40,666 research outputs found

    Use of accelerometers in the control of practical prosthetic arms

    Get PDF
    Accelerometers can be used to augment the control of powered prosthetic arms. They can detect the orientation of the joint and limb and the controller can correct for the amount of torque required to move the limb. They can also be used to create a platform, with a fixed orientation relative to gravity for the object held in the hand. This paper describes three applications for this technology, in a powered wrist and powered arm. By adding sensors to the arm making these data available to the controller, the input from the user can be made simpler. The operator will not need to correct for changes in orientation of their body as they move. Two examples of the correction for orientation against gravity are described and an example of the system designed for use by a patient. The controller for all examples is a distributed set of microcontrollers, one node for each joint, linked with the Control Area Network (CAN) bus. The clinical arm uses a version of the Southampton Adaptive Manipulation Scheme to control the arm and hand. In this control form the user gives simpler input commands and leaves the detailed control of the arm to the controller

    Dynamic Modelling and Adaptive Traction Control for Mobile Robots

    Full text link
    Mobile robots have received a great deal of research in recent years. A significant amount of research has been published in many aspects related to mobile robots. Most of the research is devoted to design and develop some control techniques for robot motion and path planning. A large number of researchers have used kinematic models to develop motion control strategy for mobile robots. Their argument and assumption that these models are valid if the robot has low speed, low acceleration and light load. However, dynamic modelling of mobile robots is very important as they are designed to travel at higher speed and perform heavy duty work. This paper presents and discusses a new approach to develop a dynamic model and control strategy for wheeled mobile robot which I modelled as a rigid body that roles on two wheels and a castor. The motion control strategy consists of two levels. The first level is dealing with the dynamic of the system and denoted as Low level controller. The second level is developed to take care of path planning and trajectory generation

    Trade in Northeast Asia: Why do Trade Costs Matter?

    Get PDF
    Trade costs are often cited as an important determinant of the volume of trade. This paper provides enough evidences to ascertain that today’s trade issues in Northeast Asia go beyond the traditional mechanisms of tariffs, and include “behind-the-border” issues. By estimating a modified gravity equation, controlling for endogeneity and remoteness, we find that variations in transaction costs along with trade infrastructure facilities have significant influence on regional trade flows in Northeast Asia. On average, 10 percent saving in transaction costs increases imports by about 5 percent in Northeast Asia. This paper concludes that when tariffs tend to become low in Northeast Asia, the economies in this region could potentially benefit substantially from higher trade provided trade costs are well controlled.trade costs, transaction costs, infrastructure, regional trade, tariff

    Regression between headmaster leadership, task load and job satisfaction of special education integration program teacher

    Get PDF
    Managing school is a daunting task for a headmaster. This responsibility is exacerbated when it involves the Special Education Integration Program (SEIP). This situation requires appropriate and effective leadership in addressing some of the issues that are currently taking place at SEIP such as task load and job satisfaction. This study aimed to identify the influence of headmaster leadership on task load and teacher job satisfaction at SEIP. This quantitative study was conducted by distributing 400 sets of randomized questionnaires to SEIP teachers across Malaysia through google form. The data obtained were then analyzed using Structural Equation Modeling (SEM) and AMOS software. The results show that there is a significant positive effect on the leadership of the headmaster and the task load of the teacher. Likewise, the construct of task load and teacher job satisfaction has a significant positive effect. However, for the construct of headmaster leadership and teacher job satisfaction, there was no significant positive relationship. This finding is very important as a reference to the school administration re-evaluating their leadership so as not to burden SEIP teachers and to give them job satisfaction. In addition, the findings of this study can also serve as a guide for SEIP teachers to increase awareness of the importance of managing their tasks. This study also focused on education leadership in general and more specifically on special education leadership

    A spatial impedance controller for robotic manipulation

    Get PDF
    Mechanical impedance is the dynamic generalization of stiffness, and determines interactive behavior by definition. Although the argument for explicitly controlling impedance is strong, impedance control has had only a modest impact on robotic manipulator control practice. This is due in part to the fact that it is difficult to select suitable impedances given tasks. A spatial impedance controller is presented that simplifies impedance selection. Impedance is characterized using ¿spatially affine¿ families of compliance and damping, which are characterized by nonspatial and spatial parameters. Nonspatial parameters are selected independently of configuration of the object with which the robot must interact. Spatial parameters depend on object configurations, but transform in an intuitive, well-defined way. Control laws corresponding to these compliance and damping families are derived assuming a commonly used robot model. While the compliance control law was implemented in simulation and on a real robot, this paper emphasizes the underlying theor

    Experimental comparison of control strategies for trajectory tracking for mobile robots

    Get PDF
    The purpose of this paper is to implement, test and compare the performance of different control strategies for tracking trajectory for mobile robots. The control strategies used are based on linear algebra, PID controller and on a sliding mode controller. Each control scheme is developed taking into consideration the model of the robot. The linear algebra approaches take into account the complete kinematic model of the robot; and the PID and the sliding mode controller use a reduced order model, which is obtained considering the mobile robot platform as a black-box. All the controllers are tested and compared, firstly by simulations and then, by using a Pioneer 3DX robot in field experiments.Fil: Capito, Linda. Escuela Politécnica Nacional; EcuadorFil: Proaño, Pablo. Escuela Politécnica Nacional; EcuadorFil: Camacho, Oscar. Escuela Politécnica Nacional; EcuadorFil: Rosales, Andrés. Escuela Politécnica Nacional; EcuadorFil: Scaglia, Gustavo Juan Eduardo. Universidad Nacional de San Juan. Facultad de Ingeniería. Instituto de Ingeniería Química; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - San Juan; Argentin

    Dynamic weighted idle time heuristic for flowshop scheduling

    Get PDF
    The constructive heuristic of Nawaz, Enscore and Ham (NEH) has been introduced in 1983 to solve flowshop scheduling. Many researchers have continued to improve the NEH by adding new steps and procedures to the existing algorithm. Thus, this study has developed a new heuristic known as Dynamic Weighted Idle Time (DWIT) method by adding dynamic weight factors for solving the partial solution with purpose to obtain optimal makespan and improve the NEH heuristic. The objective of this study are to develop a DWIT heuristic to solve flowshop scheduling problem and to assess the performance of the new DWIT heuristic against the current best scheduling heuristic, ie the NEH. This research developed a computer programming in Microsoft Excel to measure the flowshop scheduling performance for every change of weight factors. The performance measure is done by using n jobs (n=6,10 and 20) and 4 machines. The weight factors were applied with numerical method within the range of zero to one. Different weight factors and machines idle time were used at different problem sizes. For 6 jobs and 4 machines, only idle time before and in between two jobs were used while for 10 jobs and 20 jobs the consideration of idle time was idle time before, in between two jobs and after completion of the last job. In 6 jobs problem, the result was compared between DWIT against Optimum and NEH against Optimum. While in 10 jobs and 20 jobs problem the result was compared between DWIT against the NEH. Overall result shows that the result on 6 and 10 jobs problem the DWIT heuristic obtained better results than NEH heuristic. However, in 20 jobs problem, the result shows that the NEH was better than DWIT. The result of this study can be used for further research in modifying the weight factors and idle time selections in order to improve the NEH heuristic
    corecore