4,256 research outputs found

    A Low-Cost Tele-Presence Wheelchair System

    Full text link
    This paper presents the architecture and implementation of a tele-presence wheelchair system based on tele-presence robot, intelligent wheelchair, and touch screen technologies. The tele-presence wheelchair system consists of a commercial electric wheelchair, an add-on tele-presence interaction module, and a touchable live video image based user interface (called TIUI). The tele-presence interaction module is used to provide video-chatting for an elderly or disabled person with the family members or caregivers, and also captures the live video of an environment for tele-operation and semi-autonomous navigation. The user interface developed in our lab allows an operator to access the system anywhere and directly touch the live video image of the wheelchair to push it as if he/she did it in the presence. This paper also discusses the evaluation of the user experience

    Narrative based Postdictive Reasoning for Cognitive Robotics

    Full text link
    Making sense of incomplete and conflicting narrative knowledge in the presence of abnormalities, unobservable processes, and other real world considerations is a challenge and crucial requirement for cognitive robotics systems. An added challenge, even when suitably specialised action languages and reasoning systems exist, is practical integration and application within large-scale robot control frameworks. In the backdrop of an autonomous wheelchair robot control task, we report on application-driven work to realise postdiction triggered abnormality detection and re-planning for real-time robot control: (a) Narrative-based knowledge about the environment is obtained via a larger smart environment framework; and (b) abnormalities are postdicted from stable-models of an answer-set program corresponding to the robot's epistemic model. The overall reasoning is performed in the context of an approximate epistemic action theory based planner implemented via a translation to answer-set programming.Comment: Commonsense Reasoning Symposium, Ayia Napa, Cyprus, 201

    Development of an Autonomous Wheelchair System

    Get PDF
    This paper introduces the development of an electric wheelchair that provides an autonomous driving, obstacle avoiding, wall following, and line following. The objective of this project is for the wheelchair to be able to travel autonomously through an area safely and detect objects within 50 inches of collision. Based on a manual electric wheelchair, 3D printed structures are created as a kit, and the electric system consists of a Raspberry Pi 4B microprocessor, 2 ultrasonic sensors, and a Raspberry Pi cam. A Raspberry pi cam is connected to a Raspberry pi 4 to detect follow lines and obstacles in its path. A touchscreen is implemented for a Graphic User Interface while an Arduino is used for motion controls based on ultrasonic sensor data. The ultrasonic sensors detect objects as well as measure a distance from the wall to keep the wheelchair within 10 inches of that distance. The developed wheelchair successfully navigated autonomously for 50 feet at an average moving rate of 3 mph without running into objects or people. The weight balance of the wheelchair needs to be studied as a future improvement. The wheelchair has much greater weight on the back due to the added sensors and battery. As a testbed, the wheelchair supports more advanced implementations. Future implementation includes using the Robot Operating System (ROS) environment, implementing mapping with autonomous path planning, and driving

    Multi-layered map based navigation and interaction for an intelligent wheelchair

    Get PDF
    Intelligent wheelchair is a paradigm of assisted living applications for elderly and disabled people. Its autonomous navigation and human-robot interaction is the major challenge. The previous intelligent wheelchair research has been mainly focused on geometric map based navigation, which is computational expensive in a large scale environment. This paper proposes the use of multi-layered maps for navigation and interaction of an intelligent wheelchair. The semantic information can improve the efficiency of path planning and navigation as well as extend the capability of task planning for the wheelchair. Some experimental results are given to demonstrate the feasibility and performance of the proposed approach

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Learning-Based Adaptation for Personalized Mobility Assistance

    Get PDF
    Mobility assistance is of key importance for people with disabilities to remain autonomous in their preferred environments. In severe cases, assistance can be provided by robotized wheelchairs that can perform complex maneuvers and/or correct the user’s commands. User’s acceptance is of key importance, as some users do not like their commands to be modified. This work presents a solution to improve acceptance. It consists of making the robot learn how the user drives so corrections will not be so noticeable to the user. Case Based Reasoning (CBR) is used to acquire a user’s driving model reactive level. Experiments with volunteers at Fondazione Santa Lucia (FSL) have proven that, indeed, this customized approach at assistance increases acceptance by the user.This work has been partially supported by the Spanish Ministerio de Educacion y Ciencia (MEC), Project TEC2011-29106-C02-01. The authors would like to thank Santa Lucia Hospedale and all volunteers for their kind cooperation and Sauer Medica for providing the power wheelchair

    Assistive Planning in Complex, Dynamic Environments: a Probabilistic Approach

    Full text link
    We explore the probabilistic foundations of shared control in complex dynamic environments. In order to do this, we formulate shared control as a random process and describe the joint distribution that governs its behavior. For tractability, we model the relationships between the operator, autonomy, and crowd as an undirected graphical model. Further, we introduce an interaction function between the operator and the robot, that we call "agreeability"; in combination with the methods developed in~\cite{trautman-ijrr-2015}, we extend a cooperative collision avoidance autonomy to shared control. We therefore quantify the notion of simultaneously optimizing over agreeability (between the operator and autonomy), and safety and efficiency in crowded environments. We show that for a particular form of interaction function between the autonomy and the operator, linear blending is recovered exactly. Additionally, to recover linear blending, unimodal restrictions must be placed on the models describing the operator and the autonomy. In turn, these restrictions raise questions about the flexibility and applicability of the linear blending framework. Additionally, we present an extension of linear blending called "operator biased linear trajectory blending" (which formalizes some recent approaches in linear blending such as~\cite{dragan-ijrr-2013}) and show that not only is this also a restrictive special case of our probabilistic approach, but more importantly, is statistically unsound, and thus, mathematically, unsuitable for implementation. Instead, we suggest a statistically principled approach that guarantees data is used in a consistent manner, and show how this alternative approach converges to the full probabilistic framework. We conclude by proving that, in general, linear blending is suboptimal with respect to the joint metric of agreeability, safety, and efficiency
    • …
    corecore