6,707 research outputs found

    A Parallel Decomposition Scheme for Solving Long-Horizon Optimal Control Problems

    Full text link
    We present a temporal decomposition scheme for solving long-horizon optimal control problems. In the proposed scheme, the time domain is decomposed into a set of subdomains with partially overlapping regions. Subproblems associated with the subdomains are solved in parallel to obtain local primal-dual trajectories that are assembled to obtain the global trajectories. We provide a sufficient condition that guarantees convergence of the proposed scheme. This condition states that the effect of perturbations on the boundary conditions (i.e., initial state and terminal dual/adjoint variable) should decay asymptotically as one moves away from the boundaries. This condition also reveals that the scheme converges if the size of the overlap is sufficiently large and that the convergence rate improves with the size of the overlap. We prove that linear quadratic problems satisfy the asymptotic decay condition, and we discuss numerical strategies to determine if the condition holds in more general cases. We draw upon a non-convex optimal control problem to illustrate the performance of the proposed scheme

    Single-layer economic model predictive control for periodic operation

    Get PDF
    In this paper we consider periodic optimal operation of constrained periodic linear systems. We propose an economic model predictive controller based on a single layer that unites dynamic real time optimization and control. The proposed controller guarantees closed-loop convergence to the optimal periodic trajectory that minimizes the average operation cost for a given economic criterion. A priori calculation of the optimal trajectory is not required and if the economic cost function is changed, recursive feasibility and convergence to the new periodic optimal trajectory is guaranteed. The results are demonstrated with two simulation examples, a four tank system, and a simplified model of a section of Barcelona's water distribution network.Peer ReviewedPostprint (author’s final draft

    Economic MPC with a contractive constraint for nonlinear systems

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/134956/1/rnc3549.pdfhttp://deepblue.lib.umich.edu/bitstream/2027.42/134956/2/rnc3549_am.pd

    A hierarchical MPC scheme for interconnected systems

    Full text link
    This paper describes a hierarchical control scheme for interconnected systems. The higher layer of the control structure is designed with robust Model Predictive Control (MPC) based on a reduced order dynamic model of the overall system and is aimed at optimizing long-term performance, while at the lower layer local regulators acting at a higher frequency are designed for the full order models of the subsystems to refine the control action. A simulation experiment concerning the control of the temperature inside a building is reported to witness the potentialities of the proposed approach
    corecore