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Abstract: In recent years, Economic Model Predictive Control (empc) has received

considerable attention of many research groups. The present tutorial survey summa-

rizes state-of-the-art approaches in empc. In this context empc is to be understood

as receding-horizon optimal control with a stage cost that does not simply penalize the

distance to a desired equilibrium but encodes more sophisticated economic objectives.

This survey provides a comprehensive overview of empc stability results: with and

without terminal constraints, with and without dissipativtiy assumptions, with averaged

constraints, formulations with multiple objectives and generalized terminal constraints

as well as Lyapunov-based approaches. Moreover, we compare different performance

criteria for some of the considered approaches and comment on the connections to recent

research on dissipativity of optimal control problems. We consider a discrete-time setting

and point towards continuous-time variants. We illustrate the different empc schemes

with several examples.
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1 Introduction

The principle idea of Model Predictive Control (mpc) can be dated back to the 1960s,

when Propoi, 1963 as well as Lee and Markus, 1967 suggested receding-horizon so-

lutions of Optimal Control Problems (ocp). While mpc saw its first applications in

petro-chemical industries in the 1970s, by now a mature body of knowledge encom-

passes stability and robustness of linear and nonlinear mpc,1 strategies and tools for

efficient numerical implementation ranging from sub-microseconds for small scale linear-

quadratic mpc to handling of strong nonlinearities, differential-algebraic dynamics and

partial-differential equations in real-time feasible implementations. Several monographs

provide overviews on the field of mpc, see (Ellis, Liu, et al., 2017; Grüne and Pannek,

2017; Rawlings and Mayne, 2009). In other words, nowadays mpc can be regarded as

mature control method, which has had significant impact on industrial process control,

cf. (Maciejowski, 2002, p. xi).

Standard control tasks frequently solved with nmpc include setpoint regulation and

trajectory tracking, whereby the former refers to the stabilization of known setpoints

defined in the state-space or some output space and the latter refers to the task of track-

ing time-dependent reference trajectories. However, even before first stability results on

nmpc with state and inputs constraints were available, it has been observed by Morari

et al., 1980 that

[in] attempting to synthesize a feedback optimizing control struc-

ture, our main objective is to translate the economic objective into

process control objectives.

The classical way to tackle this problem of designing economically beneficial control

schemes is by means of the so-called control pyramid, wherein real-time optimization

is used to compute economically desirable targets, which are then passed to the ad-

vanced process control, i.e. the mpc layer, (Engell, 2007). In other words, classically

economic targets are translated into setpoints and reference trajectories, which are in

1In the literature, mpc often refers to the a setting with linear systems, convex quadratic objective
and linear constraints while nmpc, which stands for nonlinear model predictive control, highlights
the presence of nonlinear dynamics and non-convex constraints.
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1 Introduction

turn stabilized by control techniques such as mpc. If indeed mpc is used to track these

targets, then it is natural that the mpc objective penalizes mainly the deviation from

the desired setpoint. It is this setting of setpoint regulation and tracking in which the

vast majority of results on mpc stability and robustness of are formulated, cf. (Grüne

and Pannek, 2017; Mayne et al., 2000; Rawlings and Mayne, 2009), and which is used

frequently in industrial practice. At the same time, in process systems engineering and

other fields of application, one aims at economic process operation. Hence, in the view of

the quote from (Morari et al., 1980) given above, the question of closed-loop properties

of receding-horizon optimal control with generic or economic objectives is very natural.

In the process control community this issue has been addressed using the label Dynamic

Real Time Optimization (Kadam and Marquardt, 2007), while in (Rawlings and Amrit,

2009) the term Economic Model Predictive Control (empc) has been coined.

The present survey provides a concise overview of different approaches on the question

of stability and optimality in different formulations of empc. In contrast to previous

overviews on the same topic (Ellis, Durand, et al., 2014), we cover approaches both with

and without terminal constraints and end penalties, and turnpike/dissipativity-based

settings as well as Lyapunov-based approaches.

1.1 Outline

In Section 2 we recall important stability results for stabilizing nmpc. Section 3 analyzes

the stability of empc based on dissipativity properties and terminal constraints. Section

4 investigates the counterpart without terminal constraints and penalties. In Section 5

we provide an overview of performance bounds for the empc schemes from Section 3

and Section 4.

empc with averaged constraints is discussed in Section 6, while Section 7 revisits

generalized terminal constraints. Lyapunov-based approaches and multi-objective ap-

proaches are presented in Section 8, respectively, in Section 9. This survey ends with

conclusions and an outlook on open issues in Section 10.

1.2 Notation

Throughout this review, we use the following notation: Real vectors are denoted by

Latin letters, i.e. x ∈ Rnx , u ∈ Rnu . The two-norm of any vector x ∈ Rnx is ‖x‖.
Consider a discrete-time system x(t + 1) = f(x(t), u(t)) with f : Rnx × Rnu → Rnx .
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1.2 Notation

The trajectory originating from x0 driven by the input u(·) is written as x(·;x0, u(·)).
Whenever the control sequence is clear from context, we write simply x(·;x0).

We will use the following standard classes of comparison functions:

• L :=
{
γ : R+

0 → R+
0 | γ continuous and decreasing with

lim
k→∞

γ(k) = 0
}

• K := {α : R+
0 → R+

0 |α continuous and strictly increasing with

α(0) = 0}

• K∞ := {α ∈ K |α unbounded}

• KL := {β : R+
0 × R+

0 → R+
0 | β(·, k) ∈ K, β(r, ·) ∈ L}.

We refer to (Kellett, 2014) for a detailed overview of properties of these comparison

functions.

9





2 Revisiting Stabilizing NMPC

In this section, we give a brief introduction to the basic principle of mpc and recall

available nmpc approaches for the classical control objective of (setpoint) stabilization.

In nmpc, one repeatedly solves an Optimal Control Problem (ocp) in a receding horizon

fashion, formulated either in a discrete or continuous time framework. In the present

overview, we will focus mainly on the discrete-time framework, yet we will also comment

on continuous-time counterparts of the presented results in various places. We begin with

a concise review of nmpc for setpoint regulation.

2.1 Main Idea of NMPC

We consider autonomous discrete-time systems described by

x(t+ 1) = f(x(t), u(t)), x(0) = x0, (2.1)

where x ∈ Rnx is the state, u ∈ Rnu is the input and f : Rnx × Rnu → Rnx denotes the

continuous state transition map,1 and t ∈ Z is the discrete time variable.

States and inputs are assumed to be restricted by the closed set X ⊆ Rnx and the

compact set U ⊂ Rnu , respectively. Both sets X and U contain the origin in their interior.

Corresponding to system (2.1), one considers a cost functional

J∞(x0, u(·)) =
∞∑
k=0

`(x(k), u(k)) (2.2)

which models the performance requirements of (2.1) with the continuous stage cost

` : X× U→ R.

Ultimately, one aims at optimizing the infinite-horizon objective J∞. However, this

is numerically often infeasible. Thus, in nmpc one considers a finite horizon N and the

1Note that many results in this survey extend to systems on general metric spaces, see (Grüne and
Pannek, 2017).
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2 Revisiting Stabilizing NMPC

functional

JN(x0, u(·)) =
N∑
k=0

`(x(k), u(k)) + Vf (x(N)), (2.3)

whereby the terminal penalty Vf : X → R is used to account for the truncation of the

horizon. To this end, one initializes the closed loop system at x(0) = x0 and solves the

following finite-horizon discrete-time ocp at each time step t = 0, 1, 2, . . .:

VN(x(t)) := min
u(·|t)

N−1∑
k=0

`(x(k|t), u(k|t)) + Vf (x(N |t)) (2.4a)

subject to

x(k + 1|t) = f(x(k|t), u(k|t)), k = 0, . . . , N − 1 (2.4b)

x(0|t) = x(t) (2.4c)

(x(k|t), u(k|t))> ∈ X× U, k = 0, . . . , N − 1 (2.4d)

x(N |t) ∈ Xf (2.4e)

With the resulting optimal input sequence denoted by u?(k|t), one defines the mpc

feedback as

µN(x(t)) := u?(0|t), (2.5)

i.e., as the first element of the optimal input sequence, and obtains the next state of the

closed loop system as

x(t+ 1) = f(x(t), µN(x(t))), x(0) = x0. (2.6)

Here, N ∈ N is the prediction horizon, Vf : X→ R is the continuous terminal penalty,

and VN(x(t)) is the optimal value function of (2.4). Equations (2.4b)–(2.4d) summarize

the equality constraints imposed by the dynamics and additional constraints on states

and inputs, which are typically described by inequalities. As we will recall shortly, the

terminal constraint (2.4e) is often used to enforce stability and recursive feasibility.2

Here, Xf ⊆ X is the terminal set or terminal region.

The superscript (·)? indicates variables related to optimal solutions of (2.4). Further-

more, in order to distinguish predicted variables from closed-loop variables, we use the

2Naturally, one may ask under which conditions does ocp (2.4) admit an optimal solution? As (2.4)
is essentially a Nonlinear Program (nlp), we require continuity of f, ` and Vf . Note that our
assumptions imply that an optimal solution to problem (2.4) exists in case the feasible set it not
empty. For a further discussion on the existence of solutions of an nlp, the interested reader is
referred to (Bertsekas, 1999).
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2.2 Stabilizing NMPC with Terminal Constraints

notation ·(k|t) to denote k-step ahead predictions computed at time t ∈ Z based on the

current (real) system state x(t). For example, we write u?(k|t) to refer to the kth element

of the optimal predicted input sequence to ocp (2.4) computed for the initial condition

x(t), and we denote the corresponding optimal state trajectory by x?(·|t). Throughout

this survey we do not consider any plant-model mismatch, i.e., we assume that f in

(2.4b) and in (2.6) are identical.

As the feedback µN : X → U from (2.5) relies on the receding-horizon solution of an

optimization problem, it is necessary to discuss the feasibility properties of (2.4). To

this end, we rely on the following definition:

Definition 2.1 (Recursive feasibility). Let X0 ⊆ X denote a set of initial conditions

x(0) = x0 (2.4c) for which ocp (2.4) admits a feasible solution. OCP (2.4) is said

to be recursively feasible with respect to X0, if for all x(0) = x0 ∈ X0 the inclusion

f(x0, µN(x0)) ∈ X0 holds.

Now that we have stated the core idea of nmpc, several questions are immediate:

Q1 Under which conditions is ocp (2.4) recursively feasible?

Q2 What are the properties of the closed-loop system (2.6) in terms of stability, opti-

mality, and robustness?

Q3 Which stage costs ` are permissible without jeopardizing feasibility, stability, and

optimality?

We will see later that questions Q1–Q3 are typically implicitly or explicitly answered in

the course of analyzing any proposed nmpc scheme.

2.2 Stabilizing NMPC with Terminal Constraints

The classical problem to be tackled by nmpc is the stabilization of a given constant

reference setpoint (xs, us) ∈ int(X × U). Without loss of generality, we shift the target

setpoint to the origin, i.e. we consider (xs, us) = (0, 0) and f(xs, us) = 0. A typical

design requirement in nmpc for setpoint regulation is that the stage cost ` penalizes the

distance to the target (xs, us) = (0, 0).

Assumption 2.1 (Lower boundedness of `). The stage cost satisfies `(0, 0) = 0. Fur-

thermore, there exists α1 ∈ K∞ such that for all (x, u) ∈ X× U

α1(‖x‖) ≤ `(x, u).
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2 Revisiting Stabilizing NMPC

In classical nmpc (Mayne et al., 2000; Rawlings and Mayne, 2009) one relies on the

following key assumption to guarantee that x = 0 is a stable equilibrium of the closed-

loop system (2.6) using the terminal penalty Vf and the terminal constraint Xf :

Assumption 2.2 (Local bound on the cost-to-go). For all x ∈ Xf , there exist an input

u = κf (x) ∈ U such that f(x, κf (x)) ∈ Xf holds and

Vf (f(x, κf (x))) + `(x, κf (x)) ≤ Vf (x). (2.7)

Furthermore, Vf (0) = 0 and Vf (x) ≥ 0 for all x ∈ Xf .

An immediate consequence of Assumption 2.2 is that the terminal constraint Xf is a

control invariant set, i.e., for any initial condition x ∈ Xf , there exists a control input

u ∈ U such that the successor state x+ = f(x, u) satisfies x+ ∈ Xf .

Now, we are ready to recall the well-known stability result for discrete-time stabilizing

nmpc with terminal constraints.

Theorem 2.1 (Stability of nmpc with terminal constraints).

Let Assumptions 2.1 and 2.2 hold. Suppose that 0 ∈ int(Xf ) and that there exists

α3 ∈ K∞ such that, for all x ∈ Xf , Vf (x) ≤ α3(‖x‖).

Then the closed-loop system (2.6) arising from the receding horizon solution to ocp

(2.4) has the following properties:

(i) If ocp (2.4) is feasible for t = 0, then it is feasible for all t ∈ N.

(ii) The origin x = 0 is an asymptotically stable equilibrium of (2.6).

(iii) The region of attraction of x = 0 is given by the set of all initial conditions x0 for

which ocp (2.4) is feasible.

Proof. Throughout this overview we will only provide sketches of proofs and refer to

the literature for details. The proof of Theorem 2.1 proceeds in two main steps: Step

1 establishes recursive feasibility, while Step 2 shows that the value function VN is a

suitable candidate Lyapunov function of the closed-loop system.

Step 1: Consider ocp (2.4) for some initial condition x(0|t) ∈ X. Let u?(·|t) be the

optimal input sequence and consider

u(k|t+ 1) =

{
u?(k + 1|t), k = 0, . . . , N − 2

κf (x
?(N |t)), k = N − 1

(2.8)
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2.2 Stabilizing NMPC with Terminal Constraints

As we do not consider any plant-model mismatch, we have

x(t+ 1) = f(x(t), u?(1|t)) = x?(1|t) ∈ X and x?(N |t) ∈ Xf .

Thus, u(·|t+1) from (2.8) is feasible for ocp (2.4) with initial condition x(t+1) = x?(1|t).
Step 2: We use the value function VN from (2.4a) as a Lyapunov function. By opti-

mality of VN in (2.4) we have

VN(x(t+ 1))− VN(x(t)) ≤ JN(x(t+ 1), u(·|t+ 1))− VN(x(t)),

where JN , defined in (2.3), is the finite-horizon counterpart of J∞, and u(·|t+ 1) is from

(2.8). Since u(k|t + 1) = u?(k + 1|t), k ∈ {k, . . . , N − 2} and x(t + 1) = x?(1|t), we

obtain

JN(x(t+ 1), u(·|t+ 1))− VN(x(t)) ≤

− α1(‖x(t)‖) + `(x?(N |t), κf (x?(N |t)))

+ Vf (f(x?(N |t), κf (x?(N |t))))− Vf (x?(N |t))

Taking Assumption 2.2 into account yields

VN(x(t+ 1))− VN(x(t)) ≤ −α1(‖x(t)‖) ≤ 0,

with α1 ∈ K∞ from Assumption 2.1. In other words, VN decreases strictly along closed-

loop trajectories. Without further elaboration, we note that one can also establish that

VN is bounded from above by a suitable class K∞ function on the set of all states where

(2.4a) is feasible, cf. (Rawlings and Mayne, 2009, Chap. 2). Hence, VN is a Lyapunov

function of (2.6) on the set of all states where (2.4a) is feasible.

Results similar to the one above appear in various forms in the literature: we refer

to (Grüne and Pannek, 2017; Mayne et al., 2000; Rawlings and Mayne, 2009) for more

detailed overviews of the literature. It is worth to be noted that Assumption 2.2 implies

that the terminal penalty Vf is an upper bound on the cost-to-go, i.e., for all x ∈ Xf ,

V∞(x) ≤ Vf (x),

This has been observed in a continuous-time setting in (Chen and Allgöwer, 1998),

wherein it is suggested to construct Xf and Vf by means of a linearization of (2.1)

15



2 Revisiting Stabilizing NMPC

at x = 0, u = 0. The interesting special case, whereby the terminal set is a singleton

Xf = {0}, is commonly denoted as nmpc with zero terminal constraints. It dates back to

(Keerthi and Gilbert, 1988; Michalska and Vinter, 1994) and gives rise to the following

corollary:

Corollary 2.1 (Stability of nmpc with zero terminal constraints).

Let Assumption 2.1 hold, suppose that Vf (x) = 0 and Xf = {0} are considered in ocp

(2.4), and let VN be continuous at x = 0.3 Then the closed-loop system (2.6) has the

properties asserted in Theorem 2.1.

2.3 Stabilizing NMPC without Terminal Constraints

In the development of nmpc, the question for conditions ensuring that nmpc stabilizes

a desired setpoint without consideration of terminal constraints has been thoroughly

investigated. In general, one can distinguish three different approaches:

1. Replace Vf by V β
f = βVf , with β > 0 sufficiently large, such that a suitable

terminal constraint Xf is satisfied without being explicitly stated in the ocp, cf.

(Rawlings and Mayne, 2009).

2. Require that Vf is a global Control Lyapunov Function (clf) (Jadbabaie and

Hauser, 2005).

3. Drop the terminal penalty (Vf (x) = 0), suppose specific bounds on the optimal

value function, and require a sufficiently long prediction horizon (Grimm et al.,

2005; Grüne, 2009; Jadbabaie, Yu, et al., 2001).

Approach 1 allows for inclusion of state constraints without jeopardizing recursive fea-

sibility, as the arguments of Step 1 in the proof of Theorem 2.1 remain valid. However,

it implicitly requires a preceding design of suitable terminal constraints.

Approach 2 is based on the observation that Assumption 2.2 can also be understood

as the requirement of Vf being a local clf for (2.1). Hence, in Approach 2 one essentially

requires Assumption 2.2 to hold for all x ∈ X.

