7,255 research outputs found

    Sedimentological characterization of Antarctic moraines using UAVs and Structure-from-Motion photogrammetry

    Get PDF
    In glacial environments particle-size analysis of moraines provides insights into clast origin, transport history, depositional mechanism and processes of reworking. Traditional methods for grain-size classification are labour-intensive, physically intrusive and are limited to patch-scale (1m2) observation. We develop emerging, high-resolution ground- and unmanned aerial vehicle-based ‘Structure-from-Motion’ (UAV-SfM) photogrammetry to recover grain-size information across an moraine surface in the Heritage Range, Antarctica. SfM data products were benchmarked against equivalent datasets acquired using terrestrial laser scanning, and were found to be accurate to within 1.7 and 50mm for patch- and site-scale modelling, respectively. Grain-size distributions were obtained through digital grain classification, or ‘photo-sieving’, of patch-scale SfM orthoimagery. Photo-sieved distributions were accurate to <2mm compared to control distributions derived from dry sieving. A relationship between patch-scale median grain size and the standard deviation of local surface elevations was applied to a site-scale UAV-SfM model to facilitate upscaling and the production of a spatially continuous map of the median grain size across a 0.3 km2 area of moraine. This highly automated workflow for site scale sedimentological characterization eliminates much of the subjectivity associated with traditional methods and forms a sound basis for subsequent glaciological process interpretation and analysis

    Quantifying Riverbed Sediment Using Recreational-Grade Side Scan Sonar

    Get PDF
    The size and organization of bed material, bed texture, is a fundamental attribute of channels and is one component of the physical habitat of aquatic ecosystems. Multiple discipline-specific definitions of texture exist and there is not a universally accepted metric(s) to quantify the spectrum of possible bed textures found in aquatic environments. Moreover, metrics to describe texture are strictly statistical. Recreational-grade side scan sonar systems now offer the possibility of imaging submerged riverbed sediment at resolutions potentially sufficient to identify subtle changes in bed texture with minimal cost,expertise in sonar, or logistical effort. However, inferring riverbed sediment from side scan sonar data is limited because recreational-grade systems were not designed for this purpose and methods to interpret the data have relied on manual and semi-automated routines. Visual interpretation of side scan sonar data is not practically applied to large volumes of data because it is labor intensive and lacks reproducibility. This thesis addresses current limitations associated with visual interpretation with two objectives: 1) objectively quantify side scan sonar imagery texture, and 2) develop an automated texture segmentation algorithm for broad-scale substrate characterization. To address objective 1), I used a time series of imagery collected along a 1.6 km reach of the Colorado River in Marble Canyon, AZ. A statistically based texture analysis was performed on georeferenced side scan sonar imagery to identify objective metrics that could be used to discriminate different sediment types. A Grey Level Co-occurrence Matrix based texture analysis was found to successfully discriminate the textures associated with different sediment types. Texture varies significantly at the scale of ≈ 9 m2 on side scan sonar imagery on a regular 25 cm grid. A minimum of three and maximum of five distinct textures could be observed directly from side scan sonar imagery. To address objective 2), linear least squares and a Gaussian mixture modeling approach were developed and tested. Both sediment classification methods were found to successfully classify heterogeneous riverbeds into homogeneous patches of sand, gravel, and boulders. Gaussian mixture models outperformed the least squares models because they classified gravel with the highest accuracies.Additionally, substrate maps derived from a Gaussian modeling approach were found to be able to better estimate reach averaged proportions of different sediments types when they were compared to similar maps derived from multibeam sonar

    Alluvial Substrate Mapping by Automated Texture Segmentation of Recreational-Grade Side Scan Sonar Imagery

