728 research outputs found

    Multi-Robot Systems: Challenges, Trends and Applications

    Get PDF
    This book is a printed edition of the Special Issue entitled “Multi-Robot Systems: Challenges, Trends, and Applications” that was published in Applied Sciences. This Special Issue collected seventeen high-quality papers that discuss the main challenges of multi-robot systems, present the trends to address these issues, and report various relevant applications. Some of the topics addressed by these papers are robot swarms, mission planning, robot teaming, machine learning, immersive technologies, search and rescue, and social robotics

    Optimal Multi-UAV Trajectory Planning for Filming Applications

    Get PDF
    Teams of multiple Unmanned Aerial Vehicles (UAVs) can be used to record large-scale outdoor scenarios and complementary views of several action points as a promising system for cinematic video recording. Generating the trajectories of the UAVs plays a key role, as it should be ensured that they comply with requirements for system dynamics, smoothness, and safety. The rise of numerical methods for nonlinear optimization is finding a ourishing field in optimization-based approaches to multi- UAV trajectory planning. In particular, these methods are rather promising for video recording applications, as they enable multiple constraints and objectives to be formulated, such as trajectory smoothness, compliance with UAV and camera dynamics, avoidance of obstacles and inter-UAV con icts, and mutual UAV visibility. The main objective of this thesis is to plan online trajectories for multi-UAV teams in video applications, formulating novel optimization problems and solving them in real time. The thesis begins by presenting a framework for carrying out autonomous cinematography missions with a team of UAVs. This framework enables media directors to design missions involving different types of shots with one or multiple cameras, running sequentially or concurrently. Second, the thesis proposes a novel non-linear formulation for the challenging problem of computing optimal multi-UAV trajectories for cinematography, integrating UAV dynamics and collision avoidance constraints, together with cinematographic aspects such as smoothness, gimbal mechanical limits, and mutual camera visibility. Lastly, the thesis describes a method for autonomous aerial recording with distributed lighting by a team of UAVs. The multi-UAV trajectory optimization problem is decoupled into two steps in order to tackle non-linear cinematographic aspects and obstacle avoidance at separate stages. This allows the trajectory planner to perform in real time and to react online to changes in dynamic environments. It is important to note that all the methods in the thesis have been validated by means of extensive simulations and field experiments. Moreover, all the software components have been developed as open source.Los equipos de vehículos aéreos no tripulados (UAV) son sistemas prometedores para grabar eventos cinematográficos, en escenarios exteriores de grandes dimensiones difíciles de cubrir o para tomar vistas complementarias de diferentes puntos de acción. La generación de trayectorias para este tipo de vehículos desempeña un papel fundamental, ya que debe garantizarse que se cumplan requisitos dinámicos, de suavidad y de seguridad. Los enfoques basados en la optimización para la planificación de trayectorias de múltiples UAVs se pueden ver beneficiados por el auge de los métodos numéricos para la resolución de problemas de optimización no lineales. En particular, estos métodos son bastante prometedores para las aplicaciones de grabación de vídeo, ya que permiten formular múltiples restricciones y objetivos, como la suavidad de la trayectoria, el cumplimiento de la dinámica del UAV y de la cámara, la evitación de obstáculos y de conflictos entre UAVs, y la visibilidad mutua. El objetivo principal de esta tesis es planificar trayectorias para equipos multi-UAV en aplicaciones de vídeo, formulando novedosos problemas de optimización y resolviéndolos en tiempo real. La tesis comienza presentando un marco de trabajo para la realización de misiones cinematográficas autónomas con un equipo de UAVs. Este marco permite a los directores de medios de comunicación diseñar misiones que incluyan diferentes tipos de tomas con una o varias cámaras, ejecutadas de forma secuencial o concurrente. En segundo lugar, la tesis propone una novedosa formulación no lineal para el difícil problema de calcular las trayectorias óptimas de los vehículos aéreos no tripulados en cinematografía, integrando en el problema la dinámica de los UAVs y las restricciones para evitar colisiones, junto con aspectos cinematográficos como la suavidad, los límites mecánicos del cardán y la visibilidad mutua de las cámaras. Por último, la tesis describe un método de grabación aérea autónoma con iluminación distribuida por un equipo de UAVs. El problema de optimización de trayectorias se desacopla en dos pasos para abordar los aspectos cinematográficos no lineales y la evitación de obstáculos en etapas separadas. Esto permite al planificador de trayectorias actuar en tiempo real y reaccionar en línea a los cambios en los entornos dinámicos. Es importante señalar que todos los métodos de la tesis han sido validados mediante extensas simulaciones y experimentos de campo. Además, todos los componentes del software se han desarrollado como código abierto

