗) and each block is

W𝑖𝑗 = P𝑖 ⋉Q𝑗, 𝑖 = 1, . . . , 𝑟, 𝑗 = 1, . . . , 𝑡, (7)

where P𝑖 is the 𝑖th row of P andQ𝑗 is the 𝑗th column ofQ.

The dimension of the STP of two matrices can be
described by deleting the largest common factor of the
dimensions of the two factor matrices; for example,

P𝑟×𝑘𝑙 ⋉Q𝑙×𝑡 = (P(Q ⊗ I𝑘))𝑟×𝑘𝑡,

P𝑟×𝑙 ⋉Q𝑘𝑙×𝑡 = ((P ⊗ I𝑘)Q)𝑘𝑟×𝑡,
(8)

where ⊗ is the Kronecker product and I𝑘 is the identity
matrix.

If the related products are well defined, the STP satisfies
the following laws.

(1) Distributive rule is as follows:

P ⋉ (𝛼Q + 𝛽W) = 𝛼P ⋉Q + 𝛽P ⋉W,

(𝛼Q + 𝛽W) ⋉ P = 𝛼Q ⋉ P + 𝛽W ⋉ P,
(9)

where 𝛼, 𝛽 ∈ R.
(2) Associative rule is as follows:

P ⋉ (Q ⋉W) = (P ⋉Q) ⋉W. (10)
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3.2. STP-LWE. In this section, we propose a new hardness
problem that is called STP-LWE problem which is based
on the STP product. The main idea is that we replace the
ordinary multiplication of LWE problem with STP. A distri-
butionAs, 𝜒, 𝜒, . . . , 𝜒⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

should be introduced before giving the

definition of STP-LWE problem.
For an integer 𝑞 ≥ 2 and some probability distribution

𝜒 over Z𝑞, an integer dimension 𝑛 ∈ Z+, and a vector
s ∈ Z𝑛/𝑘

𝑞
, define As, 𝜒, 𝜒, . . . , 𝜒⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

as the distribution on Z𝑛
𝑞
×

Z𝑞 × Z𝑞 × ⋅ ⋅ ⋅ × Z𝑞⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

of the variable (a, a𝑇⋉s+(𝑥1, 𝑥2, . . . , 𝑥𝑘)),

where a ← Z𝑛
𝑞
is uniform and 𝑥1, 𝑥2, . . . , 𝑥𝑘 ← 𝜒 are

independent, and all operations are performed in Z𝑞.

Definition 11 (decision 𝑛/𝑘-dimensional STP-LWE problem).
For an integer 𝑞 = 𝑞(𝑛) and a distribution 𝜒 on Z𝑞, the goal
of the decision version (average case) STP-LWE𝑞, 𝜒, 𝜒, . . . , 𝜒⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

is to distinguish (with nonnegligible probability) between the
distribution As, 𝜒, 𝜒, . . . , 𝜒⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

for some uniform (secret) s ←

Z𝑛/𝑘
𝑞

and the uniform distribution onZ𝑛
𝑞
×Z𝑞 × Z𝑞 × ⋅ ⋅ ⋅ × Z𝑞⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

(via oracle access to the given distribution).

Definition 12 (search 𝑛/𝑘-dimensional STP-LWE problem).
For an integer 𝑞 = 𝑞(𝑛) and a distribution 𝜒 on Z𝑞, the goal
of the search version (average case) STP-LWE𝑞, 𝜒, 𝜒, . . . , 𝜒⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

is to find the vector s ∈ Z𝑛/𝑘
𝑞

giving a sample (a, a𝑇 ⋉ s +
(𝑥1, 𝑥2, . . . , 𝑥𝑘)) from the distributionAs, 𝜒, 𝜒, . . . , 𝜒⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

.

The STP-LWE problem is a generalization of the primal
LWEproblem. It is obvious that the decision 𝑛/𝑘-dimensional
STP-LWE problem and the search 𝑛/𝑘-dimensional STP-
LWE problem are equal to the primal LWE problem when
𝑘 = 1. The STP-LWE problem could be shown in the form
of matrices, consisting of 𝑚 vectors, and each vector is an
instance of LWE problem. Then an instance of STP-LWE
problem can be express as (A,A𝑇⋉ s+(x1, x2, . . . , x𝑘)), where
A ∈ Z𝑛×𝑚

𝑞
, s ∈ Z𝑛/𝑘

𝑞
is a secret vector, and (x1, x2, . . . , x𝑘)

are from the distribution 𝜒𝑚. The following theorem shows
the hardness of search version 𝑛/𝑘-dimensional STP-LWE
problem.

