4,664 research outputs found

    C-MOS array design techniques: SUMC multiprocessor system study

    Get PDF
    The current capabilities of LSI techniques for speed and reliability, plus the possibilities of assembling large configurations of LSI logic and storage elements, have demanded the study of multiprocessors and multiprocessing techniques, problems, and potentialities. Evaluated are three previous systems studies for a space ultrareliable modular computer multiprocessing system, and a new multiprocessing system is proposed that is flexibly configured with up to four central processors, four 1/0 processors, and 16 main memory units, plus auxiliary memory and peripheral devices. This multiprocessor system features a multilevel interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual memory management of a storage hierarchy through 1/0 processors, and multiport access to multiple and shared memory units

    Reconfigurable High Performance Secured NoC Design Using Hierarchical Agent-based Monitoring System

    Get PDF
    With the rapid increase in demand for high performance computing, there is also a significant growth of data communication that leads to leverage the significance of network on chip. This paper proposes a reconfigurable fault tolerant on chip architecture with hierarchical agent based monitoring system for enhancing the performance of network based multiprocessor system on chip against faulty links and nodes. These distributed agents provide healthy status and congestion information of the network. This status information is used for further packet routing in the network with the help of XY routing algorithm. The functionality of Agent is enhanced not only to work as information provider but also to take decision for packet to either pass or stop to the processing element by setting the firewall in order to provide security. Proposed design provides a better performance and area optimization by avoiding deadlock and live lock as compared to existing approaches over network design

    Integrated testing and verification system for research flight software design document

    Get PDF
    The NASA Langley Research Center is developing the MUST (Multipurpose User-oriented Software Technology) program to cut the cost of producing research flight software through a system of software support tools. The HAL/S language is the primary subject of the design. Boeing Computer Services Company (BCS) has designed an integrated verification and testing capability as part of MUST. Documentation, verification and test options are provided with special attention on real time, multiprocessing issues. The needs of the entire software production cycle have been considered, with effective management and reduced lifecycle costs as foremost goals. Capabilities have been included in the design for static detection of data flow anomalies involving communicating concurrent processes. Some types of ill formed process synchronization and deadlock also are detected statically
    corecore