    Get PDF
    Side scan sonar in low-cost ‘fishfinder’ systems has become popular in aquatic ecology and sedimentology for imaging submerged riverbed sediment at coverages and resolutions sufficient to relate bed texture to grain-size. Traditional methods to map bed texture (i.e. physical samples) are relatively high-cost and low spatial coverage compared to sonar, which can continuously image several kilometers of channel in a few hours. Towards a goal of automating the classification of bed habitat features, we investigate relationships between substrates and statistical descriptors of bed textures in side scan sonar echograms of alluvial deposits. We develop a method for automated segmentation of bed textures into between two to five grain-size classes. Second-order texture statistics are used in conjunction with a Gaussian Mixture Model to classify the heterogeneous bed into small homogeneous patches of sand, gravel, and boulders with an average accuracy of 80%, 49%, and 61%, respectively. Reach-averaged proportions of these sediment types were within 3% compared to similar maps derived from multibeam sonar

    Photogrammetry-based Texture Analysis of a Volcaniclastic Outcrop-peel: Low-cost Alternative to TLS and Automation Potentialities using Haar Wavelet and Spatial-Analysis Algorithms

    Get PDF
    Numerous progress has been made in the field of applied photogrammetry in the last decade, including the usage of close-range photogrammetry as a mean of conservation and record of outcrops. In the present contribution, we use the SfM-MVS method combined with a wavelet decomposition analysis of the surface, in order to relate it to morphological and surface roughness data. The results demonstrated that wavelet decomposition and RMS could provide a rapid insight on the location of coarser materials and individual outliers, while arithmetic surface roughness were more useful to detect units or layers that are similar on the outcrop. The method also emphasizes the fact that the automation of the process does not allows clear distinction between any artefact crack or surface change and that human supervision is still essential despite the original goal of automating the outcrop surface analysis

    Images from unmanned aircraft systems for surveying aquatic and riparian vegetation

    Get PDF
    Aquatic and riparian vegetation in lakes, streams, and wetlands has important ecological and regulatory functions and should be monitored to detect ecosystem changes. Field surveys are often tedious and in countries with numerous lakes and streams a nationwide assessment is difficult to achieve. Remote sensing with unmanned aircraft systems (UASs) provides aerial images with high spatial resolution and offers a potential data source for detailed vegetation surveys. The overall objective of this thesis was to evaluate the potential of sub-decimetre resolution true-colour digital images acquired with a UAS for surveying non-submerged (i.e., floating-leaved and emergent) aquatic and riparian vegetation at a high level of thematic detail. At two streams and three lakes in northern Sweden we applied several image analysis methods: Visual interpretation, manual mapping, manual mapping in combination with GPS-based field surveys, and automated object-based image analysis and classification of both 2D images and 3D point data. The UAS-images allowed for high taxonomic resolution, mostly at the species level, with high taxa identification accuracy (>80%) also in mixed-taxa stands. UAS-images in combination with ground-based vegetation surveys allowed for the extrapolation of field sampling results, like biomass measurement, to areas larger than the sampled sites. In automatically produced vegetation maps some fine-scale information detectable with visual interpretation was lost, but time-efficiency increased which is important when larger areas need to be covered. Based on spectral and textural features and height data the automated classification accuracy of non-submerged aquatic vegetation was ~80% for all test sites at the growth-form level and for four out of five test sites at the dominant-taxon level. The results indicate good potential of UAS-images for operative mapping and monitoring of aquatic, riparian, and wetland vegetation. More case studies are needed to fully assess the added value of UAS-technology in terms of invested labour and costs compared to other survey methods. Especially the rapid technical development of multi- and hyperspectral lightweight sensors needs to be taken into account

    The value of remote sensing techniques in supporting effective extrapolation across multiple marine spatial scales

    Get PDF
    The reporting of ecological phenomena and environmental status routinely required point observations, collected with traditional sampling approaches to be extrapolated to larger reporting scales. This process encompasses difficulties that can quickly entrain significant errors. Remote sensing techniques offer insights and exceptional spatial coverage for observing the marine environment. This review provides guidance on (i) the structures and discontinuities inherent within the extrapolative process, (ii) how to extrapolate effectively across multiple spatial scales, and (iii) remote sensing techniques and data sets that can facilitate this process. This evaluation illustrates that remote sensing techniques are a critical component in extrapolation and likely to underpin the production of high-quality assessments of ecological phenomena and the regional reporting of environmental status. Ultimately, is it hoped that this guidance will aid the production of robust and consistent extrapolations that also make full use of the techniques and data sets that expedite this process
    • …
    corecore