    Creative Machine

    Get PDF
    Curators: William Latham, Atau Tanaka and Frederic Fol Leymarie A major exhibition exploring the twilight world of human/machine creativity, including installations, video and computer art, Artificial Intelligence, robotics and Apps by leading artists from Goldsmiths and international artists by invitation. The vision for organising the Creative Machine Exhibition is to show exciting works by key international artists, Goldsmiths staff and selected students who use original software and hardware development in the creative production of their work. The range of work on show, which could be broadly termed Computer Art, includes mechanical drawing devices, kinetic sculpture driven by fuzzy logic, images produced using machine learning, simulated cellular growth forms and the self-generating works using automated aesthetics, VR, 3D printing, and social telephony networks. Traditionally, Computer Art has held a maverick position on the edge of mainstream contemporary culture with its origins in Russian Constructivist Art, biological systems, “geeky” software conferences, rave / techno music and indie computer games. These artists have defined their own channels for exhibiting their work and organised conferences and at times been entrepreneurial at building collaborations with industry at both a corporate and startup level (with the early computer artists in the 1970s and 1980s needing to work with computer corporations to get access to computers). Alongside this, interactive media art drew upon McLuhan’s notion of technology as extensions of the human to create participatory, interactive artworks by making use of novel interface technology that has been developed since the 1980s. However, with new techniques such as 3D printing, the massive spread of sophisticated sensors in consumer devices like smartphones, and the use of robotics by artists, digital art would appear to have an opportunity to come more to the fore in public consciousness. This exhibition is timely in that it coincides with an apparent wider growth of public interest in digital art, as shown by the Digital Revolution exhibition at the Barbican, London and the recent emergence of commercial galleries such as Bitforms in New York and Carroll / Fletcher in London, which, acquire and show technology-based art. The Creative Machine exhibition is the first event to make use of Goldsmiths’ new Sonics Immersive Media Lab (SIML) Chamber. This advanced surround audiovisual projection space is a key part of the St James-Hatcham refurbishment. The facility was funded by capital funding from the Engineering & Physical Sciences Research Council (EPSRC) and Goldsmiths, as well as research funding from the European Research Council (ERC). This is connected respectively to the Intelligent Games/Game Intelligence (IGGI) Centre for Doctoral Training, and Atau Tanaka’s MetaGesture Music (MGM) ERC grant. The space was built by the SONICS, a cross-departmental research special interest group at Goldsmiths that brings together the departments of Computing, Music, Media & Communications, Sociology, Visual Cultures, and Cultural Studies. It was designed in consultation with the San Francisco-based curator, Naut Humon, to be compatible with the Cinechamber system there. During Creative Machines, we shall see, in the SIML space, multiscreen screenings of work by Yoichiro Kawaguchi, Naoko Tosa, and Vesna Petresin, as well as a new immersive media work by IGGI researcher Memo Akten

    Situated grounding and understanding of structured low-resource expert data

    Get PDF
    Conversational agents are becoming more widespread, varying from social to goaloriented to multi-modal dialogue systems. However, for systems with both visual and spatial requirements, such as situated robot planning, developing accurate goaloriented dialogue systems can be extremely challenging, especially in dynamic environments, such as underwater or first responders. Furthermore, training data-driven algorithms in these domains is challenging due to the esoteric nature of the interaction, which requires expert input. We derive solutions for creating a collaborative multi-modal conversational agent for setting high-level mission goals. We experiment with state-of-the-art deep learning models and techniques and create a new data-driven method (MAPERT) that is capable of processing language instructions by grounding the necessary elements using various types of input data (vision from a map, text and other metadata). The results show that, depending on the task, the accuracy of data-driven systems can vary dramatically depending on the type of metadata and the attention mechanisms that are used. Finally, we are dealing with low-resource expert data and this inspired the use of the Continual Learning and Human In The Loop methodology with encouraging results