Theorem 13. The search version 𝑛/𝑘-dimensional STP-
LWE𝑞, 𝜒, 𝜒, . . . , 𝜒⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑘

problem is hard under the assumption that

LWE𝑞,𝜒 is hard.

Proof. We use proof by contradiction to prove this theorem.

Case 1. Let 𝑘 = 2; then given a search version STP-LWE𝑞,𝜒,𝜒
instance [b1, b2] = A𝑇 ⋉ s + [x1, x2], where b1, b2 ∈ Z𝑚𝑞 and

x1, x2 ← 𝜒𝑚. Suppose we find the vector s ∈ Z𝑛/2
𝑞

is an easy
thing.

Based on the property of STP, we have A𝑇 ⋉ s = A𝑇(s ⊗
I2) = A𝑇(s1, s2), where

s1 = s ⊗ [
1

0
] =

[
[
[
[
[
[
[
[

[

𝑠1

0

...
𝑠𝑛

2
0

]
]
]
]
]
]
]
]

]

,

s2 = s ⊗ [
0

1
] =

[
[
[
[
[
[

[

0

𝑠1
...
0

𝑠𝑛/2

]
]
]
]
]
]

]

.

(11)

Therefore, [b1, b2] = A𝑇 ⋉ s + [x1, x2] can be written as

[b1, b2] = A
𝑇
[s1, s2] + [x1, x2] . (12)

It is equivalent to

A𝑇s1 + x1 = b1,

A𝑇s2 + x2 = b2.
(13)

It is easy to see that this equation contains two LWE𝑞,𝜒
instances. From the assumption that it is a simple question
to find the vector s ∈ Z𝑛/2

𝑞
in the search version STP-

LWE𝑞,𝜒,𝜒 instance [b1, b2] = A𝑇 ⋉ s + [x1, x2], then (13) is
also easily solved. That is, the LWE𝑞,𝜒 instance can be solved.
This apparently contradicts with the hardness assumption of
LWE𝑞,𝜒 problem.

Case 2. It is clear that when 𝑘 > 2, 𝑛/𝑘-dimensional the STP-
LWE problem still holds. The proof of this case is similar to
Case 1. This completes the proof.

With the increase of 𝑘 value, the security of the 𝑛/𝑘-
dimensional STP-LWE problem will be reduced. In order to
prevent this from happening, 𝑛/𝑘 in the STP-LWE problem
must match the security requirements when the scheme
can be reduced to lattice problems resisted to the quantum
computing. InGPV08 [22], 𝑛/𝑘 should be larger than 2𝑛 log 𝑞.

4. Our Scheme

In this section, we give a variant of GPV dual cryptosystem.
First, we recall the dual cryptosystem in GPV08 [22]. Then,
we give our construction based on 𝑛/𝑘-dimensional STP-
LWE problem. Meanwhile, the correctness and security are
also shown.

4.1. GPV Dual Cryptosystem. It is parameterized by some 𝑟 ≥
𝜔(√log𝑚), which specifies the discrete Gaussian distribution
DZ𝑚 ,𝑟 from which secret keys are chosen. All the users share
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a common matrix A ∈ Z𝑛×m
𝑞

(an implicit input to all
algorithms) chosen uniformly at random, which is the index
of the function 𝑓A(e) = Ae mod 𝑞. All the operations are
performed over Z𝑞.

(i) 𝐷𝑢𝑎𝑙𝐾𝑒𝑦𝐺𝑒𝑛: choose an error vector e← 𝐷Z𝑚 ,𝑟 (i.e.,
the input distribution to 𝑓A), as the secret key. The
public key is the syndrome u = 𝑓A(e).

(ii) 𝐷𝑢𝑎𝑙𝐸𝑛𝑐(u, 𝑏): to encrypt a bit 𝑏 ∈ {0, 1}, choose s←
Z𝑛
𝑞
uniformly and p = A𝑇s + x ∈ Z𝑚

𝑞
, where x ← 𝜒𝑚.

Output the ciphertext (p, 𝑐 = u𝑇s + 𝑥 + 𝑏 ⋅ ⌊𝑞/2⌋) ∈
Z𝑚
𝑞
× Z𝑞, where 𝑥 ← 𝜒.

(iii) 𝐷𝑢𝑎𝑙𝐷𝑒𝑐(e, (p, 𝑐)): compute 𝑏󸀠 = 𝑐 − e𝑇p ∈ Z𝑞. Out-
put 0 if 𝑏󸀠 is closer to 0 than to ⌊𝑞/2⌋ modulo 𝑞;
otherwise output 1.

The correctness and security are given inGPV08 [22], and
readers can refer to it for more details.

