773 research outputs found

    Tropical Cyclone Center Determination Algorithm by Texture and Gradient of Infrared Satellite Image

    Get PDF
    A novel algorithm for tropical cyclone (TC) center determination is presented by using texture and gradient of infrared satellite image from geostationary satellite. Except those latter disappearing TC satellite images that are little valuable to a TC center determination, generally other periods of TC, all have an inner core. And the centers are generally determined in the inner core. Based on this, an efficient TC center determination algorithm is designed. First, the inner core of a TC is obtained. Then, according to the texture and gradient information of the inner core, the center location of the TC is determined. The effectiveness of the proposed TC center determination algorithm is verified by using Chinese FY-2C stationary infrared satellite image. And the location result is compared with that of the “tropical cyclone yearbook,” which was compiled by Shanghai Typhoon Institute of China Meteorological Administration. Experimental results show that the proposed algorithm can provide a new technique that can automatically determine the center location for a TC based on infrared satellite image

    A Study of Types of Sensors used in Remote Sensing

    Get PDF
    Of late, the science of Remote Sensing has been gaining a lot of interest and attention due to its wide variety of applications. Remotely sensed data can be used in various fields such as medicine, agriculture, engineering, weather forecasting, military tactics, disaster management etc. only to name a few. This article presents a study of the two categories of sensors namely optical and microwave which are used for remotely sensing the occurrence of disasters such as earthquakes, floods, landslides, avalanches, tropical cyclones and suspicious movements. The remotely sensed data acquired either through satellites or through ground based- synthetic aperture radar systems could be used to avert or mitigate a disaster or to perform a post-disaster analysis

    The status of environmental satellites and availability of their data products

    Get PDF
    The latest available information about the status of unclassified environmental satellite (flown by the United States) and their data products is presented. The type of environmental satellites discussed include unmanned earth resource and meteorological satellites, and manned satellites which can act as a combination platform for instruments. The capabilities and data products of projected satellites are discussed along with those of currently operating systems

    Earth resources: A continuing bibliography with indexes (issue 52)

    Get PDF
    This bibliography lists 454 reports, articles, and other documents introduced into the NASA scientific and technical information system between October 1 and December 31, 1986. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Effects of Surfactants on the Generation of Sea Spray During Tropical Cyclones

    Get PDF
    Despite significant improvement in computational and observational capabilities, predicting intensity and intensification of major tropical cyclones remains a challenge. In 2017 Hurricane Maria intensified to a Category 5 storm within 24 hours, devastating Puerto Rico. In 2019 Hurricane Dorian, predicted to remain tropical storm, unexpectedly intensified into a Category 5 storm and destroyed the Bahamas. The official forecast and computer models were unable to predict rapid intensification of these storms. One possible reason for this is that key physics, including microscale processes at the air-sea interface, are poorly understood and parameterized in existing forecast models. Under tropical cyclones, the air-sea interface becomes a multiphase environment involving bubbles, foam, and spray. The presence of surface-active materials (surfactants) alters these microscale processes in an unknown way that may affect tropical cyclone intensity. The current understanding of the relationship between surfactants, wind speed, and sea spray generation remains limited. Here we show that surfactants significantly affect the generation of sea spray, which provides some of the fuel for tropical cyclones and their intensification. A computational fluid dynamics (CFD) model was used to simulate spray radii distributions starting from a 100 micrometer radius as observed in laboratory experiments at the University of Miami Rosenstiel School of Marine and Atmospheric Sciences SUSTAIN facility. Results of the model were verified with laboratory experiments and demonstrate that surfactants increase spray generation by 34% under Category 1 tropical cyclone conditions (~40 m s-1 wind). In the model, we simulated Category 1 (4 Nm-2 wind stress), 3 (10 Nm-2 wind stress), and 5 (20 Nm-2 wind stress) conditions and found that surfactants increased spray generation by 20-34%. The global distribution of bio-surfactants on the earth is virtually unknown at this point. Satellite oceanography may be a useful tool to identify the presence of surfactants in the ocean in relation to tropical cyclones. Color satellite imagery of chlorophyll concentration, which is a proxy for surfactants, may assist in identifying surfactant areas that tropical cyclones may pass over. Synthetic aperture radar imagery also may assist in tropical cyclone prediction in areas of oil spills, dispersants, or surfactant slicks. We anticipate that bio-surfactants affect heat, energy, and momentum exchange through altered size distribution and concentration of sea spray, with consequences for tropical cyclone intensification or decline, particularly in areas of algal blooms and near coral reefs, as well as in areas affected by oil spills and dispersants

    Earth Resources: A continuing bibliography, with indexes, issue 31

    Get PDF
    This bibliography lists 505 reports, articles, and other documents introduced into the NASA scientific and technical information system. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economic analysis

    Remote Sensing of the Oceans

    Get PDF
    This book covers different topics in the framework of remote sensing of the oceans. Latest research advancements and brand-new studies are presented that address the exploitation of remote sensing instruments and simulation tools to improve the understanding of ocean processes and enable cutting-edge applications with the aim of preserving the ocean environment and supporting the blue economy. Hence, this book provides a reference framework for state-of-the-art remote sensing methods that deal with the generation of added-value products and the geophysical information retrieval in related fields, including: Oil spill detection and discrimination; Analysis of tropical cyclones and sea echoes; Shoreline and aquaculture area extraction; Monitoring coastal marine litter and moving vessels; Processing of SAR, HF radar and UAV measurements

    Role of Remote Sensing in Disaster Management

    Get PDF
    The objective of this report is to review the existing satellites monitoring Earth’s resources and natural disasters. Each satellite has different repeat pass frequency and spatial resolution (unless it belongs to the same series of satellites for the purpose of continuation of data flow with same specifications). Similarly, different satellites have different types of sensors on-board, such as, panchromatic, multispectral, infrared and thermal. All these sensors have applications in disaster mitigation, though depending on the electromagnetic characteristics of the objects on Earth and the nature of disaster itself. With a review of the satellites in orbit and their sensors the present work provides an insight to suitability of satellites and sensors to different natural disasters. For example, thermal sensors capture fire hazards, infrared sensors are more suitable for floods and microwave sensors can record soil moisture. Several kinds of disasters, such as, earthquake, volcano, tsunami, forest fire, hurricane and floods are considered for the purpose of disaster mitigation studies in this report. However, flood phenomenon has been emphasized upon in this study with more detailed account of remote sensing and GIS (Geographic Information Systems) applicability. Examples of flood forecasting and flood mapping presented in this report illustrate the capability of remote sensing and GIS technology in delineating flood risk areas and assessing the damages after the flood recedes. With the help of a case study of the Upper Thames River watershed the use of remote sensing and GIS has been illustrated for better understanding. The case study enables the professionals and planning authorities to realize the impact of urbanization on river flows. As the urban sprawl increases with the increase of population, the rainfall and snow melt reaches the river channels at a faster rate with higher intensity. In other words it can be inferred that through careful land use planning flood disasters can be mitigated.https://ir.lib.uwo.ca/wrrr/1002/thumbnail.jp
    corecore