As we recall subsequently, Approach 3 allows showing that under suitable assumptions,

for sufficiently long horizons N , nmpc is stabilizing. For the remainder of this section,

we consider Xf = X and Vf (x) = 0.

3Requiring continuity of VN at x = 0 is necessary since 0 /∈ int(Xf ).
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2.3 Stabilizing NMPC without Terminal Constraints

In Approach 2 and Approach 3 there is the underlying requirement that the state con-

straint set X is control invariant, which is often difficult to verify for nonlinear systems.

To the end of avoiding recursive feasibility issues, we assume:4

Assumption 2.3 (X is control invariant). For each x ∈ X there exists u ∈ U, such that

f(x, u) ∈ X.

Assumption 2.4 (Bound on VN(x)). Consider ocp (2.4) with Xf = X and Vf (x) = 0.

For each x ∈ X, there exists BK ∈ K∞, K ∈ N, such that

VK(x) ≤ BK(`∗(x)), with `∗(x) := inf
u∈U

`(x, u) (2.9)

holds for all K ∈ N.

Theorem 2.2 (Stability of nmpc without terminal constraints).

Let Assumptions 2.1 and 2.3 hold. Suppose that Assumption 2.4 holds with BK(r) =

γKr, supk∈N γk <∞. Then, for sufficiently large N , the origin x = 0 is an asymptotically

stable equilibrium of the closed-loop system (2.6).

Proof. The above result appears as Theorem 6.24 in (Grüne and Pannek, 2017). Its

proof is centered around the relaxed dynamic programming inequality

VN(f(x, µN(x)) ≤ VN(x)− α`(x, µN(x)) (2.10)

for α ∈ (0, 1], which implies both asymptotic stability of (2.6) with VN as a Lyapunov

function and the suboptimality estimate

J∞(x, µN(·)) ≤ 1

α
VN(x) ≤ 1

α
V∞(x), (2.11)

cf. Theorem 4.11 from (Grüne and Pannek, 2017).

The proof proceeds by showing that the linearity assumption on BK implies that, for

N → ∞, there exists an appropriate α ∈ (0, 1] that satisfies (2.10) for all x ∈ X, cf.

(Grüne and Pannek, 2017, Prop. 6.18 and Thm. 6.24).

We refer to (Grüne and Pannek, 2017, Chap. 6) for details and a discussion of As-

sumption 2.4. We also note that if Assumption 2.4 holds with nonlinear functions BK ,

4Note that this assumption can be relaxed, see (Grüne and Pannek, 2017, Chap. 7). Furthermore, in
Section 4 we investigate relaxing this assumption in the context of empc.
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2 Revisiting Stabilizing NMPC

then one can still show semiglobal practical asymptotic stability w.r.t. the prediction

horizon N , see (Grüne and Pannek, 2017, Thm. 6.37).

In summary, the design of mpc schemes for stabilization problems is by now well

understood and various different nmpc approaches exist in the literature to this end,

see (Grüne and Pannek, 2017; Rawlings and Mayne, 2009) for detailed overviews. We

conclude our brief discussion of stabilizing nmpc by commenting on the advantages and

disadvantages of nmpc schemes with and without terminal constraints and/or penalty.

The main advantages of nmpc schemes using terminal constraints include the follow-

ing: (i) A shorter prediction horizon might be sufficient for closed-loop stability than in

a setting without terminal constraints. (ii) A systematic procedure how to satisfy the

crucial Assumption 2.2 is available for a large class of systems (in particular, in case

that the desired equilibrium is contained in the interior of the state constraints and the

linearization at this point is stabilizable). On the other hand, the addition of termi-

nal constraints might be restrictive and can result in an (unnecessarily) small feasible

set (depending on the size of the terminal region and on the length of the prediction

horizon). Also, the additional terminal constraints result in an increased computational

complexity.

At the same time, in many applications nmpc is often implemented without any

terminal constraint. The main advantages of doing so are that (i) omitting terminal

constraints results in a simpler optimization problem and (ii) typically a larger feasible

set is obtained. On the other hand, establishing recursive feasibility of the ocp is not

as straightforward but requires additional assumptions/arguments. Furthermore, the

crucial controllability assumption (Assumption 2.4) might be difficult to verify, and no

systematic procedure exists to this end for general nonlinear systems. In conclusion,

each of the presented schemes has its advantages and disadvantages, which have to be

considered when choosing a suitable nmpc scheme for a given stabilization task.
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3 Economic MPC with Terminal

Constraints

As already mentioned in the introduction, in many applications achieving a reasonable

trade-off between safety, i.e. stability, and economic process operation is of key im-

portance. In this context, it has been, and still is, common practice in industry to

translate economic operation into desired target setpoints, which can then be stabilized

and tracked, for instance, by means of the nmpc schemes sketched in Section 2. More-

over, by now powerful numerical methods for implementation of nmpc for large-scale

process control applications, fast mechatronic systems, and other domains are available.

As we have seen in the previous section, there also exists a mature body of theory on sta-

bility/optimality/robustness of nmpc relying on the classical boundedness of the stage

cost ` by a distance measure (Assumption 2.1).

However, it is quite natural to consider feedback schemes built around receding horizon

optimal control using generic stage costs `, i.e. to consider nmpc for given functions `

instead of nmpc with ` being designed to the end of tracking target setpoints. In the view

of Question Q3 stated in Section 2, which asks for permissible stage costs `, we now turn

the discussion towards replacing Assumption 2.1 with weaker properties in the nmpc

stability analysis. To this end and for the remainder of this section, we consider nmpc

based on the receding horizon solution to the following ocp with terminal constraint:

VN(x(t)) := min
u(·|t)

N−1∑
k=0

`(x(k|t), u(k|t)) + Vf (x(N |t)) (3.1a)

subject to

x(k + 1|t) = f(x(k|t), u(k|t)), k = 0, . . . , N − 1 (3.1b)

x(0|t) = x(t) (3.1c)

(x(k|t), u(k|t))> ∈ X× U, k = 0, . . . , N − 1 (3.1d)

x(N |t) ∈ Xf (3.1e)
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3 Economic MPC with Terminal Constraints

3.1 Dissipativity and Optimal Operation at Steady State

We begin with relaxing Assumption 2.1 to a dissipativity notion, which appears to have

been made first in (Angeli et al., 2012; Diehl et al., 2011).

Definition 3.1 (Strict dissipativity with respect to a steady state).

System (2.1) is said to be dissipative with respect to the steady-state pair (xs, us) ∈
X×U, if there exists a non-negative function λ : X→ R such that for all x ∈ X, u ∈ U

λ(f(x, u))− λ(x) ≤ `(x, u)− `(xs, us). (3.2a)

If, additionally, there exists α` ∈ K∞ such that

λ(f(x, u))− λ(x) ≤ −α` (‖(x− xs, u− us)‖) + `(x, u)− `(xs, us). (3.2b)

then (2.1) is said to be strictly dissipative with respect to (xs, us).

We remark that ` in (3.2) refers to the stage cost of ocp (3.1). Denoting

s(x, u) = `(x, u)− `(xs, us) (3.3)

as a supply rate and calling λ in (3.2) a storage function, it is clear that (3.2) are

dissipation inequalities.1

Remark 3.1 (Different dissipation inequalities considered in empc).

We remark that the dissipation inequalities (3.2) appear in different variants in the

empc literature: While (Diehl et al., 2011) suggest linear storage functions, (Angeli et

al., 2012; Damm et al., 2014; Faulwasser and Bonvin, 2015b; Grüne, 2013) consider

nonlinear functions λ : X→ R. Moreover, some results in the context of empc are also

valid when using storage functions which are not necessarily bounded from below,2, such

as, e.g., Theorem 3.2 below (without loss of generality boundedness from below is equiv-

alent to non-negativity as typically assumed in classical dissipativity theory (Willems,

1972)). Furthermore, some results not only require boundedness from below of the stor-

age function λ, but also boundedness from above (i.e., a bounded storage function λ).

1It is worth to be noted that dissipation inequalities can be used to analyze different system properties
ranging from stability to non-minimum phase behavior (Ebenbauer et al., 2009). However, an in-
depth introduction to dissipativity concepts in systems theory is beyond the scope of the present
survey. Instead we refer to (Moylan, 2014; Willems, 2007; Willems, 1972).

2In the classical dissipativity literature, this is referred to as cyclo-dissipativity see (Hill and Moylan,
1980; Moylan, 2014).
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3.1 Dissipativity and Optimal Operation at Steady State

This is, e.g., the case in Section 4 or in converse dissipativity (Müller, Angeli, and

Allgöwer, 2015) and converse turnpike results (Faulwasser et al., 2014, 2017; Grüne

and Müller, 2016). Finally, we remark that while most of the available empc results

require strictness in (3.2b) with respect to x− xs, for some results strictness in x and u

is required, such as in the converse turnpike results presented in (Faulwasser et al., 2014,

2017), when considering robustness of dissipativity (Müller, Angeli, and Allgöwer, 2015),

or in the more general case of optimal periodic operation (Müller and Grüne, 2016a).

Henceforth, as it simplifies some of our later developments, we consider strictness in x

and u.

In Definition 3.1, the dissipation inequalities are required to hold on X × U. On the

other hand, most of the results in empc also hold if these inequalities are only satisfied on

a certain subset of X×U. For example, in (Müller, Grüne, and Allgöwer, 2015; Müller,

Angeli, and Allgöwer, 2015) all (x, u) pairs belonging to an infinite-horizon feasible

trajectory are considered, while (Faulwasser and Bonvin, 2015b; Faulwasser et al., 2017)

employ dissipativity along optimal solutions of ocp (3.1) in the following sense:

Definition 3.2 (Strict dissipativity of ocp (3.1)). If, for all N ∈ N and all x0 ∈ X0,

the dissipation inequalities (3.2) hold along any optimal pair of ocp (3.1), then ocp

(3.1) is said to be (strictly) dissipative.

Observe that in the non-strict case, Definition 3.2 and Definition 3.1 are equivalent.3

However, in the strict case Definition 3.2 is weaker than the dissipativity property re-

quired in Definition 3.1. As noted above, the majority of the available empc results have

been formulated using Definition 3.1, however, most of them can also be shown using

Definition 3.2 instead. If the latter dissipativity definition is employed, the resulting

closed-loop guarantees are only valid under the assumption that the optimal solution to

ocp (3.1) can be found online. However, from an applications point of view, it is evident

that one often computes only approximately optimal solutions to ocp (3.1). From this

perspective, we note without further elaboration that the stronger dissipativity notion of

Definition 3.1 implies a certain robustness with respect to the application of suboptimal

feedbacks in nmpc.

The dissipativity notions introduced above are of importance as they establish a re-

lation between the trajectories of system (2.1) and the stage cost of ocp (3.1).

Lemma 3.1 (Dissipativity and steady-state optimality). If system (2.1) is dissipative

3This directly follows from Theorem 1 in (Willems, 1972).
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3 Economic MPC with Terminal Constraints

with respect to (xs, us) ∈ X× U, then (xs, us) in (3.2b) is a global minimizer of

min
(x,u)

`(x, u) (3.4a)

subject to

x = f(x, u) and (x, u) ∈ X× U. (3.4b)

If, moreover, system (2.1) is strictly dissipative with respect to (xs, us), then (xs, us) is

the unique global minimizer of (3.4).

Proof. For sake of contradiction, suppose that (xs, us) is not a global minimizer of (3.4).

Then, there exists a steady-state pair (x̄, ū) such that `(x̄, ū)− `(xs, us) < 0. Evaluating

the dissipation inequality (3.2a) at (x̄, ū) gives 0 ≤ `(x̄, ū) − `(xs, us). Hence, unless

`(x̄, ū) = `(xs, us) for all minimizers of (3.4), we arrive at a contradiction.

Evaluating the strict dissipation inequality (3.2b) at (x̄, ū) gives, for all steady states

x̄ 6= xs, 0 < α`(‖(x̄ − xs, ū − us)‖) ≤ `(x̄, ū) − `(xs, us). Hence, the pair (xs, us) is the

unique global minimizer of (3.4).

The reader may interpret the strict dissipativity property of Definition 3.1 as the

relaxation of Assumption 2.1 in the sense that the lower boundedness of ` by a distance

measure is only required on the set of steady states of (2.1).

We will show in Section 4 that dissipativity of an ocp also allows statements about

the specific structure of its optimal solutions, i.e. we will link it to turnpike properties.

Besides, it allows to make qualitative statements about how to operate a process opti-

mally on infinite horizons. In particular, one can show that dissipativity of system (2.1)

as in Definition 3.1 implies that the system is optimally operated at steady state, which

is formally defined as follows:

Definition 3.3 (Optimal steady-state operation). The system (2.1) is optimally oper-

ated at steady-state, if for each solution satisfying (x(t), u(t)) ∈ X×U for all t ∈ N the

following holds:

lim inf
T→∞

∑T
t=0 `(x(t), u(t))

T + 1
≥ `(xs, us). (3.5)

Definition 3.3 means that no feasible input and state sequence pair results in a better

asymptotic average performance than the optimal steady-state cost. The following re-

sult showing sufficiency of dissipativity for optimal steady-state operation was obtained

in (Angeli et al., 2012):
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3.2 Closed-loop Stability

Theorem 3.1 (Dissipativity implies optimal steady-state operation).

Suppose that system (2.1) is dissipative with respect to the steady-state pair (xs, us).

Then it is optimally operated at steady state.

The proof of this result follows in a straightforward fashion from the dissipation in-

equality (3.2a), by noting that

0 ≤ lim inf
T→∞

λ(x(T ))− λ(x(0))

T
= lim inf

T→∞

∑T−1
t=0 λ(f(x(t), u(t)))− λ(x(t))

T

≤ lim inf
T→∞

∑T−1
t=0 `(x(t), u(t))− `(xs, us)

T

= lim inf
T→∞

∑T−1
t=0 `(x(t), u(t))

T
− `(xs, us),

which is (3.5).

As shown in (Müller, Angeli, and Allgöwer, 2015), under a suitable controllability

condition, the converse statement is also true, i.e., dissipativity is also necessary for

optimal steady-state operation. Furthermore, strict dissipativity with respect to the

steady-state pair (xs, us) can be used as a sufficient and necessary condition (the latter

again under a suitable local controllability assumption) for a slightly stronger property

than optimal steady state operation, termed uniform suboptimal operation off steady

state (see Müller, Grüne, and Allgöwer, 2015), meaning that steady-state operation is

the unique optimal operating behavior in a suitable sense.

In summary, dissipativity with respect to the steady-state pair (xs, us) serves as an

(almost) equivalent characterization for the fact that the optimal (infinite horizon) op-

erating behavior of system (2.1) is steady-state operation at (xs, us).

3.2 Closed-loop Stability

In case that system (2.1) is optimally operated at steady-state, a well defined economic

mpc scheme should ensure that the closed loop indeed converges to the optimal steady

state xs. In the following, we show that this is indeed the case. To this end, it has been

suggested in (Amrit et al., 2011; Angeli et al., 2012; Diehl et al., 2011) to consider the

following rotation of the stage cost ` and the end penalty Vf

˜̀(x, u) = `(x, u)− `(xs, us) + λ(x)− λ(f(x, u)), (3.6a)

Ṽf (x) = Vf (x) + λ(x) (3.6b)
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3 Economic MPC with Terminal Constraints

It is readily seen that ˜̀ is lower bounded by a suitable class K function if the strict

dissipation inequality (3.2b) is satisfied. Additionally, it turns out that the solutions to

ocp (3.1) are not affected swapping ` with ˜̀and Vf with Ṽf .

Lemma 3.2 (Rotation does not change optimal solutions).

Consider any horizon N ∈ N and any initial condition x such that ocp (3.1) with stage

cost ` and terminal penalty Vf admits an optimal solution u?(·).

Then, for the same horizon N ∈ N and initial condition x, the input sequence u?(·) is

also optimal in ocp (3.1) employing the rotated costs ˜̀ and Ṽf .

Proof. Consider an admissible pair x(·), u(·) defined for some horizon N ∈ N, originating

at some initial conditions x. Simple calculations show that

N−1∑
k=0

`(x(k), u(k))− ˜̀(x(k), u(k)) = λ(x(N))− λ(x) +N · `(xs, us).

Since Vf (x(N))− Ṽf (x(N)) = −λ(x(N)), for any admissible pair, the objectives of ocp

(3.1) with costs l, Vf and ocp (3.1) considering the rotated costs ˜̀, Ṽf differ only by the

constant −λ(x) +N · `(xs, us).

We note that the last result does not require that λ satisfies any dissipation inequality.

Hence, rotation by any bounded function does not change the optimal solution in ocp

(3.1). Now we are ready to state the empc counterpart of Theorem 2.1.

Theorem 3.2 (Stability of empc with terminal constraints). Suppose that system (2.1)

is strictly dissipative with respect to the steady-state pair (xs, us) Furthermore, let As-

sumption 2.2 hold for Ṽf from (3.6) and suppose that xs ∈ int(Xf ).

Then the closed-loop system (2.6) arising from the receding horizon solution to ocp

(3.1) has the following properties:

(i) If ocp (3.1) is feasible for k = 0, then it is feasible for all k ∈ N.

(ii) The steady state x = xs is an asymptotically stable equilibrium of (2.6).

(iii) The region of attraction of x = xs is given by the set of all initial conditions x0

for which ocp (3.1) is feasible.

Proof. Since the optimal solutions coincide, we may consider ocp (3.1) using the rotated

costs from (3.6), cf. Lemma 3.2. Since the system (2.1) is strictly dissipative with respect

to the steady-state pair (xs, us), inequality (3.6a) is satisfied. Hence, all conditions of

Theorem 2.1 are satisfied.
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3.3 Example – Chemical Reactor with Dissipativity

Similar to Corollary 2.1 by enforcing a point-wise terminal constraint we immediately

obtain the following result:

Corollary 3.1 (Stability of empc with zero terminal constraints).