4.2. STP-GPVDual Cryptosystem. Our public-key dual cryp-
tosystem is based on 𝑛/𝑘-dimensional STP-LWE problem,
and we let 𝑘 = 2. It is parameterized by some 𝑟 ≥
𝜔(√log𝑚), which specifies the discrete Gaussian distribution
DZ𝑚/2 ,𝑟 from which secret keys are chosen. All the users
share a common matrix A ∈ Z𝑛×𝑚

𝑞
(an implicit input to all

algorithms) chosen uniformly at random, which is the index
of the function 𝑓A(e) = A ⋉ e mod 𝑞. All the operations are
performed over Z𝑞.

(i) 𝑉𝑎𝑟𝐾𝑒𝑦𝐺𝑒𝑛: choose an error vector e ← 𝐷Z𝑚/2 ,𝑟 (i.e.,
the input distribution to 𝑓𝐴), which is the secret key.
The public key is the syndrome u = 𝑓A(e) = A ⋉ e,
and let u = [u1, u2],where u1, u2 ← Z𝑛

𝑞
.

(ii) 𝑉𝑎𝑟𝐸𝑛𝑐(u1, u2, 𝑏1, 𝑏2): to encrypt two bits 𝑏1, 𝑏2 ∈
{0, 1}, choose s ← Z𝑛

𝑞
uniformly and p = A𝑇s + x ∈

Z𝑚
𝑞
, where x ← 𝜒𝑚. Output the ciphertext (p, 𝑐1 =

u𝑇
1
s + 𝑥1 + 𝑏1 ⋅ ⌊𝑞/2⌋, 𝑐2 = u𝑇

2
s + 𝑥2 + 𝑏2 ⋅ ⌊𝑞/2⌋) ∈

Z𝑚
𝑞
× Z𝑞 × Z𝑞, where 𝑥1, 𝑥2 ← 𝜒.

(iii) 𝑉𝑎𝑟𝐷𝑒𝑐(e, (p, 𝑐1, 𝑐2)): compute [𝑏󸀠
1
, 𝑏
󸀠

2
]
𝑇

= [𝑐1, 𝑐2]
𝑇
−

e𝑇 ⋉ p ∈ Z𝑞. Output 0 if 𝑏󸀠
1
and 𝑏󸀠
2
are closer to 0 than

to ⌊𝑞/2⌋modulo 𝑞; otherwise output 1.

4.3. Correctness and Security. The correctness of our scheme
is mainly inherited by GPV dual cryptosystem. We can show
the correctness as follows:

[𝑏
󸀠

1
, 𝑏
󸀠

2
]
𝑇

= [𝑐1, 𝑐2]
𝑇
− e𝑇 ⋉ p ∈ Z𝑞

Table 1

𝑘
Size of public
key in bits

Size of private
key in bits

Ciphertext
expansion rate

GPV08 1 𝑛 log 𝑞 𝑚 log 𝑞 𝑚 + 1

Ours 2 2𝑛 log 𝑞
𝑚

2
log 𝑞 𝑚

2
+ 1

Table 2

𝑘

Time of
VarKeyGen in

seconds

Time of VarEnc
in seconds

Time of VarDec
in seconds

GPV08 1 7.746 0.4641 0.001225

Ours 2 3.860 0.2369 0.000817

= [u𝑇
1
s + 𝑥1 + 𝑏1 ⋅ ⌊𝑞/2⌋ , u

𝑇

2
s + 𝑥2 + 𝑏2 ⋅ ⌊𝑞/2⌋]

𝑇

− e𝑇 ⋉ (A𝑇s + x)

= [u𝑇
1
s, u𝑇
2
s]
𝑇

+ [𝑥1, 𝑥2]
𝑇

+ [𝑏1 ⋅ ⌊𝑞/2⌋ , 𝑏2 ⋅ ⌊𝑞/2⌋]
𝑇

− [e𝑇 ⋉ A𝑇s] − [e𝑇 ⋉ x] .
(14)

Since [e𝑇 ⋉ A𝑇s] = [A ⋉ e]𝑇s = [u1, u2]
𝑇s = [ u

𝑇

1

u𝑇
2

] s =

[
u𝑇
1
s

u𝑇
2
s ] = [u

𝑇

1
s, u𝑇
2
s]𝑇 and [𝑥1, 𝑥2]

𝑇
− [e𝑇 ⋉ x] = [𝑥1, 𝑥2]

𝑇
−

[e𝑇 ⊗ I2]x, let 𝛿1 = [ 10 ], 𝛿2 = [ 01 ], [𝑥1, 𝑥2]
𝑇
− [e𝑇 ⋉

x] = [𝑥1, 𝑥2]
𝑇
− [e𝑇𝛿1x, e𝑇𝛿2x]

𝑇

= [𝑥1 − e𝑇𝛿1x, 𝑥2 − e𝑇𝛿2x]
𝑇.

