181 research outputs found

    Power Side Channels in Security ICs: Hardware Countermeasures

    Full text link
    Power side-channel attacks are a very effective cryptanalysis technique that can infer secret keys of security ICs by monitoring the power consumption. Since the emergence of practical attacks in the late 90s, they have been a major threat to many cryptographic-equipped devices including smart cards, encrypted FPGA designs, and mobile phones. Designers and manufacturers of cryptographic devices have in response developed various countermeasures for protection. Attacking methods have also evolved to counteract resistant implementations. This paper reviews foundational power analysis attack techniques and examines a variety of hardware design mitigations. The aim is to highlight exposed vulnerabilities in hardware-based countermeasures for future more secure implementations

    Circuit-Variant Moving Target Defense for Side-Channel Attacks on Reconfigurable Hardware

    Get PDF
    With the emergence of side-channel analysis (SCA) attacks, bits of a secret key may be derived by correlating key values with physical properties of cryptographic process execution. Power and Electromagnetic (EM) analysis attacks are based on the principle that current flow within a cryptographic device is key-dependent and therefore, the resulting power consumption and EM emanations during encryption and/or decryption can be correlated to secret key values. These side-channel attacks require several measurements of the target process in order to amplify the signal of interest, filter out noise, and derive the secret key through statistical analysis methods. Differential power and EM analysis attacks rely on correlating actual side-channel measurements to hypothetical models. This research proposes increasing resistance to differential power and EM analysis attacks through structural and spatial randomization of an implementation. By introducing randomly located circuit variants of encryption components, the proposed moving target defense aims to disrupt side-channel collection and correlation needed to successfully implement an attac

    BlackJack: Secure machine learning on IoT devices through hardware-based shuffling

    Full text link
    Neural networks are seeing increased use in diverse Internet of Things (IoT) applications such as healthcare, smart homes and industrial monitoring. Their widespread use makes neural networks a lucrative target for theft. An attacker can obtain a model without having access to the training data or incurring the cost of training. Also, networks trained using private data (e.g., medical records) can reveal information about this data. Networks can be stolen by leveraging side channels such as power traces of the IoT device when it is running the network. Existing attacks require operations to occur in the same order each time; an attacker must collect and analyze several traces of the device to steal the network. Therefore, to prevent this type of attack, we randomly shuffle the order of operations each time. With shuffling, each operation can now happen at many different points in each execution, making the attack intractable. However, we show that shuffling in software can leak information which can be used to subvert this solution. Therefore, to perform secure shuffling and reduce latency, we present BlackJack, hardware added as a functional unit within the CPU. BlackJack secures neural networks on IoT devices by increasing the time needed for an attack to centuries, while adding just 2.46% area, 3.28% power and 0.56% latency overhead on an ARM M0+ SoC.Comment: 16 pages, 6 figure

    On Practical Discrete Gaussian Samplers for Lattice-Based Cryptography

    Get PDF

    Physical Time-Varying Transfer Functions as Generic Low-Overhead Power-SCA Countermeasure

    Get PDF
    Mathematically-secure cryptographic algorithms leak significant side channel information through their power supplies when implemented on a physical platform. These side channel leakages can be exploited by an attacker to extract the secret key of an embedded device. The existing state-of-the-art countermeasures mainly focus on the power balancing, gate-level masking, or signal-to-noise (SNR) reduction using noise injection and signature attenuation, all of which suffer either from the limitations of high power/area overheads, performance degradation or are not synthesizable. In this article, we propose a generic low-overhead digital-friendly power SCA countermeasure utilizing physical Time-Varying Transfer Functions (TVTF) by randomly shuffling distributed switched capacitors to significantly obfuscate the traces in the time domain. System-level simulation results of the TVTF-AES implemented in TSMC 65nm CMOS technology show > 4000x MTD improvement over the unprotected implementation with nearly 1.25x power and 1.2x area overheads, and without any performance degradation
    • …
    corecore