Suppose that that system (2.1) is strictly dissipative with respect to the steady-state pair

(xs, us). Moreover, consider the terminal constraint set Xf = {xs} and let λ and VN be

continuous at x = xs.

Then the closed-loop system (2.6) arising from the receding horizon solution to ocp

(3.1) has the properties asserted in Theorem 3.2.

We remark that the original version of Theorem 3.2 was presented in (Amrit et al.,

2011), while Corollary 3.1 was presented in (Angeli et al., 2012, Thm. 2), where strict

dissipativity is required only with respect to xs. Furthermore, the results of (Diehl et al.,

2011) represent Corollary 3.1 for the case of linear storage functions λ. A continuous-

time extension can be found in (Alessandretti et al., 2014).

Combining the above results with those of Section 3.1, we obtain the following con-

clusions on empc with terminal constraints: If the optimal operating behavior for sys-

tem (2.1) is steady-state operation (in its strict form), the system is (strictly) dissipative

with respect to the steady-state pair (xs, us), which in turn implies asymptotic stability

of xs for the resulting closed-loop system. Put differently, this means that the closed-loop

system “finds” the optimal operating behavior (compare (Müller, Grüne, and Allgöwer,

2015) for a more detailed discussion on these issues). Notably, these conclusions can be

drawn without the explicit knowledge of a storage function λ, which is important since

computing such a storage function can be difficult for general nonlinear systems and cost

functions. However, the optimal steady state xs needs to be known a priori, since the

asymptotic stability properties only hold if the terminal constraint (3.1e) and terminal

penalty Vf are specified with respect to the optimal steady state xs.

3.3 Example – Chemical Reactor with Dissipativity

To illustrate the asymptotic stability result, we consider the Van de Vusse reactor as an

example, see (Klatt et al., 1995; Rothfuß et al., 1996). In a continuously stirred tank

reactor, three endothermal chemical reactions A
k1−→ B

k2−→ C and 2A
k3−→ D take place.

A partial model of the reactor, including the concentration of species A and B, cA, cB
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3 Economic MPC with Terminal Constraints

in mol/l and the reactor temperature ϑ in ◦C as state variables, reads

ċA = rA(cA, ϑ) + (cin − cA)u1 (3.7a)

ċB = rB(cA, cB, ϑ)− cBu1 (3.7b)

ϑ̇ = h(cA, cB, ϑ) + α(u2 − ϑ) + (ϑin − ϑ)u1, (3.7c)

where

rA(cA, ϑ) = −k1(ϑ)cA − 2k3(ϑ)c2
A (3.7d)

rB(cA, cB, ϑ) = k1(ϑ)cA − k2(ϑ)cB (3.7e)

h(cA, cB, ϑ) = −δ
(
k1(ϑ)cA∆HAB + k2(ϑ)cB∆HBC

+ 2k3(ϑ)c2
A∆HAD

)
(3.7f)

ki(ϑ) = ki0 exp
−Ei
ϑ+ ϑ0

, i = 1, 2, 3. (3.7g)

The system parameters can be found in (Rothfuß et al., 1996). The inputs u1, u2 are the

normalized flow rate of A through the reactor in 1/h and the temperature in the cooling

jacket in ◦C. The states and inputs are subject to the constraints

cA ∈ [0, 6]mol
l

cB ∈ [0, 4]mol
l

ϑ ∈ [70, 200]◦C

u1 ∈ [3, 35] 1
h

u2 ∈ [0, 200]◦C.
(3.8)

We consider the problem of maximizing the production rate of cB; thus we specify the

cost function L as

L(cB, u1) = −cBu1. (3.9)

As shown in (Faulwasser et al., 2017), the system is strictly dissipative at the optimal

steady-state pair

xs = (2.175, 1.105, 1.285)> us = 1.428

in appropriately rescaled variables (see the next paragraph).4 Moreover, the constrained

reachability properties of the system have been analyzed in (Faulwasser, Hagenmeyer,

et al., 2014).

In order to convert the system into a discrete time system, we fix the sampling rate as

0.0033 and use a numerical approximation of the solutions of the differential equation by

4We remark that, to the end computing a storage function via sum-of-squares programming, Faulwasser
et al., 2017 use a polynomial approximation of the exponential terms in ki(ϑ). Hence, the globally
optimal steady state considered in (Faulwasser et al., 2017) slightly differs.
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Figure 3.1: empc closed loop solution for the Van de Vusse reactor with terminal con-
straints x(N) = xs, N = 20.

means of an embedded Runge-Kutta scheme of order 8(7). The stage cost ` is defined as

the integral over L along the solution over one sampling interval. The three states of the

discretized model will be denoted by xi, i = 1, 2, 3. The resulting ocp is solved with an

open-source direct multiple shooting implementation available in acado, see (Houska,

Ferreau, et al., 2011). In order to improve numerical stability, the states, the inputs and

the cost function were appropriately re-scaled in this implementation. Particularly, u2

and ϑ = x3 were rescaled by 10−2, thus the respective constraint sets become [0, 2] and

[0.7, 2]. In the following figures we only show the input u2 because u1 is constantly equal

to the upper boundary of the input constraint set. All solutions were started from the

initial value x0 = (1.5, 1.2, 1.4)>.

We first show the state trajectories with terminal equality constraint x(N |t) = xs.

As Figure 3.1 shows, the solutions, here for horizon N = 20, converge to the optimal

equilibrium, as expected. The oscillations are due to numerical instabilities which are

presumably caused by the terminal constraints. As we will see in Section 4.4, they will

be reduced in mpc without terminal constraints.
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3 Economic MPC with Terminal Constraints

3.4 Example – Chemical Reactor without Dissipativity

In order to show that without strict dissipativity asymptotic stability may not hold, we

consider an example taken from (Bailey et al., 1971), which has also been considered

in (Müller, Angeli, Allgöwer, et al., 2014). In a continuous chemical reactor the fol-

lowing parallel reaction scheme R−→P1, R−→P2 takes place, whereby the component

R is converted into the desired product P1 and the waste product P2. Assuming that

the reactions are isothermal, the dimensionless heat and (partial) mass balance of this

reaction scheme leads to the following dynamic model

ẋ1 = 1 + r1(x1, x3)− x1 (3.10a)

ẋ2 = r2(x1, x3)− x2 (3.10b)

ẋ3 = u− x3 (3.10c)

where r1 : R2 → R and r2 : R2 → R are

r1(x1, x3) = −104x2
1e
− 1
x3 − 400x1e

− 0.55
x3 and r2(x1, x3) = 400x1e

− 0.55
x3 .

The state x1 models the concentration of R; the state x2 models the concentration of

the desired product P1; the state x3 is the dimensionless temperature of the mixture in

the reactor; and the input u is related to the heat flux through the cooling jacket. The

state and input constraints are

xi ≥ 0, i = 1, 2, 3 and u ∈ [0.049, 0.449]. (3.11a)

The objective is maximizing the amount of product P1, i.e. the objective is the integral

over

L(x, u) = −x2. (3.11b)
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Figure 3.2: Steady states of (3.10): Dashed curves refer to the case of + in (3.12a) and
continuous curves refer to the case of −.

Steady State Analysis

Simple calculations show that the steady states of (3.10) are given by

x1,s =

(
1 + 400e

− 0.55
x3,s

)
±
√(

1 + 400e
− 0.55
x3,s

)2

+ 4 · 104e
− 1
x3,s

−2 · 104e
− 1
x3,s

(3.12a)

x2,s = −r2(x1,s, x3,s) (3.12b)

x3,s = us. (3.12c)

Observe that due to the identity x3,s = us, one can parametrize the steady states of

(3.10) by us. The corresponding solutions are illustrated in Figure 3.2. As we are

interested in chemically meaningful steady states, all dashed solutions are neglected.

Using (3.12) the globally optimal steady state pair is easily found as

xs = (0.0832, 0.0846, 0.1491)> us = 0.1491.
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Figure 3.3: Closed-loop empc with zero terminal constraint and L(x, u) = −x2.

Closed-loop EMPC

We consider empc based on ocp (3.1) with the data from (3.10) and (3.11). We solve

the ocp by means of the open-source direct multiple-shooting implementation in acado

(Houska, Ferreau, et al., 2011) using a Runge-Kutta scheme of order 5(4) for integration.

We employ a piecewise constant input parametrization with a sampling period of 0.1.

The prediction horizon is set to 5 time units, i.e. we have N = 50. The terminal

constraint (3.1e) is chosen as a terminal equality constraint, i.e., Xf = xs.

The behavior of the closed empc loop is depicted in Figure 3.3. Apparently, despite

the terminal constraint, the closed-loop empc solution does not converge to the optimal

steady state. The explanation of this behavior is simple: the existence of a unique

globally optimal steady state does not guarantee optimal operation at steady state. In

other words, system (3.10) subject to (3.11) appears to be not optimally operated at

steady state.
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Figure 3.4: Periodic optimal solution to ocp (3.13).

Open-loop Optimal Solution

In order to clarify this issue, we formulate the following free end-time ocp with periodic

boundary conditions:

min
u(·), T

1

T

∫ T

0

−x2(τ)dτ (3.13)

subject to (3.10), (3.11) and x(0) = x(T ), T ∈ [5, 20].

We solve this ocp using again (Houska, Ferreau, et al., 2011). The solutions are shown

in Figure 3.4. We obtain an optimal periodic orbit of length T ? = 11.444. The average

performance along the computed periodic orbit is

1

T ?

∫ T ?

0

−x?2(τ)dτ = −0.09543.

Recall that the optimal steady state yields an average performance of −0.0846. Hence,

with respect to stage cost L(x, u) = −x2, system (3.10) is not optimally operated at

steady state and system (3.10) is not strictly dissipative with respect to L(x, u) = −x2.

31



3 Economic MPC with Terminal Constraints
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Figure 3.5: Closed-loop empc with zero terminal constraint and L(x, u) = −x2 +0.5(u−
us)

2.

Closed-loop EMPC with Regularized Objective

Similar to (Angeli et al., 2012; Diehl et al., 2011) we recover optimal operation at steady

state by changing the objective to

L(x, u) = −x2 + ω(u− us)2, ω > 0.

The behavior of the closed empc loop for ω = 0.5 is depicted in Figure 3.5. As one can

see, adding the regularization term ω(u− us)2 to the stage cost enforces convergence to

the optimal steady state.
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4 EMPC without Terminal Constraints

and Penalties

In the previous section, we have analyzed how dissipaptivity allows to extend stability

results using terminal constraints to more general stage costs. Next, we aim at show-

ing that under suitable assumptions, dissipativity enables the design of empc without

terminal constraints and penalties. To this end, we will begin by investigating turnpike

properties of ocps and their implications on recursive feasibility.

Hence, for the remainder of this section, we consider nmpc based on the receding

horizon solution to the following ocp, which does not include any terminal constraint

or penalty:

VN(x(t)) := min
u(·|t)

N−1∑
k=0

`(x(k|t), u(k|t)) (4.1a)

subject to

x(k + 1|t) = f(x(k|t), u(k|t)), k = 0, . . . , N − 1 (4.1b)

x(0|t) = x(t) (4.1c)

(x(k|t), u(k|t))> ∈ X× U, k = 0, . . . , N − 1. (4.1d)

4.1 The Turnpike Property

In this section we introduce and study the turnpike property which will be crucial in

our subsequent analysis. In order to ensure that the optimal control problem exhibits

this property, we assume the following:

Assumption 4.1 (Strict dissipativity of ocp (4.1)). The exists a bounded non-negative

storage function λ : X → R+
0 such that ocp (4.1) is strictly dissipative with respect to

(xs, us) ∈ int (X× U) in the sense of Definition 3.2.

Note that throughout this and the following section, we consider ocp (4.1) for initial
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4 EMPC without Terminal Constraints and Penalties

conditions x0 ∈ X0 ⊆ X in (4.1c).

Assumption 4.2 (Exponential reachability of xs). For all x0 ∈ X0, there exists an

infinite-horizon admissible input u(·;x0), C > 0, ρ ∈ [0, 1), such that

‖(x(k;x0, u(·;x0)), u(k;x0))− (xs, us)‖ ≤ cρk,

i.e. the steady state xs is exponentially reachable.

These assumptions allow establishing the following result:

Proposition 4.1 (Turnpike in ocp (4.1)). Let Assumptions 4.1 and 4.2 hold, and sup-

pose that the storage function λ is bounded on X. Then, there exists C <∞, such that,

for all x0 ∈ X0, we have

#Qε ≥ N − C

α`(ε)

where Qε := {k ∈ {0, . . . , N − 1} | ‖(x?(k;x0), u?(k;x0))− (xs, us)‖ ≤ ε} and #Qε is the

cardinality of Qε.

Proof. Let VN(x0) denote the optimal value function of ocp (4.1); and without loss

of generality assume that `(xs, us) = 0. The strict dissipation inequality (3.2b) with

bounded storage implies

VN(x0) ≥

λ(x?(N, x0))− λ(x0)︸ ︷︷ ︸
< 2λ̄ := 2 sup

x∈X
λ(x) <∞

+
N−1∑
k=0

α`(‖(x?(k;x0), u?(k;x0))− (xs, us)‖).

Assumption 4.2 gives

VN(x0) ≤ L`c

1− ρ
,

where L` is a Lipschitz constant of ` on X. Noting that N −#Qε denotes the amount

of time an optimal pair x?(k;x0), u?(k;x0) spends outside of an epsilon neighborhood of

xs, we have

N−1∑
k=0

α`(‖(x?(k;x0), u?(k;x0))− (xs, us)‖) ≥ (N −#Qε)α`(ε)
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4.1 The Turnpike Property

Combining the last three inequalities, we obtain

#Qε ≥ N − L`c(1− ρ)−1 − 2λ̄

α`(ε)
.

Hence the assertion follows.

The last result states that strict dissipativity of ocp (4.1) and exponential reachability

imply, for all x0 ∈ X0, that the optimal solutions spend most time close to the optimal

steady-state pair (xs, us). This phenomenon is known as turnpike property of ocps.

The observation that dissipativity implies the existence of a turnpike was first made in

(Grüne, 2013), based on a conceptually similar result in (Carlson et al., 1991, Chap. 4).

Similar results, replacing the reachability condition of Assumption 4.2 with bounds on

the value function VN , can be found in (Damm et al., 2014; Grüne, 2013; Grüne and

Pannek, 2017). Similar continuous-time results can be found in (Faulwasser et al., 2014,

2017).

Remark 4.1 (Equivalence of turnpike and dissipativity properties).

In Section 3 we have commented on the close relation between optimal operation at steady

state and dissipativity. As Theorem 4.1 shows under some technical assumptions the

implication dissipativity ⇒ turnpike, it is fair to ask whether the converse statement ⇐
also holds true. We remark without further elaboration that under suitable assumptions

this equivalence can be affirmed. The interested reader is referred to (Grüne and Müller,

2016) for discrete-time results and to (Faulwasser et al., 2017) for a continuous-time

analysis.

Example 4.1 (Turnpike properties in ocps). Consider the linear system x(t + 1) =

2x(t) + u(t) with , X = [−2, 2],U = [−3, 3] and x0 = 2. Let the ocp be to minimize

the stage cost `(x, u) = u2. The best steady state minimizing the stage cost l is (0, 0).

Furthermore, it is easy to show that the function λ(x) ≡ 0 satisfies (3.2a) and on X =

[−2, 2] the functions λc(x) = c− 1
2
x2, c ≥ 2 satisfy (3.2b). In other words, the system is

strictly dissipative on X with respect to the steady state (xs, us) = (0, 0).

We consider an increasing sequence of horizons N = 1, 3, . . . , 25 and solve these ocps.

The results are shown in Figure 4.1. As predicted by Proposition 4.1, the optimal solu-

tions show the turnpike property.

Example 4.1 demonstrates that the turnpike property implies a kind of similarity of

solutions to an ocp for varying horizons (and varying initial conditions). Put differently,

turnpikes are similarity properties of parametric ocps.
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4 EMPC without Terminal Constraints and Penalties
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Figure 4.1: Solutions to the ocp from Example 4.1.

4.2 Recursive Feasibility

As we will see later, the turnpike plays a crucial role in analyzing empc without terminal

constraints and penalties. Furthermore, it allows establishing recursive feasibility of ocp

(4.1). To this end, we assume the following:

Assumption 4.3 (Local nx-step reachability). The Jacobian linearization of system

(2.1) at (xs, us) is nx-step reachable.1

Proposition 4.2 (Recursive feasibility of ocp (4.1)). Let Assumptions 4.1–4.3 hold.

Then, there exists a finite horizon N ∈ N such that, for all x0 ∈ X0, ocp (4.1) is

recursively feasible.

Proof. Let (x?(·;x0), u?(·;x0)) be the optimal pair of ocp (4.1) with initial condition x0.

Moreover, let nx be the dimension of x.

Proposition 4.1 implies that, for all x0 ∈ X0 and any ε > 0, we can find a finite horizon

Nε such that there exists k1, with k1+2nx ≤ N , such that x?(k1;x0) ∈ Bε(xs). Moreover,

Assumption 4.3—i.e. local nx-step controllability of (2.1) close to xs—implies that on

a sufficiently small neighborhood Bε(xs), for all xε1, x
ε
2 ∈ Bε(xs) there exists admissible

controls uε1(·;xε1) and uε2(·;xε2), both defined for k = 0, . . . , nx − 1, such that

x(nx;x
ε
1, u

ε
1(·;xε1)) = xs and x(nx;xs, u

ε
2(·;xε2)) = xε2 (4.2a)

x(k ;xε1, u
ε
1(·;xε1)) ∈ X, x(k;xs, u

ε
2(·;xε2)) ∈ X, (4.2b)

1Recall that local n-step reachability of x+ = Ax+Bu implies that starting from x = 0 one can reach
any x ∈ Rnx within nx time steps; and one can steer any x 6= 0 to the origin within nx time steps,
cf. (Weiss, 1972). In other words, nx-step reachability implies nx-step controllability.
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4.2 Recursive Feasibility

Figure 4.2: Sketch of the trajectory x(·;x1, u(·;x1)) generated by u(·;x1) from (4.3).

whereby the constraint satisfaction in (4.2b) holds for k = 0, . . . , nx.