    Affective Computing

    Get PDF
    This book provides an overview of state of the art research in Affective Computing. It presents new ideas, original results and practical experiences in this increasingly important research field. The book consists of 23 chapters categorized into four sections. Since one of the most important means of human communication is facial expression, the first section of this book (Chapters 1 to 7) presents a research on synthesis and recognition of facial expressions. Given that we not only use the face but also body movements to express ourselves, in the second section (Chapters 8 to 11) we present a research on perception and generation of emotional expressions by using full-body motions. The third section of the book (Chapters 12 to 16) presents computational models on emotion, as well as findings from neuroscience research. In the last section of the book (Chapters 17 to 22) we present applications related to affective computing

    Fourth Conference on Artificial Intelligence for Space Applications

    Get PDF
    Proceedings of a conference held in Huntsville, Alabama, on November 15-16, 1988. The Fourth Conference on Artificial Intelligence for Space Applications brings together diverse technical and scientific work in order to help those who employ AI methods in space applications to identify common goals and to address issues of general interest in the AI community. Topics include the following: space applications of expert systems in fault diagnostics, in telemetry monitoring and data collection, in design and systems integration; and in planning and scheduling; knowledge representation, capture, verification, and management; robotics and vision; adaptive learning; and automatic programming

    Robotics 2010

    Get PDF
    Without a doubt, robotics has made an incredible progress over the last decades. The vision of developing, designing and creating technical systems that help humans to achieve hard and complex tasks, has intelligently led to an incredible variety of solutions. There are barely technical fields that could exhibit more interdisciplinary interconnections like robotics. This fact is generated by highly complex challenges imposed by robotic systems, especially the requirement on intelligent and autonomous operation. This book tries to give an insight into the evolutionary process that takes place in robotics. It provides articles covering a wide range of this exciting area. The progress of technical challenges and concepts may illuminate the relationship between developments that seem to be completely different at first sight. The robotics remains an exciting scientific and engineering field. The community looks optimistically ahead and also looks forward for the future challenges and new development

    Body Conjunction = Wavering Between Actual and Virtual Spaces

    Get PDF
    In the present digital age, the body tends to extend beyond it being flesh, it can be extended, it is a body without organs, and it might belong to more than your own-self. The “Body” as a living entity with its embedded sensory system, not only embodies who we are but also lets us understand and explore the sensitive, unpredictable but fascinating world. The body is an information receiver as well as information reactor. Through years of medical experiments and research on the body, medical devices and instruments are able to allow us to look into the deepest and the most mysterious spots in the human body. For instance, if seen through an HD monitor, while being probed by an endoscope, the body appears as an immersive and infinite landscape. By observing the smoothness and the folds of the surfaces encountered within the body, it is quite simple to project your individual self into this body-scape for a while to imagine and experience this immersive organic space. Various potential ideas of designing a body-like space have become the subject of design fantasies of a number of architects. The “Vitruvian Man”, which, Vitruvius described in the third book of De Architectura, and was later interpreted and illustrated by Leonardo DaVinci, has served as the human figure/body representation to be used as a measuring unit rather than being considered as a sensitive object. Unsurprisingly, it was a relatively long journey for architects to abandon this dogma. After the industrial revolution (during the modernist era), the concrete evidence of considering body proportions as potential measurements could still be seen in the projects of Le Corbusier, which accompanied his famous school of thought: “A house is a machine for living”. He developed the “Modular” in a mathematical proportion of space based on figures and intended to replace the old Vitruvian man with it as a new generation’s typical model. However, with the rapid development of electronic technology, the trend of realizing sensory environments akin to living bodies has no longer remained a thought but can be seen as an initial action to refuse to see the human body merely as a measuring unit. The turning point came about the time while the medium of news media, television, and social media became relatively mature, and thus started making people conduct critical reflections. Marshall McLuhan, a well-known pioneering media theorist, stated in his well-known publication, “Understanding Media: The Extension of Man” (McLuhan, Understanding Media: The Extensions of Man, 1964). This explicit shot made the researcher foresee the potential and intimate relationships between the body, technology, and space, and somehow have a rational explanation to extend the physical body to endless space, which is crucial in this chapter
    corecore