Based on GPV08, we have ‖𝑥1 − e𝑇𝛿1x‖ ≤ 𝑞/5 and
‖𝑥2 − e𝑇𝛿2x‖ ≤ 𝑞/5. Therefore, ‖[𝑥1, 𝑥2]

𝑇
− [e𝑇 ⋉ x]‖

∞
=

max{‖𝑥1 − e𝑇𝛿1x‖, ‖𝑥2 − e𝑇𝛿2x‖} ≤ 𝑞/5.
The security of this scheme is similar to that of the GPV

dual cryptosystem; that is, our scheme is CPA-secure and
anonymous under the 𝑛/𝑘-dimensional LWE𝑞,𝜒 assumption.

5. Performance

The GPV dual cryptosystem and our scheme are imple-
mented in Matlab 2010 in Windows 7 Service Pack1 64 bits
operating system. We use a desktop which has a 4-core
Intel(R) Core (TM) i3-2120 processor running at 3.30GHz
and 2GB of RAM.

In this section, we analyze the efficiency of the above
schemes from the following two aspects. On one hand, we
compare the size of public keys, private keys, and ciphertext
expansion of GPV dual cryptosystem with our scheme. From
the Table 1, the efficiency of our algorithm and the ciphertext
expansion rate has significant advantage compared with GPV
dual cryptosystem. On the other hand, we compare the time
cost of VarKeyGen, VarEnc, and VarDec with the GPV dual
cryptosystem and the STP-GPV dual cryptosystem. Table 2
has demonstrated the time of key generation, encryption,
and decryption for 1 bit in GPV dual cryptosystem, and the
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Table 3

𝑘 Time of VarKeyGen VarEnc for 1 time VarEnc for 1 bit VarDec for 1 time VarDec for 1 bit
5 1.396 0.1552 0.03104 8.17𝑒 − 4 1.634𝑒 − 4

10 0.7361 0.1448 0.01448 1.14𝑒 − 3 1.14𝑒 − 4

50 0.2253 0.1438 0.002876 7.201𝑒 − 3 1.44𝑒 − 4

100 0.06797 0.1465 0.001465 1.3305𝑒 − 2 1.331𝑒 − 4

500 0.01594 0.1555 0.000311 6.3646𝑒 − 2 1.273𝑒 − 4

time of key generation encryption and decryption for 1 time
(which encryption and decryption 2 bits) in STP-GPV dual
cryptosystem. The experimental parameters are depicted as
follows: 𝑛 = 250, 𝑚 = 8000, and 𝑞 = 127. We obtain these
results by running 100 timesVarKeyGen,VarEnc, andVarDec
and taking the averages.

By experiments, it is proved that the key generation time
and encryption time of our scheme are only half of that of
the GPV dual cryptosystem’s, while the decryption time is
roughly equal to GPV dual cryptosystem’s.

6. Discussion and Conclusions

In this section, we apply 𝑛/𝑘-dimensional STP-LWE in the
GPV dual cryptosystem problem and build an extended
GPV dual cryptosystem. We know that the size of the
secret key space varies inversely with the value of 𝑘 in this
proposed extended cryptosystem. For different 𝑘 ∈ Z, secret
keys of length 𝑚/𝑘 should satisfy the following security
requirements.The first restrict is that the value of𝑚/𝑘 should
be greater than 2𝑛 log 𝑞 in order to resist the lattice-based
reduction algorithm. In this paper, since we pick 𝑛 = 250,
𝑚 = 8000, and 𝑞 = 127, we should choose 𝑘 < 3.

The second condition is that the private key should satisfy
the inequality 𝑞𝑚/𝑘 > 280 in order to resist brute-force attacks.
Considering the value 𝑛, 𝑚, and 𝑞, we require 𝑘 < 700. The
following table lists the time of key generation, encryption,
and decryption for one time in 5 different security levels.

In Table 3, it shows that the time of key generation and
the time required for encryption one bit plaintext is reduced
gradually with the increasing value of 𝑘. At the same time,
the time for decrypting one bit ciphertext in different security
levels has changed a little.

In this paper, we construct a flexible lattice based scheme
based on STP-LWE, which is a variant of learning with errors
problem. Our scheme can achieve a balance between the
security and efficiency in the hierarchical encryption systems.
By using STP-GPV dual cryptosystem, the whole system can
reset the security level for messages with the same security
parameter.
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