In order to construct uε1(·;xε1) and uε2(·;xε2) one may rely on methods sketched in

(Weiss, 1972). Recall that u?(·;x0) denotes the optimal input for ocp (4.1) given the

initial condition x0 ∈ X0. Let x1 = f(x0, u
?(0;x0)) and consider the following input

u(k;x1) =


u?(k + 1;x0) k = 0, . . . , k1 − 2

uε1(k;xε1) k = k1 − 1, . . . , k1 − 1 + nx

uε2(k;xε2) k = k1 + nx, . . . , k1 − 1 + 2nx

u?(k;x0) k = k1 + 2nx, . . . , N − 1

. (4.3)

As we may choose the horizon N , we can pick it such that x?(k1− 1 + 2nx;x0) ∈ Bε(xs).
Now, in the construction of u(·;x1), choose xε2 := x?(k1 + 2nx;x0). In other words, the

sequence of inputs uε1(·;xε1) and uε2(·;xε2) connects x?(k1;x0) and x?(k1 + 2nx;x0) in an

admissible way.

The trajectory generated by u(·;x1) is sketched in Figure 4.2. It is readily seen that

(4.2) implies feasibility of u(·;x1) from (4.3) in ocp (4.1) with initial condition x1.

The observation that the turnpike property from Proposition 4.1 can be used to estab-

lish recursive feasibility for sufficiently long horizon has been first made in a continuous-

time setting in (Faulwasser and Bonvin, 2015a,b).

Remark 4.2 (Recursive feasibility with local stabilizability).

Observe that, without significant technical difficulties, Assumption 4.3 can be relaxed to

local linear stabilizability of system (2.1). To this end, one swaps uε1(·;xε1) and uε2(·;xε2) in

(4.3) with a locally stabilizing feedback, which is to be considered for all k = k1, . . . , N−1.

Picking a horizon N long enough such that at time k1 the optimal solution x?(k1;x0) is

inside a suitable level set of a local Lyapunov function corresponding to the locally stabi-
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4 EMPC without Terminal Constraints and Penalties

lizing feedback shows recursive feasibility. Here, in order to simplify the later derivations,

we rely on the construction (4.3).

4.3 Practical Stability

Before stating the main stability result of this section, we recall the following definition

given in (Grüne and Stieler, 2014a):

Definition 4.1 (Local practical asymptotic stability). Consider the closed-loop system

(2.6), generated by the feedback µ. The point xs is said to be a locally practically asymp-

totically stable w.r.t. ρ > 0 on a set S ⊆ X, if there exists β ∈ KL such that

‖x(k;x0, µN(x))− xs‖ ≤ max {β(‖x(k;x0, µN(x))− xs‖, k), ρ} (4.4)

holds for all k ∈ N0 and all x0 ∈ S.

The next technical result is quite standard. It gives sufficient conditions for local

practical stability.

Proposition 4.3 (Lyapunov function for local practical asymptotic stability). Consider

the closed-loop system (2.6) generated by the feedback µ, and, for some finite δ2, δ3 ∈ R+,

let V : X→ R satisfy

α1(‖x− xs‖) ≤ V (x) ≤ α2(‖x− xs‖) + δ2, ∀x ∈ X (4.5a)

V (f(x, µ(x)) ≤ V (x) − α3(‖x− xs‖) + δ3, ∀x ∈ S(L). (4.5b)

Suppose either S(L) = X or S(L) = {x ∈ X |V (x) ≤ L}, with X compact and

L ≥ α2

(
α−1

3 (δ3) + δ3

)
+ δ2 + δ3. (4.6)

Then, there exists β ∈ KL such that, for all x0 ∈ S(L),

‖x(k;x0, µ(x))− xs‖ ≤ max {β(‖x(k;x0, µ(x))− xs‖, k), ρ} (4.7)

with ρ = α−1
1

(
α2

(
α−1

3 (δ3) + δ3

)
+ δ2 + δ3

)
.

Proof. The proof is an adaptation of results presented in (Grüne and Pannek, 2017,

Chap. 2) and (Grüne and Stieler, 2014a). The crucial difference to the results therein

is the constant δ2 in (4.5a).
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4.3 Practical Stability

Step 1: Consider L1 > α2

(
α−1

3 (δ3) + δ3

)
+ δ2 + δ3. For all x ∈ S(L1), if ‖x − xs‖ >

α−1
3 (δ3), then

V (f(x, µ(x)) ≤ V (x)− α3(‖x− xs‖) + δ3 ≤ V (x) ≤ L1.

Moreover, if ‖x − xs‖ < α−1
3 (δ3) + δ3, then V (x) < α2

(
α−1

3 (δ3) + δ3

)
+ δ2. Inequality

(4.5b) gives

V (f(x, µ(x)) ≤ α2

(
α−1

3 (δ3) + δ3

)
+ δ2 + δ3 < L1.

Hence the set S(L1) is forward invariant.

Step 2: Consider L2 = α2

(
α−1

3 (δ3) + δ3

)
+ δ2 + δ3. If ‖x − xs‖ > α−1

3 (δ3), then the

same reasoning as above shows

V (f(x, µ(x)) ≤ V (x) ≤ L2.

If ‖x− xs‖ ≤ α−1
3 (δ3), then V (x) ≤ α2

(
α−1

3 (δ3) + δ3

)
+ δ2. This gives

V (f(x, µ(x)) ≤ V (x)− α3(‖x− xs‖) + δ3

≤ α2

(
α−1

3 (δ3) + δ3

)
+ δ2 + δ3 = L2.

Hence, the set S(L2) is forward invariant.

Step 3: W.l.o.g. pick c > 1 such that α2

(
α−1

3 (cδ3)
)

+ δ2 ≤ L2. For x ∈ S(L1) \ S(L2),

we have V (x) > L2 and thus α3(‖x − xs‖) ≥ α3

(
α−1

2 (L2 − δ2)
)
≥ cδ3. Thus, for all

x ∈ S(L1) \ S(L2), we have α3(‖x− xs‖)− δ3 ≥
(
1− 1

c

)
α3(‖x− xs‖) and

V (f(x, µ(x)) ≤ V (x)−
(

1− 1

c

)
α3(‖x− xs‖).

Step 4: Now, observe that for all x ∈ S(L1) \ S(L2), we have ‖x − xs‖ ≥ α3(δ3).

Consider

c1 := sup
x∈S(L1)\S(L2)

α2(‖x− xs‖)− δ2,

which gives

α̃2(‖x− xs‖) :=
c1

α3(δ3)
‖x− xs‖ ≥ α2(‖x− xs‖)− δ2, ∀x ∈ S(L1) \ S(L2).

Finally, with straightforward modifications to the proof of (Grüne and Pannek, 2017,

Thm. 2.19 and Thm. 2.20) one establishes the bound in Equation (4.7).
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4 EMPC without Terminal Constraints and Penalties

In order to prove Theorem 3.2 in Section 3.2 we used that in the presence of suitable

terminal constraints, rotating the stage cost and terminal penalty by the storage function

λ does not change the optimal solutions, cf. Lemma 3.2. For ocp (4.1), however, the

situation is slightly different as rotating the stage cost yields

N−1∑
k=0

˜̀(x(k|t), u(k|t)) = λ(x)− λ(x(N |t)) +
N−1∑
k=0

`(x(k|t), u(k|t)).

Observe that the value of λ(x(N |t)) will depend on the chosen input sequence. In

other words, pure rotation of the objective without introducing an additional terminal

constraint alters optimal solutions. Subsequently, we will have to take this into account

and thus we will proceed in two steps: First we show that using an appropriate value

function, we can establish convergence to a neighborhood of the optimal steady state.

Second we use the value function of a modified, i.e. rotated version, of ocp (4.1) to

show that with increasing horizon this neighborhood can be made arbitrarily small.

Theorem 4.1 (Practical stability of empc without terminal constraints). Let Assump-

tions 4.1–4.3 hold and suppose that X is compact. Then, there exist a sufficiently large

horizon N ∈ N, such that the closed-loop system (2.6) arising from the receding horizon

solution to ocp (4.1) has the following properties:

(i) If, for the horizon N ∈ N, ocp (4.1) is feasible for t = 0 and x(0) ∈ X0, then it is

feasible for all k ∈ N.

(ii) For all x(0) ∈ X0, there exist ρ ∈ R+ and β ∈ KL such that the closed-loop

trajectories generated by (2.6) satisfy

‖x(t)− xs‖ ≤ max{β(‖x(t)− xs‖, t), ρ}.

Proof. Part (i) directly follows from Proposition 4.2. In order to prove Part (ii), we

consider the following shifted value function

V̂N(x) = λ(x) + VN(x) (4.8)

with VN from (4.1a) and λ being a bounded non-negative storage function of ocp (4.1)

satisfying (3.2b) along any optimal solution. Note that this shift of the value function

is done without loss of generality, as shifting the objective in ocp (4.1) by a constant

depending only on the initial condition x does not alter the optimal solutions.
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4.3 Practical Stability

Similar to the proof of Theorem 2.1, we consider

V̂N(x(t+ 1))− V̂N(x(t)) ≤ λ(x(t+ 1)) + JN(x(t+ 1), u(·|t+ 1))− V̂N(x(t)),

where JN is the performance generated by the input u(·|t + 1) defined in (4.3) and

x(·|t + 1) denotes the corresponding trajectory. For sake of simplified notation, we

define the right hand side of the last inequality as

∆(t) := λ(x(t+ 1)) + JN(x(t+ 1), u(·|t+ 1))− V̂N(x(t)),

and rewrite it as follows

∆(t) = λ(x(t+ 1))− λ(x(t))− `(x(t), u?(0|t))

+

k1−1∑
k=0

`(x(k|t+ 1), u(k|t+ 1))−
k1∑
k=1

`(x?(k|t), u?(k|t))

+

k1−1+2nx∑
k=k1

`(x(k|t+ 1), u(k|t+ 1))−
k1−1+2nx∑
k=k1+1

`(x?(k|t), u?(k|t))

+
N−1∑

k=k1+2nx

`(x(k|t+ 1), u(k|t+ 1))−
N−1∑

k=k1+2nx

`(x?(k|t), u?(k|t)). (4.9)

By construction of u(·|t+1) in (4.3) and as we consider the nominal case—i.e. no plant-

model mismatch—the sums in the second and fourth line of the last equation cancel

each other.

Now, assume without loss of generality that `(xs, us) = 0 and let L` be a Lipschitz

constant of ` on X× U. Then

k1−1+2nx∑
k=k1

`(x(k|t+ 1), u(k|t+ 1))−
k1−1+2nx∑
k=k1+1

`(x?(k|t), u?(k|t)) ≤

`(x(k1|t+ 1), u(k1|t+ 1)) + 2nxL`c(ε) ≤ (2nx + 1)L`c(ε)

holds, whereby due to the turnpike property from Proposition 4.1 and due to local

controllability close to xs, the constant c(ε) depends on N . Invoking that the strict

dissipation inequality (3.2b) holds along optimal solutions of ocp (4.1), we obtain

V̂N(x(t+ 1))− V̂N(x(t)) ≤ ∆(t) ≤ −α`(‖x(t)− xs‖) + (2nx + 1)L`c(ε). (4.10a)
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4 EMPC without Terminal Constraints and Penalties

Furthermore, strict dissipativity with non-negative bounded storage implies the following

lower bound

V̂N(x) ≥ λ(x)− λ(x?(N |t)) +
N−1∑
k=0

`(x?(k|t), u?(k|t)) ≥ α`(‖x− xs‖) (4.10b)

for all x ∈ X0. Moreover, exponential reachability (Assumption 4.2) gives, for all x ∈ X0,

V̂N(x) ≤ L`‖x− xs‖+ (N − 1)¯̀ (4.10c)

with ¯̀= sup(x,u)∈X×U `(x, u). Applying Proposition 4.3 finishes the proof.

So far, we have shown that empc without terminal constraints leads to practical

asymptotic stability. However, the proof above does not provide insight in the relation

between ρ, which is the size of the neighborhood the closed-loop solutions converge

to, and the prediction horizon N . Ideally, we would like to replace ρ by a function

ρ(N) which tends to 0 as N tends to ∞. To this end, we need to replace the terms

(2nx+1)L`c(ε) and (N−1)¯̀ in (4.10a) and (4.10c), respectively, by terms which converge

to 0 as N → ∞. The next lemma will provide an important auxiliary result for this

purpose. Similar to Section 3.2 we denote by ṼN the corresponding value function of

ocp (4.1) using the rotated stage cost ˜̀ instead of `.

Lemma 4.1 (Relation between ṼN and VN). Let Assumptions 4.1–4.3 hold. Moreover,

1. let there exist γV ∈ K such that for each N ∈ N and all x ∈ X0 |ṼN(x)− ṼN(xs)| ≤
γṼ (‖x− xs‖),

2. and let the storage function λ be continuous at x = xs.

Then

ṼN(x) = VN(x) + λ(x)− VN(xs) +R(x,N) (4.11)

with |R(x,N)| ≤ ν(‖x− xs‖) + ω(N), ν ∈ K, ω ∈ L.

The proof of this result uses the dynamic programming principle. It can be found

in (Grüne and Pannek, 2017, Lem. 8.31). Based on this, one can show the following

relation between ρ in Part (ii) of Theorem 4.1 and the prediction horizon N .

Theorem 4.1. Under the Assumptions of Theorem 4.1 and Lemma 4.1 the assertions

of Theorem 4.1 hold with ρ = ρ(N) where ρ(N)→ 0 for N →∞.
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The proof of this result follows from Proposition 4.3 if we replace (2nx + 1)L`c(ε) and

(N − 1)¯̀ in (4.10a) and (4.10c), respectively, by terms which converge to 0 as N →∞.

For (4.10a), this can be done because for x ≈ xs from controllability of the linearization

one can conclude that the controls uε1(·|xε1) and uε2(·|xε2) from (4.2) can be chosen to have

values close to us. Since strict dissipativity implies that the optimal trajectory also stays

close to xs, see (Grüne, 2013, Lem. 6.3), the values of the two trajectories are close to

each other, and thus we can construct the improved bound in (4.10a).

For (4.10c), we modify the definition of V̂N from (4.8) to V̂N(x) = λ(x) + VN(x) −
VN(xs), noting that this does not affect the value of the increment V̂N(x(t+1))−V̂N(x(t)).

Then (4.11) together with Assumption 1. of Lemma 4.1 can be used in order to replace

(N − 1)` in (4.10c) by a term vanishing as N → ∞. For a detailed proof we refer to

(Grüne and Stieler, 2014b, Thm. 3.7) or (Grüne and Pannek, 2017, Thm. 8.33).

Remark 4.3 (Extension to continuous-time systems). The results of Theorem 4.1 and

Theorem 4.1 have been extended to the continuous-time setting. The main difference to

the derivations above is that in continuous-time settings one does not need the additional

arguments from the proof of Theorem 4.1. Instead, one shows that the size of the neigh-

borhood shrinks with increasing the prediction horizon and decreasing the sampling time,

see (Faulwasser and Bonvin, 2015b).

Moreover, whenever the turnpike is exact—i.e. for sufficiently long horizons the opti-

mal solutions enter the steady state exactly at some point and might leave towards the end

of the horizon—one can show that empc without terminal constraints enforces finite-

time convergence, see (Faulwasser and Bonvin, 2015b, 2017). Furthermore, it shown

in (Faulwasser and Bonvin, 2017, Prop. 1) that in case of exact turnpikes, empc with

finite horizon recovers infinite-horizon optimal performance. However, it is not fully

understood yet, under which conditions turnpikes are exact or not.

The important fact shown by Theorem 4.1 is that, even without terminal constraints

or penalties, by increasing the prediction horizon N one can enforce that the closed-

loop system (2.6) arising from the receding horizon solution to ocp (4.1) converges

asymptotically into any arbitrarily small neighborhood of the optimal steady state. Put

differently, provided strict dissipativity and exponential reachability hold, for sufficiently

long horizons empc without terminal constraints finds the optimal steady state without

any need for explicit computation of the optimal steady state. Furthermore, we have

seen that the turnpike property implies recursive feasibility. As it is straightforward to

show that also in case of stabilizing nmpc the turnpike property (without the typical

leaving arc) can be observed, we note without further elaboration that the recursive
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4 EMPC without Terminal Constraints and Penalties
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Figure 4.3: empc closed loop solution for the Van de Vusse reactor without terminal
constraints, N = 5 (dashed) and N = 20 (solid).

feasibility properties of Proposition 4.2 also hold for stabilizing nmpc without terminal

constraints.

4.4 Example – Chemical Reactor with Dissipativity

We revisit the Van de Vusse reactor from Section 3.3. Without terminal constraints,

the solutions do not converge to xs. Moreover, the limit equilibrium depends on the

optimization horizon N , as it is expected from the merely practical stability of the

closed loop system. Figure 4.3 illustrates this fact, showing the solutions for horizons

N = 5 (dashed) and N = 20 (solid).

