419 research outputs found

    Computer aided detection of defects in FRP bridge decks using infrared thermography

    Get PDF
    The objective of this research is to develop a turn-key system that is able to interface with the FLIR ThermaCAM S60 infrared camera and automatically capture and analyze defects in infrared images of FRP bridge decks. Infrared thermography is one of the nondestructive evaluation (NDE) techniques that are being used to locate defects (debonds and delaminations) in bridge components. It is a rapid data collection and interpretation technique having high sensitivity and reliability. Analysis of infrared images by human interpretation is dependent on the users knowledge and hence introduces ambiguity in the defect detection process.;This thesis investigates the use of an automated defect detection system to locate defects in infrared images of FRP bridge decks to eliminate/reduce human intervention. Air-filled and water-filled debonds were inserted between the wearing surface and the underlying FRP deck. Also, simulated subsurface delaminations (of various sizes and thickness) were created at the flange-to-flange junction between two FRP deck modules. (Abstract shortened by UMI.)

    Inspection of the integrity of surface mounted integrated circuits on a printed circuit board using vision

    Get PDF
    Machine vision technology has permeated many areas of industry, and automated inspection systems are playing increasingly important roles in many production processes. Electronic manufacturing is a good example of the integration of vision based feedback in manufacturing and the assembly of surface mount PCBs is typical of the technology involved. There are opportunities to use machine vision during different stages of the surface mount process. The problem in the inspection of solder joints on surface mount printed circuit board is much more difficult than many other inspection problems. In this thesis, an approach for inspecting surface mounted integrated circuits (SMICs) is presented. It is based on the variance of intensity values of pixels in an image. This method is able to cope with 4 kinds of soldering defects in SMICs. A set of modules for the system is proposed. The computer program which performs the image processing and analyzing has been written in C. It has been linked with a number of image processing routines from MAVIS1 to perform some image processing tasks, and the result is a compact executable module which works under MS-DOS2 3.30

    Object Detection Based on Template Matching through Use of Best-So-Far ABC

    Get PDF
    Best-so-far ABC is a modified version of the artificial bee colony (ABC) algorithm used for optimization tasks. This algorithm is one of the swarm intelligence (SI) algorithms proposed in recent literature, in which the results demonstrated that the best-so-far ABC can produce higher quality solutions with faster convergence than either the ordinary ABC or the current state-of-the-art ABC-based algorithm. In this work, we aim to apply the best-so-far ABC-based approach for object detection based on template matching by using the difference between the RGB level histograms corresponding to the target object and the template object as the objective function. Results confirm that the proposed method was successful in both detecting objects and optimizing the time used to reach the solution

    Computing With Hybrid Material Oscillators

    Get PDF
    The evolution of computers is driven by advances not only in computer science, but also in materials science. As the post-CMOS era approaches, research is increasingly focusing on flexible and unconventional computing systems, including the study of systems that incorporate new computational paradigms into the materials, enabling the computer and the material to be the same entity. In this dissertation, we design a coupled oscillator system based on a new hybrid material that can autonomously transduce chemical, mechanical, and electrical energy. Each material unit in this system integrates a self-oscillating gel, which undergoes the Belousov-Zhabotinsky (BZ) reaction, with an overlaying piezoelectric (PZ) cantilever. The chemo-mechanical oscillations of the BZ gels deflect the piezoelectric layer, which consequently generates a voltage across the material. When these BZ-PZ units are connected in series by electrical wires, the oscillations of these coupled units become synchronized across the network, with the mode of synchronization depending on the polarity of the piezoelectric. Taking advantage of this synchronization behavior, we demonstrate that the network of coupled BZ-PZ oscillators can perform specific computational tasks such as pattern matching in a self-organized manner, without external electrical power sources. The results of the computational modeling show that the convergence time for stable synchronization gives a distance measure between the ā€œstoredā€ and ā€œinputā€ patterns, which are encoded by the connection and phases of BZ-PZ oscillators. In addition, we demonstrate two methods to enrich the information representation in our system. One is to employ multiple BZ-PZ oscillator networks in parallel and to process information encoded in different channels. The other is to introduce capacitors into a BZ-PZ network that modify the dynamical behavior of the systems and increase the information storage. We analyze and simulate the proposed coupled oscillator systems by using linear stability analysis and phase models and explore their potential computational capabilities. Through these studies, we establish experimentally realizable design rules for creating ā€œmaterials that computeā€

    Texture and Colour in Image Analysis

    Get PDF
    Research in colour and texture has experienced major changes in the last few years. This book presents some recent advances in the field, specifically in the theory and applications of colour texture analysis. This volume also features benchmarks, comparative evaluations and reviews

    Electrochemical modulation and restructing of planar metallic metamaterials

    Get PDF
    Nano-plasmonics as well as the majority of photonic metamaterials rely on resonances of metallic nanostructures. For many applications, it would obviously be desirable to tune these resonances. In this thesis lithographically manufactured gold resonators are presented, whose central frequency and damping properties are modulated by an electrochemical approach. The optical properties of the manufactured samples are investigated experimentally and are confirmed by numerical calculations
    • ā€¦
    corecore