In these simulations the closed loop trajectories converge to an equilibrium x∞ :=

limt→∞ x(t). Theorem 4.1 shows that the distance of this equlibrium x∞ to xs should

tend to 0 as N increaes. Figure 4.4 shows that this is indeed the case and that the

convergence is even exponentially fast. Note that this exponential convergence can be

rigorously established for certain classes of systems, see (Grüne and Stieler, 2014b, Thm

3.7). For determining x∞ for this figure, the closed loop solution was computed until

the first 10 significant digits of L(x(t), µN(x(t))) had stabilized.
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4.4 Example – Chemical Reactor with Dissipativity
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Figure 4.4: Distance ‖x∞ − xs‖2 without terminal constraints for N = 5, . . . , 30.
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5 Performance Bounds

In empc, the optimal control problem to be solved in closed loop is not merely an

auxiliary problem with the purpose of stabilizing a pre-defined setpoint. Rather, it

encodes economic quantities to be optimized, like low energy consumption, high yield

or similarly. In order to be economically efficient, one thus needs that the closed loop

inherits some of the optimality properties of the open loop predictions computed in each

mpc step.

This is indeed the case and in this section we will summarize some of the results

available for estimating the closed loop performance of an economic mpc scheme. There

are different types of performance measures one can consider for this purpose.

The first is the infinite horizon averaged performance given by

J
cl

∞(x0, µN) := lim sup
T→∞

1

T

T−1∑
t=0

`(x(t), µN(x(t))),

where x(t) solves (2.6).

The second criterion is the infinite horizon non-averaged performance given by

J cl∞(x0, µN) := lim sup
T→∞

T−1∑
t=0

`(x(t), µN(x(t))),

where x(t) again solves (2.6). However, even if |V∞(x0)| < ∞, it is not guaranteed

that J cl∞(x0, µN) assumes a finite value, because the inability to converge to the optimal

equilibrium exactly causes small deviations from the optimal trajectory in each step of

the empc scheme, which may add up to an infinite error. It is therefore necessary to

also look at the finite horizon non-averaged performance which for each T ∈ N is given

by

J clT (x0, µN) :=
T−1∑
t=0

`(x(t), µN(x(t))).

We note that this expression is also meaningful if |V∞(x0)| =∞, while the consideration

of J cl∞ only makes sense if the infinite horizon optimal control problem is well defined.
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5 Performance Bounds

The standing assumptions we impose throughout the rest of this section are the fol-

lowing:

• We assume that the optimal control problem is strictly dissipative in the sense of

Definition 3.1.

• In case terminal conditions are used we impose the condition from Assumption 2.2

on the rotated cost.

• Moreover, we assume continuity at x = xs of the optimal value functions VN for

the original and the rotated cost from (3.6a), uniformly in N (as in Assumption 1.

of Lemma 4.1), as well as of V∞ and of the storage function λ from Definition 3.1.

Proofs for all subsequent statements which work under these conditions can be found in

(Grüne and Pannek, 2017, Chap. 8). Below, we cite those references which contain the

earliest version of the respective results we are aware of. These may occcasionally use

slightly different assumptions.

5.1 Averaged Performance

We start by stating infinite horizon averaged performance results. For problems with

terminal constraints, (Amrit et al., 2011, Thm. 18) implies the identity

J
cl

∞(x0, µN) ≤ `(xs, us).

We note that this inequality holds without any dissipativity assumption. Under our

standing assumptions in this section, which include dissipativity, Theorem 3.1 implies

optimal operation at the steady state xs. Hence, `(xs, us) is the best possible value

for J
cl

∞(x0, µN), i.e., we obtain optimal infinite horizon averaged performance. This is

actually not completely surprising, because the stability result from Theorem 3.2 implies

x(t)→ xs and µN(x(t))→ us as t→∞ from which the estimate for J
cl

∞(x0, µN) follows

quite straightforwardly.

For problems without terminal constraints we cannot in general expect that the closed-

loop solution converges to xs. Hence, we have to expect an additional error term.

Consequently, (Grüne, 2013, Thm. 4.2), used here with `0 = `(xs, us) establishes the

estimate

J
cl

∞(x0, µN) ≤ `(xs, us) + δ(N)
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5.2 Non-averaged Performance

with δ ∈ L, i.e., we get approximately optimal infinite horizon averaged performance

with the error term δ(N) which tends to 0 as N →∞.

5.2 Non-averaged Performance

The infinite horizon averaged performance is a useful criterion when considering very

long time horizons. However, it does not say anything about the performance on finite

horizons. Indeed, on a finite time horizon trajectories could produce arbitrary large costs

and still satisfy J
cl

∞(x0, µN) ≤ `(xs, us). Hence, we need non averaged estimates in order

to exclude this. Assuming |V∞(x0)| <∞,1 it makes sense to look at the infinite horizon

non-averaged performance. With terminal constraints, in Theorem 5.1 of (Grüne and

Panin, 2015) it was proved that

J cl∞(x0, µN) ≤ V∞(x0) + δ(N) (5.1)

with δ ∈ L. Hence, we obtain approximately infinite horizon non-averaged optimality

with an error term δ(N) which tends to 0 as N →∞.

For problems without terminal constraints such a strong result cannot be expected.

This is because x(t) may not converge to xs, hence `(x(t), µN(x(t))) → 0 cannot be

expected and consequently J cl∞(x0, µN) will in general not attain a finite value. A remedy

for this problem is to consider only a finite piece x(0), . . . , x(T ) of the mpc closed loop

and extend this by an infinite horizon optimal trajectory starting in x(T ). Proceeding

this way leads to the estimate

J clT (x0, µN) + V∞(x(T )) ≤ V∞(x0) + T δ̂(N)

with δ̂ ∈ L, first proved in (Grüne, 2016, Thm. 4.4). Hence, each initial piece of length T

of the mpc closed loop is the initial piece of an approximately infinite horizon trajectory

with error Tδ(N), where δ(N)→ 0 as N →∞.

1Note that this implies `(xs, us) = 0, which can, however, always been achieved by adding an appro-
priate constant to `, which does not change the finite horizon optimal trajectories. A way to avoid
the assumption |V∞(x0)| < ∞ is to use the concept of overtaking optimality, see (Carlson et al.,
1991). The use of this concept in an empc context is currently under investigation.
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5.3 Transient Performance

In case the infinite horizon optimal control problem is not well posed (i.e., if |V∞(x0)| =
∞), it is still possible to define a meaningful non-averaged performance result. The

reason for this lies in the observation that under our standing assumptions in this sec-

tion the closed loop for the terminal constrained problem is asymptotically stable, i.e.,

according to Theorem 3.2 it satisfies

‖x(t)− xs‖ ≤ β(‖x0 − xs‖, t) (5.2)

for a function β ∈ KL. For the problem without terminal constraints, Theorem 4.1 still

implies practical asymptotic stability, i.e., the existence of β ∈ KL and ρ ∈ L such that

‖x(t)− xs‖ ≤ max{β(‖x0 − xs‖, t), ρ(N)} (5.3)

holds.

Hence, in both cases, during the transient phase the closed loop trajectory will run

from the initial condition to a small neighbourhood of the optimal steady state xs. The

concept of transient optimality now formalizes that (at least approximately) the closed

loop trajectory is the cheapest among all trajectories running from the initial state to

this neighbourhood. In order to state this mathematically, we define

UT
κ (x0) := {u ∈ UT |u admissible and ‖x(T, x0, u)− xs‖ ≤ κ}.

Then, for problems with terminal constraints (Grüne and Panin, 2015, Thm. 5.2)

shows the estimate

J clT (x0, µN) ≤ inf
u∈UTκ (x0)

JT (x0, u) + δ1(N) + δ2(T ),

where κ = β(‖x− x0‖, T ) with β ∈ KL from (5.2) and δ1, δ2 ∈ L.

For problems without terminal constraints, the estimate changes to ‖x(t) − xs‖ ≤
max{β(‖x− x0‖, t), ρ} with ρ→ 0 as N →∞:

J clT (x0, µN) ≤ inf
u∈UTκ (T )

JT (x0, u) + T δ̂1(N) + δ̂2(T ),

cf. (Grüne and Stieler, 2014b, Thm. 4.1), where κ = max{β(‖x − x0‖, T ), ρ(N)} with

β and ρ from (5.3) and δ̂1, δ̂2 ∈ L. Thus, similar to the previous section, the difference
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5.4 Example – Chemical Reactor with Dissipativity
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Figure 5.1: J
cl

∞(x0, µN)− `(xs, us) without terminal constraints for N = 5, . . . , 30.
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Figure 5.2: J clT (x0, µN) with equilibrium terminal constraints (solid) x(N) = xs and with-
out terminal constraints (dashed) for N = 5 (left) and N = 20 (right).

between the case with and without terminal constraints lies in the fact that without

constraints the error term depending on N is multiplied by the length T of the closed

loop trajectory piece whose performance is measured.

5.4 Example – Chemical Reactor with Dissipativity

We investigate the closed loop performance for the Van de Vusse reactor from Sections

3.3 and 4.4. The averaged performance of empc with terminal constraints is—up to

numerical accuracy—identical to `(xs, us), which confirms the first estimate from Section

5.1. For empc without terminal constraints, the second estimate in Section 5.1 suggests

that the average performance may be larger than `(xs, us) but converges to this value

for N →∞. Figure 5.1 confirms this behaviour. As for the closed-loop equilibrium, cf.

Section 4.4, the convergence is exponentially fast, which is a known phenomenon in the

literature, see (Grüne and Stieler, 2014b, Remark 4.2(i)).

Regarding the transient performance, the estimates in Section 5.3 imply that there

should be a gap between the transient performance with and without terminal constraints

51



5 Performance Bounds

which grows linearly with T . Figure 5.2(left) shows that this is indeed visible in the

numerical simulations for the relatively small horizon N = 5. For the larger horizon

N = 20 this phenomenon is no longer visible on the time scale of the graph, cf. Figure

5.2(right), because the term δ̂1(N) has become very small.
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6 EMPC with Averaged Constraints

In this section, we discuss empc approaches with additional average constraints. Such

constraints on (time) averages of input and state variables naturally arise in the context

of empc, where the optimal system behavior need not be steady-state operation, cf.

Section 3.1.

Namely, in the context of standard tracking mpc, where the controller is designed

such that the closed loop converges to a given equilibrium, any asymptotic average of

state or input variables is determined by the value at this equilibrium. This means that

such average constraints do not need to be considered online, but have to be taken into

account when choosing the setpoint to be stabilized. On the other hand, in the context of

empc, such average constraints have to be dealt with online, and the repeatedly solved

optimization problem has to be modified in a suitable fashion such that the resulting

closed-loop system satisfies the given average constraints. Average constraints can be of

interest in various applications of empc. In particular, this is the case whenever input

or output variables are physical entities that allow for storage and retrieval at some

later time, such as, e.g., chemical products or various forms of energy. For example, in

the process industry, one might want to constrain the average amount of raw material

fed into a chemical reactor, or the average heat flux through the reactor wall, compare,

e.g., (Lee and Bailey, 1980; Renken, 1972).

In the following, we distinguish between asymptotic and transient average constraints,

requiring the constraints to be satisfied over an infinite or finite time horizon, respec-

tively. We first discuss how asymptotic average constraints can be handled, following the

exposition in (Angeli et al., 2012; Müller, Angeli, Allgöwer, et al., 2014), before turning

to transient average constraints as proposed in (Müller, Angeli, and Allgöwer, 2014b).

Note that all of these results are formulated for a setting including terminal constraints

as in Section 3; we discuss at the end of this section, how they can be extended to a

setting as in Section 4 without such terminal constraints. For the remainder of this

section, for technical reasons we assume that X is compact.
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6 EMPC with Averaged Constraints

6.1 Asymptotic Average Constraints

First, for any bounded sequence v : I≥0 → Rnv , the set of asymptotic averages is defined

as

Av[v] := {v̄ ∈ Rnv : ∃{tn} → +∞ : lim
n→∞

∑tn
k=0 v(k)

tn + 1
= v̄}.

The definition of Av[v] is such that it contains all accumulation points of the sequence∑t
k=0 v(k)

t+1
. Note that Av[v] is nonempty (as bounded sequences in Rnv have limit points),

but it need not be a singleton in general. Asymptotic average constraints are now

expressed as

Av[y] ⊆ Y, (6.1)

where y = h(x, u) is some (auxiliary) output variable, h : Rn × Rm → Rp is continuous,

and Y ⊆ Rp is some closed and convex set. Let (xs, us) denote the optimal steady-state

which also satisfies the average constraints, defined by

`(xs, us) = min
x∈X,u∈U,h(x,u)∈Y,x=f(x,u)

`(x, u). (6.2)

In order to ensure that the closed-loop system satisfies the average constraints, the

repeatedly solved optimization problem is modified as follows:

min
u(·|t)

N−1∑
k=0

`(x(k|t), u(k|t)) + Vf (x(N |t)) (6.3a)

subject to

x(k + 1|t) = f(x(k|t), u(k|t)), k = 0, . . . , N − 1 (6.3b)

x(0|t) = x(t) (6.3c)

(x(k|t), u(k|t))> ∈ X× U, k = 0, . . . , N − 1 (6.3d)

x(N |t) ∈ Xf (t) (6.3e)

N−1∑
k=0

h(x(k|t), u(k|t)) ∈ Yt (6.3f)
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6.1 Asymptotic Average Constraints

Compared to the standard empc problem (3.1), ocp (6.3) contains the additional con-

straint (6.3f) as well as a possibly time-varying terminal region (6.3e).1 The time-varying

set Yt is defined recursively as2

Yt+1 := Yt ⊕ Y⊕ Y(t)⊕ {−h(x(t), u(t))},

Y0 = NY⊕ Y00, (6.4)

where Y00 is an arbitrary compact subset of Rp containing h(xs, us) and Y(t) will be

specified later. Note that the recursion in (6.4) can be solved explicitly, which due to

convexity of Y results in

Yt =Y00 ⊕ (t+N)Y⊕
t−1∑
k=0

Y(k)⊕
{ t−1∑
k=0

−h(x(k), u(k))
}
. (6.5)

In order to establish desired closed-loop properties, the following assumption is needed,

cf. (Müller, Angeli, Allgöwer, et al., 2014, Assumptions 1-3).

Assumption 6.1.

1. There exists an auxiliary terminal control law κf : X → U with κf (xs) = us and

for each t ∈ I≥0 a terminal region Xf (t) such that the following is satisfied for

all x ∈ Xf (t): (i) (x, κf (x)) ∈ X × U, (ii) f(x, κf (x)) ∈ Xf (t + 1), and (iii)

Vf (f(x, κf (x)))− Vf (x) ≤ −`(x, κf (x)) + `(xs, us).

2. For each t ∈ I≥0, the set Y(t) is such that h(x, κf (x)) ∈ Y⊕Y(t) for all x ∈ Xf (t).

3. The exist a constant 0 ≤ α < 1 and a compact set Y such that
∑t−1

k=0 Y(k) ⊆ tαY
for all t ∈ I≥0.

In case that the terminal region is constant, Assumption 6.1.1 reduces to the stan-

dard assumption which is typically employed on the terminal region and cost, both in

stabilizing and empc (cf. Assumption 2.2). In (Müller, Angeli, Allgöwer, et al., 2014,

Section 3.2), a systematic procedure is presented how both the terminal regions Xf (t)

as well as the sets Y(t) can be determined such that Assumption 6.1 is satisfied. As

a special case, the setting of Angeli et al., 2012 is included, where a terminal equality

1Note that a time-varying terminal region might in particular be necessary if (xs, us) is on the boundary
of Y. In case that (xs, us) ∈ int(Y), also a constant terminal region can be used, see (Müller, Angeli,
Allgöwer, et al., 2014) for a further discussion of this issue.

2The symbol ⊕ denontes the Minkowski set addition, which for two sets A,B ⊆ Rn is defined as
A⊕B := {a + b ∈ Rn|a ∈ A, b ∈ B}.
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6 EMPC with Averaged Constraints

constraint x(N |t) = xs is used, i.e., Xf (t) ≡ {xs}. In this case, one can choose Y(t) ≡ 0,

and hence Assumption 6.1 is trivially satisfied. Using Assumption 6.1, one can show

that the resulting closed-loop system satisfies the asymptotic average constraints (6.1)

as desired.

Theorem 6.1. Suppose that Assumption 6.1 is satisfied and ocp (6.3) is feasible at

time t = 0. Then it is feasible for all t ∈ N and the resulting closed-loop system satisfies

the asymptotic average constraints (6.1).

This theorem was shown in (Angeli et al., 2012) for the special case of terminal

equality constraints and later in (Müller, Angeli, Allgöwer, et al., 2014) for the more

general setting using Assumption 6.1. The proof of this result uses the same candidate

solution as in Section 2.2 (compare (2.8)), i.e.,

ũ(·|t+ 1) := {u?(1|t), . . . , u?(N − 1|t), κf (x?(N |t))}

with corresponding candidate state sequence

x̃(·|t+ 1) := {x?(1|t), . . . , x?(N |t), f(x?(N |t), κf (x?(N |t)))}.

Using Assumption 6.1.2 and the fact that the constraint (6.3f) was satisfied for the

optimal solution at time t, one obtains

N−1∑
k=0

h(x̃(k|t+ 1), ũ(k|t+ 1))

=
N−1∑
k=0

h(x?(k|t), u?(k|t)) + h(x?(N |t), κf (x?(N |t)))− h(x(t), u(t))

∈ Yt ⊕ Y⊕ Y(t)⊕ {−h(x(t), u(t))} = Yt+1,

which shows recursive feasibility of the additional constraint (6.3f). To show satisfaction

of the asymptotic average constraints for the closed-loop system, from (6.3f) and (6.5)

it follows that at any time t

t−1∑
k=0

h(x(k), u(k)) +
N−1∑
k=0

h(x(k|t), u(k|t)) ∈ Y00 ⊕ (t+N)Y⊕
t−1∑
k=0

Y(k), (6.6)

for each predicted input and state sequences u(·|t) and x(·|t) which are feasible at time

t. Taking averages on both sides of (6.6) and considering any infinite time sequence
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6.1 Asymptotic Average Constraints

{tn} such that limn→+∞

∑tn−1
k=0 h(x(k),u(k))

tn
exists, the desired result follows from Assump-

tion 6.1.3, compactness of Y00, Y, X, and U, and continuity of h.

Having shown how asymptotic average constraints can be incorporated into a standard

empc scheme, we now discuss what implications such constraints have on the optimal

operating behavior of a system as well as the closed-loop behavior. To this end, in the

following we assume that the set Y in (6.1) is given by Y = {y ∈ Rp : y ≤ 0} = Rp
≤0. This

is not a major restriction since h can be some general nonlinear function. Now recall

from Section 3.1 that a system is optimally operated at steady state if it is dissipative

with respect to the supply rate s(x, u) = `(x, u)−`(xs, us). In the presence of asymptotic

average constraints, a similar result has been obtained in (Angeli et al., 2012, Prop. 6.4).

There, it was shown that if the system is dissipative with respect to the supply rate

s(x, u) = `(x, u)− `(xs, us) + µ>h(x, u) (6.7)

for some µ ∈ Rp
≥0, then it is optimally operated at steady state on averagely constrained

solutions. Here, the latter property means that the asymptotic average performance

along each feasible solution, which also satisfies the asymptotic average constraints, is

worse or equal to the optimal steady-state cost. The proof of this result is similar to

the case without average constraints, using in addition the fact that Av[h(x, u)] ⊆ Rp
≤0

for all feasible state and input sequences satisfying the average constraints. Comparing

the supply rate (6.7) with the one used without average constraints (3.3), one can see

that the dissipativity condition is relaxed in the region where h(x, u) ≥ 0 (since µ ≥ 0),

i.e., for those points (x, u) which do not satisfy the constraint h(x, u) ∈ Y. On the other

hand, it is strengthened for all points (x, u) such that h(x, u) ≤ 0. Since on average

h is nonpositive, i.e., Av[h(x, u)] ⊆ Rp
≤0, the relaxation of the dissipativity condition

“vanishes on average”, resulting again in the fact that steady-state operation is optimal.

In case that steady-state operation is optimal, the following closed-loop convergence

result has been obtained in (Müller, Angeli, Allgöwer, et al., 2014).

Theorem 6.2. Suppose that Assumption 6.1 is satisfied with α = 0, ocp (6.3) is feasible

at time t = 0, and the system is strictly dissipative with respect to the supply rate

s(x, u) = `(x, u)−`(xs, us)+µ>h(x, u) for some µ ∈ Rp
≥0. Then the resulting closed-loop

system asymptotically converges to xs, i.e., limt→∞ x(t) = xs.

In order to prove this result, a different Lyapunov function than in Section 3.2 has to

be employed. Namely, denote again by Ṽ ?
N(x(t)) the optimal value function of ocp (6.3)

with ` and Vf in (6.3a) replaced by the rotated stage and terminal cost functions ˜̀and Ṽf ,
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6 EMPC with Averaged Constraints

respectively. As was shown in Lemma 3.2, the solution to this modified optimization

problem is identical to the solution of the original ocp (6.3), since the cost functions only

differ by a constant term and the constraints are the same. We now use the following

Lyapunov-like function in order to establish closed-loop convergence:

V (t) = Ṽ ?
N(x(t)) + w(t) (6.8)

with

w(t) := sup
T≥0

t+T∑
k=t

µ>y(k). (6.9)

Here, the sequence y(·) is the output along the solution of the closed loop from time t

on. Using (6.6), Assumption 6.1.3 with α = 0, compactness of Y00, Y, X, and U, and

continuity of h, one can show that w(0) is upper and lower bounded by some finite

constant, for each feasible initial condition x0. The same is true for Ṽ ?
N(x(0)) and hence

also for V (0). As shown in Sections 2.2 and 3.2 (compare the proofs of Theorems 2.1

and 3.2), we have Ṽ ?
N(x(t + 1)) − Ṽ ?

N(x(t)) ≤ −L(x(t), u?(0|t)). Hence, using the strict

dissipativity assumption as well as the definition of w in (6.9), one obtains

V (t+ 1)− V (t) ≤ −L(x(t), u?(0|t)) + w(t+ 1)− w(t)

≤ −α(|x(t)− xs|) + µ>h(x(t), u?(0|t)) + w(t+ 1)− w(t)

= −α(|x(t)− xs|) + µ>h(x(t), u?(0|t))

+ sup
T≥0

t+1+T∑
k=t+1

µ>h(x(k), u?(0|k))− sup
T≥0

t+T∑
k=t

µ>h(x(k), u?(0|k))

= −α(|x(t)− xs|) + sup
T≥1

t+T∑
k=t

µ>h(x(k), u?(0|k))

− sup
T≥0

t+T∑
k=t

µ>h(x(k), u?(0|k))

≤ −α(|x(t)− xs|). (6.10)

Since V is bounded from above and below and nonincreasing, it converges. By (6.10),

this implies that x(t) converges to xs as t→∞, concluding the proof.

We note that in contrast to the setting without average constraints (compare Theo-

rem 3.2), in general only asymptotic convergence of the closed loop to xs can be estab-
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Figure 6.1: Closed-loop state sequences of system (6.11) with ȳ = 20 (dotted), ȳ = 40
(dash-dotted), ȳ = 60 (dashed), and ȳ = 80 (solid).

lished, but not asymptotic stability of xs. This is due to the fact that the asymptotic

average constraints allow the system to “spend time” in a region of the state space

where it is not allowed on average and where the cost is lower than at the optimal

steady-state xs. This behavior is illustrated with the following simple example, taken

from (Müller, Angeli, Allgöwer, et al., 2014).

6.2 Simple Example

Consider the system

x(t+ 1) = x(t)u(t) (6.11)

with state and input constraint set X = U = [−10, 10] and average constraint of the

form (6.1) with y = h(x, u) = 2x + u − 5 and Y = R≤0. The stage cost is given

by `(x, u) := (x − 3)2 + u2, resulting in the optimal steady-state (xs, us) = (2, 1).

One can show that the system is strictly dissipative with respect to the supply rate

s(x, u) = `(x, u)−`(xs, us)+µh(x, u) with µ = 1 and storage function λ(x) = 1.5x+c1 for

some c1 ∈ R≥0. Figure 6.1 shows closed-loop state and input sequences with prediction

horizon N = 10 and Y00 = {y ∈ R : y ≤ ȳ} for different values of ȳ. As guaranteed by

Theorem 6.2, the closed-loop system converges to xs. However, xs is not a Lyapunov

stable equilibrium point, since the closed-loop first moves away from x0 = xs = 2 and

approaches x = 3, before finally converging to xs = 2. In fact, it turns out that without

the average constraint, the optimal steady-state would be given by (x, u) = (3, 1) with

`(3, 1) < `(2, 1), and the system would be strictly dissipative with respect to the supply

rate s(x, u) = `(x, u)−`(3, 1) and storage function λ(x) = (2/3)x+c2 for some c2 ∈ R≥0.

This means that the closed-loop behavior with average constraints is such that the system
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6 EMPC with Averaged Constraints

initially converges to the optimal operating behavior without average constraint, i.e., to

x = 3. After some transient phase, the system is forced to leave this steady-state such

that the asymptotic average constraints can be satisfied. The amount of time the system

is allowed to stay in a vicinity of x = 3 can be tuned by choosing the parameter ȳ in

Y00 accordingly (see Figure 6.1).

6.3 Transient Average Constraints

The above results show how asymptotic average constraints can be incorporated into

empc schemes. In other situations, rather transient average constraints are of interest,

meaning that state and input values averaged over some finite time horizon T should be

constrained. This means that for all t ∈ I≥0, the following should be satisfied:

t+T−1∑
k=t

h(x(k), u(k))

T
∈ Y, (6.12)

where h : Rn × Rm → Rp is again some auxiliary output map which is assumed to be

continuous. One method how such transient average constraints can be incorporated

into empc was shown in (Müller, Angeli, and Allgöwer, 2014b), again for the case

where Y = Rp
≤0. Namely, instead of incorporating the constraint (6.3f), the following

constraints are added to the repeatedly solved optimization problem:

t−1∑
k=t−T+i

h(x(k), u(k)) +
i−1∑
k=0

h(x(k|t), u(k|t)) ≤ 0,

i = max{1, T − t}, . . . , T (6.13)

j+T−1∑
k=j

h(x(k|t),u(k|t)) ≤ 0, j = 1, . . . , N − 1 (6.14)

u(k|t) = κf (x(k|t)), k = N, . . . , N + T − 2 (6.15)

These additional constraints can be interpreted as follows. Constraint (6.13) ensures

that past state and input values together with predicted ones satisfy the transient av-

erage constraints over each time window T , while constraint (6.14) does the same for

predicted states and inputs further in the future. In order to be able to ensure recursive

feasibility, predictions up to N + T − 2 steps into the future are needed, i.e., beyond

the prediction horizon N . However, predictions farther than N steps in the future are
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fixed by (6.15), i.e., the horizon over which one optimizes (and hence the number of

optimization variables) stays the same. Once recursive feasibility is established, tran-

sient average constraint satisfaction for the resulting closed-loop system directly follows

from (6.13) with i = 1. Furthermore, if steady-state operation is optimal, closed-loop

convergence to the optimal steady-state xs can again be ensured if the system is strictly

dissipative with respect to the supply rate (6.7), using a similar proof as above in case

of asymptotic average constraints.

6.4 Extensions

The above results have been obtained in a setting with terminal constraints. If instead an

empc scheme without such terminal constraints shall be used, asymptotic and transient

average constraint satisfaction for the resulting closed-loop system can be ensured in

the same fashion, i.e., by including the constraints (6.3f) and (6.4) or (6.13)–(6.15),

respectively, into the repeatedly solved optimization problem. This is the case since

the above proof of closed-loop average constraint satisfaction, given recursive feasibility,

does not depend on the presence of terminal constraints. The problem, however, is

how recursive feasibility can be ensured in case of no terminal constraints. Namely, the

additional constraints (6.3f) and (6.4) or (6.13)–(6.15), respectively, are time-varying.

Hence assuming control invariance of X, which immediately gives recursive feasibility in

case of no average constraints, is in general not sufficient anymore.

Establishing recursive feasibility of empc without terminal constraints and including

average constraints, maybe based on turnpike arguments similar to Section 4.2, is still

open and an interesting subject of future work. Concerning average performance, one

can show in the same fashion as in case without average constraints that the asymp-

totic average performance of the closed loop is upper bounded by `(xs, us), using As-

sumption 6.1.1. On the other hand, establishing transient performance estimates in

the presence of average constraints is also an open problem, which is currently under

investigation. Here, exploiting two turnpike properties (one without and one with av-

erage constraints) might be helpful, similar to the situation observed in the example of

Section 6.2.
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7 EMPC with Generalized Terminal

Constraints

In this section, we discuss empc approaches using a generalized terminal constraint.

Compared to the results in Section 3, this means that the predicted terminal state

has to be equal to some (arbitrary) steady-state instead of the optimal steady-state,

which in general leads to a (significantly) larger feasible region. Using such generalized

terminal constraints was first proposed in (Ferramosca, Limon, Alvarado, et al., 2009;

Limon, Alvarado, et al., 2008) in the context of stabilizing (tracking) mpc and has later

also been employed in empc by, e.g., Fagiano and Teel, 2013, Ferramosca, Limon, and

Camacho, 2014 and Müller, Angeli, and Allgöwer, 2013. These approaches differ in how

the underlying optimal control problem is formulated (in particular, which terminal cost

is used) and how / under what conditions closed-loop guarantees can be given, but the

main idea of using a generalized terminal constraint instead of a fixed one is the same.

In the following, we will mainly concentrate on the formulation used in (Fagiano and

Teel, 2013; Müller, Angeli, and Allgöwer, 2013), and we also comment on differences

and available further results in other references.
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7 EMPC with Generalized Terminal Constraints

7.1 Problem Formulation and Performance Analysis

When considering generalized terminal constraints, the optimal control problem solved

at each time t with x := x(t) is given as follows:

min
u(·|t)

N−1∑
k=0

`(x(k|t), u(k|t)) + β`(x(N |t), u(N |t)) (7.1a)

subject to

x(0|t) = x (7.1b)

x(k + 1|t) = f(x(k|t), u(k|t)) k = 0, . . . , N − 1 (7.1c)

(x(k|t), u(k|t))> ∈ X× U, k = 0, . . . , N (7.1d)

x(N |t) = f(x(N |t), u(N |t)), (7.1e)

`(x(N |t), u(N |t)) ≤ κ(t). (7.1f)

for some β > 0. Denote by Xgen
N the set of all states x ∈ X for which ocp (7.1) has a

solution (for some κ). The special feature of this optimization problem is the generalized

terminal constraint in (7.1e), meaning that the predicted terminal state x(N |t) has to

be equal to an arbitrary steady state and not necessarily to the optimal one (or inside

a terminal set around it) as in Section 3.

Remark 7.1 (Advantages of generalized terminal constraints). The main benefits of

using such a generalized terminal constraint compared to a fixed terminal constraint

are that (i) in general a possibly much larger feasible region can be obtained and (ii)

recursive feasibility is maintained if the cost function (and hence also possibly the optimal

steady-state) changes online. On the other hand, the number of optimization variables

is slightly increased, and the closed-loop analysis becomes more involved and (slightly)

weaker results can be established.

The parameter κ in (7.1f) is updated according to the cost of the previous terminal

state, i.e., the following closed-loop system is obtained:

x(t+ 1) = f(x(t), u?(0|t)),

κ(t+ 1) = `(x?(N |t), u?(N |t)), (7.2)

with an appropriate (large enough) initialization of κ. The constraint (7.1f) together

with (7.2) ensures that the sequence of predicted terminal steady states (x(N |·), u(N |·))
has a nonincreasing stage cost. Since κ(t) is nonincreasing and bounded from below (by
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7.1 Problem Formulation and Performance Analysis

`(xs, us)), it converges. Denote the limit by κ∞ := limt→∞ κ(t). Note that the sequence

κ(·) is convergent irrespective of the evolution of the terminal weight β, however, the

limit κ∞ does in general depend on β, as discussed in the following.

Similar to Section 5.1 (compare (5.1)), one can show that the closed-loop asymptotic

average performance (for fixed terminal weight β) is upper bounded by

J cl∞(x0, µN) ≤ κ∞. (7.3)

Hence the study of the limiting behavior of κ(·) is of key interest and a small value of

κ∞ would be desirable. In order to give bounds on κ∞, we first study the effect of the

terminal weight β on the predicted terminal state x(N |t). Intuitively, a larger value

of β is expected to result in a terminal steady state (x(N |t), u(N |t)) with a lower cost

`(x(N |t), u(N |t)). This can formally be shown as follows. Denote the set of steady-states

which are reachable in N > 0 steps from a point y ∈ X by

XN(y) :={x ∈ X : ∃u ∈ U(N+1) s.t. x(0) = y,

x(j + 1) = f(x(j), u(j)), 0 ≤ j ≤ N − 1, x(N) = x,

x = f(x, u(N)), (x(j), u(j)) ∈ X× U, 0 ≤ j ≤ N}. (7.4)

Next, define the best achievable steady-state cost from a point y ∈ X as1

`min(y) := min
x,u

`(x, u)

s.t. x ∈ XN(y), u ∈ U, x = f(x, u). (7.5)

Furthermore, define the best robustly achievable steady-state cost from a point y ∈ X
as follows. For each ε ≥ 0, let

`min(y, ε) := sup
z∈Bε(y)∩X

`min(z). (7.6)

With this, we define the best robustly achievable steady-state cost from a point y ∈ X
as

`min(y) := lim
ε↘0

`min(y, ε). (7.7)

The limit in (7.7) exists since `min(y, ε) is monotonically nonincreasing as ε ↘ 0. It

1By convention, the minimum is +∞ if it is taken over the empty set.
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7 EMPC with Generalized Terminal Constraints

immediately follows from the definitions in (7.5) and (7.7) that for each y ∈ X we

have `min(y) ≤ `min(y). However, equality does not hold in general since `min(y, ε) is

not necessarily continuous in ε at ε = 0 (see, e.g., Müller, Angeli, and Allgöwer, 2013,

Example 4). Given the above definitions, we can now state the following result, which

has been obtained in (Fagiano and Teel, 2013, Prop. 2).

Theorem 7.1 (empc with constant terminal weight). Suppose that X is compact and

let ε > 0. There exists β(ε) > 0 such that for all β ≥ β(ε), all x(t) ∈ Xgen
N and

κ(t) ≥ `min(x(t)) + ε, the solution to ocp (7.1) is such that

`(x?(N |t), u?(N |t)) ≤ `min(x(t)) + ε. (7.8)

Theorem 7.1 says that if the terminal weight β is large enough, the cost of the pre-

dicted terminal steady-state is close to the best achievable steady-state cost. This result

can be proven by contradiction as follows. Consider a feasible input sequence ū(·|t)
to ocp (7.1) with corresponding state sequence x̄(·|t) such that `(x̄(N |t), ū(N |t)) =

`min(x(t)). Now assume for contradiction that the optimal solution to ocp (7.1) is such

that `(x?(N |t), u?(N |t)) > `min(x(t))+ε. Due to compactness of X and U and continuity

of f and `, there exists some η > 0 such that

JN(x(t), ū(·|t))− JN(x(t), u?(·|t))

= β(`min(x(t))− `(x?(N |t), u?(N |t)))

+
N−1∑
k=1

(`(x̄(N |t), ū(N |t))− `(x?(N |t), u?(N |t)))

< −βε+ η,

for all x(t) ∈ Xgen
N . Choosing β ≥ η/ε =: β(ε) contradicts optimality of u? and hence

proves the theorem.

Theorem 7.1 can now be used to obtain bounds on the closed-loop evolution of

the predicted terminal steady-state cost `(x?(N |·), u?(N |·)) and in particular of κ∞.

A first such result was obtained in (Fagiano and Teel, 2013, Thm. 3) under a cer-

tain controllability assumption and for a modified mpc scheme. Namely, assume that

there exists some N ′ ∈ I≥0 and ε > 0 such that from each steady state (x, u) ∈
X × U, one can reach a “better” steady state (x̄, ū) in N ′ steps, i.e., x̄ ∈ XN ′(x)

and `(x̄, ū) ≤ max{`(xs, us), `(x, u) − ε}. Given this assumption, a prediction horizon

N ≥ N ′ has to be chosen and the mpc scheme is modified as follows. At each time t,
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if `(x?(N |t), u?(N |t))) > `(x?(N |t − 1), u?(N |t − 1))) − ε and `(x?(N |t), u?(N |t))) >
`(xs, us)+ε, i.e., if the predicted terminal steady-state cost does not decrease by at least

ε compared to the previous time step and is not already close to the (global) optimum

`(xs, us), then the new optimal solution u?(·|t) is discarded and the next step u?(1|t−1)

of the solution from the previous time step t − 1 is applied. This modification results

in the fact that during each N ′ time steps, the predicted terminal steady-state cost de-

creases by at least ε or (if the optimal solution is repeatedly discarded) the terminal

steady-state is reached after N ′ steps, from which by the controllability assumption a

better steady state can be reached. In the latter case, using Theorem 7.1, a decrease

in the predicted terminal steady-state cost is guaranteed. Summarizing the above, exis-

tence of a finite time T ′ is guaranteed such that the predicted terminal steady-state cost

satisfies

`(x?(N |T ′), u?(N |T ′)) ≤ `(xs, us) + ε,

and hence κ∞ ≤ `(xs, us) + ε.

7.2 Self-tuning Terminal Weight

In case that the above controllability condition is not satisfied, a shorter prediction

horizon N < N ′ is used, or the original mpc scheme without modification is applied,

the above upper bound for κ∞ cannot be guaranteed in general. In this case, one

can use a suitable self-tuning, adaptive terminal weight β in order to obtain an upper

bound on κ∞ as was done in (Müller, Angeli, and Allgöwer, 2014a; Müller, Angeli, and

Allgöwer, 2013). Namely, assume that β evolves according to some update rule

β(t+ 1) = B(β(t), x(t), κ(t)), β(0) = β0 ≥ 0. (7.9)

Now let ωB(x0) be the ω-limit set of the closed-loop state sequence (7.2) starting at x0

and using the update rule B (7.9), i.e., ωB(x0) := {y ∈ X : ∃{tn} → +∞ s.t x(0) =

x0 and limn→∞ x(tn) = y}, where x(·) is the closed-loop solution arising from (7.2)

and (7.9). The following result has been obtained in (Müller, Angeli, and Allgöwer,

2013, Thm. 2).

Theorem 7.2 (empc with self-tuning terminal weight).

(i) Suppose that the update rule B is such that for all sequences x(·) and κ(·), regarded
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7 EMPC with Generalized Terminal Constraints

as open-loop input signals in (7.9), it holds that

κ∞ − lim inf
t→∞

`min(x(t)) > 0 ⇒ lim inf
t→∞

β(t) =∞. (7.10)

Then, for the closed-loop system (7.2) and (7.9), it holds that the limit limt→∞ `min(x(t))

exists and

κ∞ = lim
t→∞

`min(x(t)) ≤ inf
y∈ωB(x0)

`min(y). (7.11)

(ii) Suppose that the update rule B is such that for all sequences x(·) and κ(·), regarded

as open-loop input signals in (7.9), it holds that

κ∞ − lim sup
t→∞

`min(x(t)) > 0 ⇒ lim sup
t→∞

β(t) =∞, (7.12)

Then, for the closed-loop system (7.2) and (7.9), it holds that

κ∞ = lim sup
t→∞

`min(x(t)) ≤ sup
y∈ωB(x0)

`min(y). (7.13)

The intuition behind this result is as follows. The update rule B should be such

that if the predicted terminal steady-state cost `(x?(N |t), u?(N |t)) is “large” compared

to the best achievable steady-state cost `min(x(t)), the terminal weight β should be

increased in order to ensure a better terminal steady-state cost. This property is encoded

by conditions (7.10) and (7.12), respectively. Using these conditions, the equalities

in (7.11) and (7.13), respectively, can be proven by contradiction using Theorem 7.1.

The inequalities in (7.11) and (7.13), respectively, then follow from the definitions of the

best robustly achievable steady-state cost `min and the ω-limit set ωB. In (Müller, Angeli,

and Allgöwer, 2013), six different update rules are presented such that the assumptions

of Theorem 7.2 are satisfied, out of which we exemplarily show the following two. To

this end, define δ(t) := `(x?(N |t), u?(N |t))− `min(x(t)) and let α1, α2, α3 ∈ K.

B1(β(t), x(t), κ(t)) := β(t) + α1(δ(t))

B2(β(t), x(t), λ(t)) :=

{
1 if C3(t) ≤ 0,

β(t) + α2(δ(t)) else,
(7.14)

Here, C3(0) = 0 and for each t ∈ I≥1, C3(t) := `(x?(N |t), u?(N |t))−`(x?(N |tlast), u?(N |tlast))+
α3(δ(t)) with tlast := maxs≤t,β(s)=1 s − 1. Update rule B1 is such that the terminal
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weight β is increased whenever the difference between the predicted terminal steady-

state cost and the best achievable steady-state cost is nonzero, while the second also al-

lows for resets of β in order to avoid unnecessarily large values of β, which might be bad

for (transient) performance and numerical reasons. One can show that update rule B1

is such that the stronger condition (7.10) is satisfied, while for update rule B2 (7.12)

holds. One drawback of both update rules is that the best achievable steady-state cost

has to be known in each time step. For different update rules avoiding this as well as for

a further discussion on the different properties of the update rules, the interested reader

is referred to (Müller, Angeli, and Allgöwer, 2013).

7.3 Discussion and Extensions

Theorem 7.2 together with (7.3) guarantees that the closed-loop average performance

is no worse than the cost of the best steady-state achievable from the ω-limit set of

the resulting closed-loop trajectory. This is a result of rather conceptual nature. More

explicit, a priori verifiable bounds for κ∞ can be obtained if instead of the generalized

terminal equality constraint (7.1e), a generalized terminal region constraint is used. If

this generalized terminal region is constructed appropriately, one can show that κ∞

converges to a local minimum of the stage cost on the set of feasible steady states, i.e.,

to a local optimum of Problem 3.4, see (Müller, Angeli, and Allgöwer, 2014a, Thm. 3).

In case that the system is linear with convex stage cost and constraints, κ∞ converges

to the global minimum of the stage cost on the set of feasible steady states, recovering

the results of Section 5.1.

The previous results show how different asymptotic average performance guarantees

can be obtained when using empc schemes with generalized terminal constraints. On

the other hand, only few closed-loop convergence results as well as transient performance

results are, if at all, available in the literature. The work of Ferramosca, Limon, and

Camacho, 2014 establishes asymptotic stability of the optimal steady state xs under a

strong duality condition for linear systems. This condition can be seen as a special case

of the dissipativity condition of Section 3.1 with a linear storage function. As mentioned

above, while the main idea of using a generalized terminal constraint is the same as in

the above references, the employed cost function in (Ferramosca, Limon, and Camacho,

2014) is slightly different compared to ocp (7.1). For the general nonlinear case, proving

closed-loop asymptotic stability of the optimal steady-state given the dissipativity condi-

tion (3.2b) is not as straightforward as in the case with a fixed terminal constraint, since
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7 EMPC with Generalized Terminal Constraints

the modified optimization problem using the rotated cost function does not necessarily

result in the same solution as the original problem. In order to establish (practical)

asymptotic stability, we expect that techniques based on the turnpike property (similar

to the case without terminal constraints) could be used. Also, establishing transient

performance results similar to Section 5.3 is still an open problem.

The above results using a generalized terminal constraint have been extended in (Limon,

Pereira, et al., 2014) to the case of periodic linear systems with periodic stage cost

functions. Here, a cost function is used which penalizes the distance to some periodic

trajectory together with a cost term which consists of the real (economic) cost of this

periodic trajectory. In (Houska and Müller, 2017), a slightly different type of generalized

periodic terminal constraints is used, namely a periodic return constraint requiring that

the terminal predicted state x(N |t) is equal to the current state x(t). An advantageous

property of the latter scheme is that the optimal period length does not have to be known

a priori; on the other hand, typically only closed-loop convergence to a locally optimal

N -periodic orbit can be shown, but not necessarily to the (globally) optimal periodic

orbit. Finally, the work (Broomhead et al., 2015) uses generalized periodic terminal

constraints in a setting with linear systems subject to disturbances, and robust stability

of the optimal periodic orbit is again established under a strong duality assumption.

70



8 Lyapunov-based Approach

As we have seen in the example of Section 3.4, whenever dissipativity does not hold, the

closed loop solutions resulting from empc will not in general converge to an equilibrium

or stay in the neighborhood of an equilibrium. However, for various reasons convergence

to a prescribed equilibrium or at least keeping the state in the basin of attraction of an

equilibrium may be desirable, while at the same time the given economic cost should be

minimized. This is the task for which Lyapunov-basedempc has been designed. While

originally developed in continuous time, see (Heidarinejad et al., 2012), here we will stay

within the general framework of this survey and present the algorithm and the basic

results for discrete time systems. The original continuous time formulation will briefly

be explained afterwards in Remark 8.2.

8.1 Basics of the Scheme

For introducing this method, we need the knowledge of a Lyapunov function and a cor-

responding controller according to the following definition. In order to avoid notational

confusion with the optimal value functions used in other places in this survey, we use

the symbol “W” (instead of the more common “V ”) for the Lyapunov function.

Definition 8.1 (Controller-specific Lyapunov function). Let xs ∈ X be an equilibrium

of f , i.e., there is us ∈ U with f(xs, us) = xs. Let O be an open neighborhood of xs and

consider two functions W : O → R and h : O → U with h(x) ∈ U and f(x, h(x)) ∈ O
for all x ∈ O. Then we say that W is a Lyapunov function with respect to the controller

h if there are functions α1, α2, α3 ∈ K∞ such that the inequalities

α1(|x− xs|) ≤ W (x) ≤ α2(|x− xs|) (8.1)

and

W (f(x, h(x))) ≤ W (x)− α3(|x− xs|) (8.2)

hold for all x ∈ O.
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It follows from standard Lyapunov function arguments (see, e.g., (Grüne and Pannek,

2017, Thm. 2.19)) that if a Lyapunov function W and a corresponding controller h exist,

then xs is asymptotically stable with basin of attraction O for the closed loop system

x+ = f(x, h(x)).

Note that if O is a level set

Ωρ := {x ∈ Rn |W (x) ≤ ρ}

of a Lyapunov function W defined on the whole Rn and satisfying (8.1) for all x ∈ Rn,

then the condition f(x, h(x)) ∈ O readily follows from (8.2).

The idea of Lyapunov-based empc is now to use the decrease condition (8.2) as a

constraint in the empc optimization. More precisely, the original algorithm proposed in

(Heidarinejad et al., 2012) uses two operation modes: in the first mode, which is active

until a time t′, the algorithms uses the Lyapunov function W in order to ensure that the

system first enters and then stays in a level set Ωρ̃ for some ρ̃ > 0. After the time t′,

W is used in order to ensure convergence of the closed loop solution to xs. Note that t′

may be infinite, in which case the scheme stays in the first mode forever.

The resulting optimal control problem to be solved in each step of the empc algorithm

then reads as follows.

min
u(·|t)

N−1∑
k=0

`(x(k|t), u(k|t)) (8.3a)

subject to

x(k + 1|t) = f(x(k|t), u(k|t)), k = 0, . . . , N − 1 (8.3b)

x(0|t) = x(t) (8.3c)

(x(k|t), u(k|t))> ∈ X× U, k = 0, . . . , N − 1 (8.3d)

W (x(k|t)) ≤ ρ̃, k = 0, . . . , N if t ≤ t′ and W (x(t)) ≤ ρ̃ (8.3e)

W (x(1|t)) ≤ W (f(x(t), h(x(t))) if t > t′ or W (x(t)) > ρ̃ (8.3f)

Here the constraints (8.3e) and (8.3f) contain the implicit constraints x(k, t) ∈ O and

x(1, t) ∈ O, respectively, in order to ensure that W is defined at these points.
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8.2 Closed-loop Properties

The following theorem gives the properties of the Lyapunov-based empc algorithm.

Theorem 8.1. Consider the Lyapunov-based empc scheme (8.3) with W , h and O from

Definition 8.1. Then for all x(0) ∈ O with ρ ≥ ρ̃ such that Ωρ ⊆ X and x(0) ∈ Ωρ the

following statements hold:

(i) The scheme is recursively feasible and x(t) ∈ Ωρ for all t ≥ 0.

(ii) There is t̃ > 0 with x(t) ∈ Ωρ̃ for all t ≥ t̃.

(iii) If t′ <∞ then x(t)→ xs as t→∞.

Proof. Since the discrete time setting considered here differs from the continuous time

setting in the literature and since the proof is rather short, we give a complete proof of

this theorem.

We first note that in every step either constraint (8.3e) or constraint (8.3f) is enforced.

Together with the fact that x(t+ 1) = x(1|t) this implies

W (x(t+ 1)) = W (x(1|t))

≤ max{W (f(x(t), h(x(t)))), ρ̃}

≤ max{W (x(t))− α3(|x(t)− xs|), ρ̃}, (8.4)

where the inequality holds for the first term in the max whenever constraint (8.3f) was

enforced. Also, recall that x ∈ Ωρ if and only if W (x) ≤ ρ.

(i): Observe that recursive feasibility follows from x(t) ∈ Ωρ since Ωρ ⊆ X. This

property now follows by an easy induction. For t = 0 it follows from the assumption

and for t→ t+ 1 it follows since x(t) ∈ Ωρ implies max{W (x(t))− α3(|x(t)− xs|), ρ̃} ≤
max{ρ, ρ̃} ≤ ρ, hence (8.4) yields the assertion.

(ii): For x ∈ O \ Ωρ̃ we have W (x) ≥ ρ̃ which by (8.1) implies |x− xs| ≥ α−1
2 (ρ̃) and

thus α3(|x− xs|) ≥ α3(α−1
2 (ρ̃)) =: δ > 0 for all x ∈ O \Ωρ̃. An induction based on (8.4)

similar as in (i) then implies

W (x(t)) ≤ max{W (x(t))− tδ, ρ̃}.

From this, (ii) immediately follows.
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(iii): For t ≥ t′, (8.4) changes to

W (x(t+ 1)) ≤ W (x(t))− α3(|x(t)− xs|).

This implies that t → W (x(t) is strictly decreasing and since W (x) is bounded from

below by 0 it hence converges to a value ρ∞. We claim that ρ∞ = 0. Indeed, if ρ∞ > 0,

then x(t) ∈ Ωρ∞ for all t ∈ N. As in (ii) we obtain α3(|x−xs|) ≥ α3(α−1
2 (ρ∞)) =: δ∞ > 0

for all x ∈ O \ Ωρ∞ . This implies W (x(t)) ≤ W (x(t′)) − (t − t′)δ∞ for all t ≥ t′, which

contradicts W (x(t)) ≥ ρ∞. Hence ρ∞ = 0 and thus W (x(t)) → 0 as t → ∞ which by

(8.2) implies |x(t)− xs| → 0, i.e., x(t)→ xs.

Remark 8.1. Using the proof technique from (Grüne and Pannek, 2017, Thm. 2.19)

one may also establish asymptotic stability of the set Ωρ̃ in the first mode and asymptotic

stability of xs in the second mode.

Remark 8.2 (Continuous-time setting). In continuous time, the condition (8.2) changes

to
dW

dx
(x)f(x, h(x)) ≤ −α3(|x− xs|).

Consequently, the constraint (8.3f) becomes

dW

dx
(x(τ |t))f(x(τ |t), u(τ |t)) ≤ dW

dx
(x(τ |t))f(x(τ |t), h(x(τ |t))).

This constraint should be checked for all τ from the sampling interval [t, t+ ∆] in order

to ensure decrease of the Lyapunov function. However, this is numerically infeasible,

which is why it is usually only checked for t = tk. The resulting error may prevent the

solutions to converge exactly to Ωρ̃ and xs, which is why additional error terms show up

in the continuous time versions of Theorem 8.1, see (Heidarinejad et al., 2012, Thm.

1) or (Ellis, Liu, et al., 2017, Thm. 4.1).

Various modifications and extensions of the basic algorithm described in this section

have been presented in the literature. For details we refer to (Ellis, Durand, et al., 2014)

or to (Ellis, Liu, et al., 2017) and the references therein.

It should be noted that the additional constraints involving W can significantly affect

the economic performance, as the constraints change the behavior of the closed-loop

trajectory. Another limitation of the method is that the Lyapunov function W and the

corresponding control law h must be known in order to implement the method. While

a certain performance loss is, in general, unavoidable, if one wants to enforce stability-

like behavior that the economically optimal trajectories do not exhibit, the next section

74



8.2 Closed-loop Properties

describes a conceptually similar method in which the explicit knowledge of W and h is

not needed.
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9 Multi-objective Approach

It is well known that—contrary to empc—in stabilizing mpc the optimal value function

can be used as a Lyapunov function. In other words, a Lyapunov function can be gen-

erated by solving an optimal control problem. Essentially, this Lyapunov function will

replace the a priori Lyapunov function W used in the Lyapunov based empc approach.

This leads to an optimal control problem involving two costs—the economic costs ` and

the stabilizing cost `stab—and thus the approach is termed a multi-objective approach

in (Zavala, 2015), which forms the basis for the subsequent considerations.

9.1 Derivation of the Scheme

To this end, we note that for stabilizing mpc either suitable assumptions or suitable ter-

minal conditions must be satisfied in order to guarantee that the optimal value function

is indeed a Lyapunov function, similar to what we discussed in the previous sections

for empc. As in Corollaries 2.1 and 3.1, here we use the simplest possible terminal

condition, i.e., we require x(N |t) = xs for the equilibrium xs. With XN we denote the

set of initial conditions for which this constraint is feasible for given horizon N .

The resulting stabilizing optimal control problem with x = x(t) then reads

min
u(·|t)

Jstab(x(t), u(·|t)) =
N−1∑
k=0

`stab(x(k|t), u(k|t)) (9.1a)

subject to

x(k + 1|t) = f(x(k|t), u(k|t)), k = 0, . . . , N − 1 (9.1b)

x(0|t) = x(t) (9.1c)

(x(k|t), u(k|t))> ∈ X× U, k = 0, . . . , N − 1 (9.1d)

x(N |t) = xs. (9.1e)
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We define the optimal value function of this optimal control problem as

V stab(x) := min{Jstab(x, u) |u ∈ UN , (9.1b)–(9.1e) holds}.

We now assume that the stabilizing cost `stab satisfies the (in)equalities

`stab(xs, us) = 0 and `stab(x, u) ≥ α4(|x− xs|), (9.2)

where us is an equilibrium control value, i.e., f(xs, us) = xs, and α4 ∈ K∞. We moreover

assume that there is α5 ∈ K∞ such that

V stab(x) ≤ α5(|x− xs|) (9.3)

holds. Then V stab satisfies the inequalities

α4(|x− xs|) ≤ V stab(x) ≤ α5(|x− xs|) (9.4)

and

V stab(x(t+ 1)) ≤ V stab(x(t))− α4(|x(t)− xs|) (9.5)

and is thus a Lyapunov function for the mpc closed loop in the sense of Definition 8.1,

from which asymptotic stability of xs follows. The proof of inequality (9.5) was given in

Step 2 of the proof of Theorem 2.1.

Now the interesting observation is that this proof still works if the optimal pair

(x?(·|t), u?(·|t)) for the stabilizing problem is replaced by any other admissible trajec-

tory/control pair (x̂(·), û(·)) satisfying the constraints(9.1b)–(9.1e). This yields

V stab(f(x(t), û(0))) ≤ Jstab(x(t), û)− α4(|x(t)− xs|) (9.6)

instead of (9.5).

Now the idea is to ensure that the controls u?(·|t) minimizing the economic functional

satisfy the constraint

Jstab(x(t+ 1), u?(·|t+ 1)) ≤ (1− σ)V stab(x(t+ 1)) + σJstab(x(t), u?(·|t)

for a fixed parameter σ ∈ [0, 1) when optimizing the economic criterion, where u?(·|t)
denotes the economically optimal control at time t. From (9.6) with û = u?(·|t− 1), for

each σ ∈ [0, 1) it follows that (1−σ)V stab(x(t+1))+σJstab(x(t), u?(·|t) ≥ V stab(x(t+1)),
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hence this constraint is feasible. When it is satisfied, using again (9.6) yields

Jstab(x(t+ 1), u?(·|t+ 1))

≤ (1− σ)V stab(x(t+ 1)) + σJstab(x(t), u?(·|t)

≤ (1− σ)
(
Jstab(x(t), u?(·|t)− α4(|x(t)− xs|)

)
+ σJstab(x(t), u?(·|t)

≤ Jstab(x(t), u?(·|t)− (1− σ)α4(|x(t)− xs|). (9.7)

From this it is easy to conclude that Jstab(x(t), u?(·|t)) converges to 0 and thus x(t)→ xs

follows from the lower bound in (9.4).

Abbreviating γ(t) := (1 − σ)V stab(x(t)) + σJstab(x(t − 1), u?(·|t − 1) for t ≥ 1 and

setting γ(0) := ∞, the economic optimization problem to be solved in each step of the

mpc loop thus reads as follows.

min
u(·|t)

J(x(t), u(·|t) =
N−1∑
k=0

`(x(k|t), u(k|t)) (9.8a)

subject to

x(k + 1|t) = f(x(k|t), u(k|t)), k = 0, . . . , N − 1 (9.8b)

x(0|t) = x(t) (9.8c)

(x(k|t), u(k|t))> ∈ X× U, k = 0, . . . , N − 1 (9.8d)

x(N |t) = xs (9.8e)

Jstab(x(t), u(·|t+ 1)) ≤ γ(t). (9.8f)

We note that in every step of this scheme two optimal control problems have to be

solved, one in order to determine u?(·|t) and one in order to compute V stab(x(t)) which

is needed for evaluating γ(t).

9.2 Closed-loop Properties

We summarize the properties of this mpc scheme in the following theorem.

Theorem 9.1. Consider the empc scheme (9.8) and assume that the underlying stabi-

lizing optimal control problem satisfies (9.2) and (9.4). Then for all x(0) ∈ X the mpc

closed loop solution x(t) converges to xs as t→∞.

Proof. With the same argument as used for W in the proof of Theorem 8.1, we can
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conclude from (9.7) that Jstab(x(t), u?(·|t)) → 0 as t → ∞. Now the obvious lower

bound α4(|x(t) − xs|) ≤ Jstab(x(t), u?(·|t)) → 0 implies α4(|x(t) − xs|) → 0 and thus

|x(t)− xs| → 0 as t→∞, which shows the claim.

Remark 9.1. (i) Contrary to what is claimed in (Zavala, 2015), it is not clear to us

whether in addition to the convergence x(t)→ xs asymptotic stability does also hold. The

reason for this is that in the first step of the algorithm due to γ(0) = ∞ no stabilizing

constraint is imposed. Indeed, this constraint cannot be implemented in the first time

step t = 0 because no value Jstab(x(t − 1), u?(·|t − 1)) from the previous time step is

available. This, however, means that the economic optimization criterion may yield an

optimal control which steers the system away from xs for initial conditions x(0) ≈ xs,

or even x(0) = xs, contradicting stability of xs for the closed loop.

(ii) The parameter σ defines the desired “degree of decrease” of Jstab and thus the

speed of convergence of x(t) to xs. There is thus a tradeoff between the two objectives

J and Jstab. Under suitable convexity conditions it can be shown that the optimal solu-

tion computed in each step is weakly Pareto optimal for the multi-objective optimization

problem defined by these two criteria, see (Zavala, 2015). In this context, σ determines

the location of the Pareto optimum on the Pareto front. However, these considerations

only apply to the open loop optimal solutions in each step of the mpc scheme and do not

allow for an easy estimate on the performance of the closed loop.

(iii) We note that while the constraint (9.8f) is feasible, for non-convex problems it is

not guaranteed that the optimization algorithm will find the feasible solution. One way to

cope with this problem is to choose suitable intializations for the optimization algorithm,

e.g., the optimal control from the computation of V stab(x(t)), whose computation in turn

should be initialized with the control sequence ũ used in the derivation of (9.6) in order to

guarantee the necessary decay. Further strategies to deal with this problem are discussed

in (Zavala, 2015).

9.3 Example – Chemical Reactor without Dissipativity

We reconsider the chemical reactor model without dissipativity from Section 3.4. We

use the same economic stage cost ` as before and the stabilizing stage cost `(x, u) =

‖x− xs‖2 + (u− us)2, with xs and us from the steady state analysis in Section 3.4.

Figures (9.1)–(9.3) show the resulting closed loop trajectories. It is clearly visible that

the solution converges to the optimal steady state the faster, the smaller σ is. We also

note the obvious similarities between Figure 9.1 and Figure 3.5, where in both cases a
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fast convergence to (xs, us) is enforced, and between Figure 9.3 and Figure 3.3, where

only a very slow or no convergence, at all, to (xs, us) is enforced.
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Figure 9.1: Closed-loop multi-objective empc for system (3.10) with σ = 0.5.
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Figure 9.2: Closed-loop multi-objective empc for system (3.10) with σ = 0.9.

0 2 4 6 8 10

t [-]

0

0.1

0.2

0.3

0.4

0.5

x 1
 [-

]

State x1

0 2 4 6 8 10

t [-]

0.04

0.06

0.08

0.1

0.12

0.14

x 2
 [-

]

State x2

0 2 4 6 8 10

t [-]

0.06

0.08

0.1

0.12

0.14

0.16

0.18

x 3
 [-

]

State x3

0 2 4 6 8 10

t [-]

0

0.1

0.2

0.3

0.4

0.5

u 
[-

]

Input u

Figure 9.3: Closed-loop multi-objective empc for system (3.10) with σ = 0.99.
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10 Conclusions and Outlook

10.1 Discussion

In this survey, we have reviewed various economic mpc schemes that have been de-

veloped in recent years. The schemes differ in how the underlying ocp is formulated

(with/without terminal or other stability-related constraints), what a priori knowlege is

required for implementing the scheme (the optimal steady-state, a suitable Lyapunov

function, etc.), and which properties can be established for the resulting closed-loop

system (averaged/non-averaged performance statements, stability/convergence, (aver-

age) constraint satisfaction, etc.). A concise comparison of the presented schemes with

respect to these issues is given in Table 10.1 below.
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Table 10.1: Comparative overview of empc results.
Scheme Core Required Term. Constraints Closed-loop Stability Remarks

Assumptions Pre-Knowledge and Penalties Performance Properties

Terminal strict dissipativtiy and opt. steady state xs terminal penalty and asymp. avg. perf. asymptotic
Constraints finite-time reach. of Xf terminal penalty constraint around xs ≤ `(xs, us), stability
(Section 3) and constraint transient perf.

estimates available
Turnpike strict dissipativity and none none asymp. avg. perf. practical recursive
Approach exp. reachability of xs ≤ `(xs, us) + δ(N), stability feasibility

(Section 4) transient perf. for long
estimates available horizons

Averaged strict dissipativity and terminal penalty terminal penalty and asymp. avg. perf. asymptotic
Constraints finite-time reach. of Xf and constraint constraint around xs ≤ `(xs, us) convergence
(Section 6)
Generalized finite-time reachability none gen. term. constraint asymp. avg. perf. —

Term. Constr. of some steady state and term. penalty ≤ κ∞
(Section 7)

Lyapunov-based existence of stab. a priori known terminal penalty and asymptotic
Approach feedback and corr. stab. feedback and constraint given by Lyap. stability

(Section 8) Lyapunov function Lyapunov function function and its domain
Multi-objective stabilization with track. desired reference xs terminal penalty and asymp. avg. perf. asymptotic

Approach nmpc required and corr. terminal penalty constraint around xs equals `(xs, us) convergence
(Section 9) finite-time reach. of Xf and constraint
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In summary, for the schemes with (classical) terminal constraints (Section 3) and

without such terminal constraints (Section 4), optimal steady-state operation as well as

closed-loop (practical) asymptotic stability of the optimal steady-state can be charac-

terized via a suitable (strict) dissipativity condition. Furthermore, for these schemes,

closed-loop averaged and non-averaged infinite-horizon performance guarantees as well

as transient performance guarantees can be given, again (mostly) based on the same

(strict) dissipativity condition (Section 5). Section 6 discussed how average constraints

can be incorporated into empc schemes. Again under a suitably relaxed (strict) dissi-

pativity condition, optimal steady-state operation and closed-loop convergence to the

optimal steady-state follow. Compared to the basic case without average constraints,

most of the existing results are only available for schemes including terminal constraints.

Economic mpc with generalized terminal constraints (Section 7) can be seen as an ”in-

termediate” approach between using no or fixed terminal constraints. Such generalized

terminal constraints allow for closed-loop (average) performance statements without the

a priori knowledge of the optimal steady-state and without using a dissipativity condi-

tion. On the other hand, convergence to the (globally) optimal operating behavior is

not necessarily guaranteed. Lyapunov-based empc (Section 8) employs the knowledge

of an a priori known Lyapunov function W in order to ensure closed-loop boundedness

inside a sublevel set of W , and (if desired) also convergence to the optimal steady-state.

Finally, if convergence to the optimal steady-state should be ensured and no a priori

known Lyapunov function W is available, the multi-objective approach (Section 9) can

be used. Here, an additional (auxiliary) ocp with a stabilizing (positive definite) cost

function is solved at each time step, whose optimal value function in turn is used as an

additional stabilizing constraint in the economic mpc problem.

In conclusion, the closed-loop behavior resulting from application of empc schemes is

by now fairly well understood—at least in the basic case where steady-state operation

is optimal and where there is no plant-model mismatch—both in terms of performance

and convergence to the optimal steady-state. This is true for both basic mpc categories

with and without additional terminal constraints.

10.2 Further Results and Open Problems

Finally, we briefly comment on existing further results (without aiming for a complete

picture of all available papers in the field of economic mpc) and hint at some open

problems that deserve investigation. Open issues concerning the different mpc meth-
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ods described in this survey were already pointed out in various places in the single

sections. This includes considering, e.g., average constraints in economic mpc schemes

without terminal constraints, and (transient) performance guarantees for the economic

mpc schemes of Sections 6–9.

The closed-loop performance and stability analysis in Sections 3–5 was shown for the

basic case where steady-state operation is optimal. However, as we have seen in Section

3.4, it may happen that a system it not optimally operated at steady state. Most of the

results presented in Sections 3–4 have been extended to more general settings where,

e.g., periodic operation is optimal. In this case, optimal periodic operation can again (al-

most) equivalently be characterized by a suitable (strict) dissipativity condition (Müller,

Grüne, and Allgöwer, 2015), which is also sufficient for closed-loop convergence to the

optimal periodic orbit in both settings with (Zanon, Grüne, et al., 2017) and without

(Müller and Grüne, 2016b) terminal constraints. A continuous-time extension to more

general time-varying turnpikes is discussed in (Alessandretti et al., 2016). However,

therein no procedure for classification of time-varying turnpikes is given.

Another important direction for future research are empc schemes with time-varying

problem data. Already the case of time-invariant dynamics and constraints combined

with a time-varying cost functional can lead to considerable difficulties. An important

special case of this setting are discounted ocps as they frequently arise in Economics

(Carlson et al., 1991). The application of empc as a mean of approximating infinite-

horizon solutions to discounted ocps arising in Economics is investigated in (Grüne,

Semmler, et al., 2015). While the main performance results discussed in this paper

carry over to empc for discounted problems if the optimal control problem exhibits

the turnnpike property, the difficulty in the discounted case lies in ensuring that the

turnpike property holds. Interestingly, these conceptual difficulties already occur for

tracking nmpc (Gaitsgory et al., 2015).

Moreover, while for ocps with time-invariant data the time-invariant turnpike (if it

exists) is easily classified as the best reachable steady-state, the classification of time-

varying turnpikes appears to be quite difficult, whenever they are not periodic orbits.

In contrast to Section 9, wherein the auxiliary objective is considered as a constraint,

so-called dual objective nmpc schemes combine an economic objective in a weighted sum

with a tracking objective, cf. (Maree and Imsland, 2016). Although the main idea of

combining multiple objectives appears to be not entirely new (Böhm et al., 2008), there

is no general framework for dual objective nmpc design. It also has been suggested to

design tracking mpc such that locally economic costs are approximated (Zanon, Gros,

et al., 2014).
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The results presented in this survey article have been obtained under the strong as-

sumption that we have a perfect model, i.e., no disturbances/uncertainties or model/plant

mismatch is present. For most practical applications, studying the influence of distur-

bances on the closed-loop system is of paramount importance. This is in particular

the case in economic mpc, where disturbances should not just be counteracted (as is

typically done in stabilizing robust mpc schemes), but potentially (economically) ben-

eficial disturbances should be taken advantage of. To this end, it was noted in (Bayer,

Müller, et al., 2014) that just transferring robust mpc approaches from a stabilizing to

an economic context might not result in an optimal closed-loop performance, necessi-

tating the development of novel schemes. Some robust and stochastic economic mpc

approaches can, e.g., be found in (Bayer, Lorenzen, et al., 2016; Bayer, Müller, et al.,

2014; Broomhead et al., 2015; Huang et al., 2012; Lucia et al., 2014; Marquez et al.,

2014; Sokoler et al., 2014). Overall, the picture is still much less complete compared to

the nominal case, and various interesting open problems remain. This includes robust-

ness of economic mpc schemes without terminal constraints, performance estimates, or

a classification of the optimal operating behavior under disturbances.

With respect to the extension of distributed mpc and output-feedback mpc to eco-

nomic settings, there appears to be a lot of room for further investigations. First

distributed economic MPC schemes have, e.g., been proposed in (Braun et al., 2016;

Driessen et al., 2012; Köhler et al., 2016; Lee and Angeli, 2011) for certain cooperative

and competitive settings.

As claimed by Maciejowski, 2002 mpc has had a significant impact on industrial

process control. The same is not yet true for empc. To this end, the integration of

empc schemes into existing architectures for operation of large-scale plants still requires

extensive research.
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Grüne, L. (2009). “Analysis and design of unconstrained nonlinear MPC schemes for fi-

nite and infinite dimensional systems”. In: SIAM Journal on Control and Optimization

48.2, pp. 1206–1228.

– (2013). “Economic receding horizon control without terminal constraints”. In: Auto-

matica 49.3, pp. 725–734.

– (2016). “Approximation properties of receding horizon optimal control”. In: Jahres-

bericht DMV 118.1, pp. 3–37.
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