
On Practical Discrete Gaussian Samplers for Lattice-Based
Cryptography

Howe, J., Khalid, A., Rafferty, C., Regazonni, F., & O'Neill, M. (2016). On Practical Discrete Gaussian Samplers
for Lattice-Based Cryptography. IEEE Transactions on Computers. DOI: 10.1109/TC.2016.2642962

Published in:
IEEE Transactions on Computers

Document Version:
Peer reviewed version

Queen's University Belfast - Research Portal:
Link to publication record in Queen's University Belfast Research Portal

Publisher rights
© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

General rights
Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other
copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated
with these rights.

Take down policy
The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to
ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the
Research Portal that you believe breaches copyright or violates any law, please contact openaccess@qub.ac.uk.

Download date:15. Feb. 2017

http://pure.qub.ac.uk/portal/en/publications/on-practical-discrete-gaussian-samplers-for-latticebased-cryptography(5701cf24-bf43-46aa-a062-ca975290598e).html

1

On Practical Discrete Gaussian Samplers
For Lattice-Based Cryptography

James Howe, Ayesha Khalid, Ciara Rafferty, Member, IEEE , Francesco Regazzoni, Member, IEEE , &
Máire O’Neill, Senior Member, IEEE

F

Abstract—Lattice-based cryptography is one of the most promising
branches of quantum resilient cryptography, offering versatility and ef-
ficiency. Discrete Gaussian samplers are a core building block in most, if
not all, lattice-based cryptosystems, and optimised samplers are desir-
able both for high-speed and low-area applications. Due to the inherent
structure of existing discrete Gaussian sampling methods, lattice-based
cryptosystems are vulnerable to side-channel attacks, such as timing
analysis. In this paper, the first comprehensive evaluation of discrete
Gaussian samplers in hardware is presented, targeting FPGA devices.
Novel optimised discrete Gaussian sampler hardware architectures are
proposed for the main sampling techniques. An independent-time de-
sign of each of the samplers is presented, offering security against
side-channel timing attacks, including the first proposed constant-time
Bernoulli, Knuth-Yao, and discrete Ziggurat sampler hardware designs.
For a balanced performance, the Cumulative Distribution Table (CDT)
sampler is recommended, with the proposed hardware CDT design
achieving a throughput of 59.4 million samples per second for encryp-
tion, utilising just 43 slices on a Virtex 6 FPGA and 16.3 million samples
per second for signatures with 179 slices on a Spartan 6 device.

1 INTRODUCTION

E SSENTIALLY all asymmetric cryptographic primitives
used for secure Internet communications, such as

RSA and ECDSA, will be rendered completely insecure
with the practical development of a quantum computer,
by virtue of Shor’s algorithm [37]. Even symmetric-key
encryption schemes, such as the advanced encryption
standard (AES), will have a quadratic brute-force speed-
up via Grover’s algorithm [13], [14] – decreasing a search
space of O(2n) to O(2n/2) –making AES-128 as secure
as AES-64. There are now emerging branches of cryp-
tography resistant to these quantum reductions, namely,
quantum-resilient or post-quantum cryptography.

Post-quantum cryptography deals with non-quantum
operations but is theoretically strong against cryptanaly-
sis on classical and quantum computers. Recently, post-
quantum cryptography has seen significant advance-
ments in many areas, due to progress in advanced frame-
works such as the Internet of Things as well as the need

J. Howe, A. Khalid, C. Rafferty, and M. O’Neill are with the Centre for Se-
cure Information Technologies (CSIT), Queen’s University Belfast, Northern
Ireland (e-mail: {jhowe02, a.khalid, c.m.rafferty, maire.oneill}@qub.ac.uk).
F. Regazzoni is with the Advanced Learning and Research Institute, Univer-
sità della Svizzera Italiana, Switzerland (email: regazzoni@alari.ch).

for long-term, highly secure, quantum-resilient crypto-
graphic primitives. Such progress has led to growth in
novel cryptographic constructions such as encryption
schemes and signature schemes, as well as more ad-
vanced schemes such as fully homomorphic encryption,
which can process on encrypted data and can be used
to secure practical cloud infrastructures. Furthermore,
with the announcement that the governmental agen-
cies are planning transitions towards quantum-resistant
algorithms [6], with CESG focusing on post-quantum
cryptography as opposed to quantum technologies [5],
it is clear how important these drop-in replacements are
for classical cryptosystems.

Lattice-based cryptography (LBC) [1], [32], a subtype
of post-quantum cryptography, bases its hardness as-
sumption on finding the shortest (or closest) vector
in a lattice, which is to date resilient to attacks by a
quantum computer. LBC is very promising as it offers
extended functionality whilst being more efficient than
ECC and RSA based primitives of public-key encryption
[31] and digital signature schemes [28], [16], at the cost of
larger key sizes. Lattice-based cryptoschemes are usually
founded on either the learning with errors problem
(LWE) [32] or the short integer solution problem (SIS) [1],
which are based on standard lattices, or their equivalent
ring variants ring-LWE and ring-SIS [27], [20], [23]. These
ring-variants enable the use of number theoretic trans-
form (NTT) operations for polynomial multiplication,
as opposed to matrix-vector multiplications, resulting in
significant savings in computational efficiency. For nearly
a decade the concepts remained solely academic, due
to inefficiencies such as large key sizes. However, LBC
primitives are now viable for practical implementation
(see the FPGA design [28] of BLISS [10]) and many
compete well with equivalent, classical schemes.

As LBC starts to become feasible for being deployed in
the real world, suitable countermeasures against physical
cryptanalysis, including side-channel analysis (SCA), be-
come a requirement, which is echoed by a recent call
by NIST for quantum-resistant algorithms resistant to
SCA attacks [25]. The key building blocks in LBC include
matrix-vector multiplication for standard lattice schemes,
polynomial multiplication for ideal lattice schemes, and

discrete Gaussian sampling. Arguably the most vulnera-
ble module within modern lattice-based constructions is
the discrete Gaussian sampler, which, when successfully
attacked, renders the whole cryptosystem broken [3].
To date, there has been little research into the SCA-
resilience of lattice-based cryptographic implementations
(with only Roy et al. [34], [33] as a preface). The rationale
for employing discrete Gaussian samplers (as opposed
to another probability distribution) is that they allow
for more efficient implementations, with smaller output
sizes such as ciphertexts or signatures. Moreover, they
are used to add “noise” onto values that would otherwise
give away secret information via Gaussian elimination.
They are, however, highly susceptible to timing analysis
attacks due to their inherent non-constant run-time (due
to the normalised structure and/or speed optimisations).

This research proposes practical and time-independent
hardware implementations of all discrete Gaussian sam-
plers used in lattice-based encryption and signature
schemes1, that is, the Bernoulli sampler [10], the cumula-
tive distribution table (CDT) sampler [26], the Knuth-Yao
sampler [17], and the discrete Ziggurat sampler [22], [4].
The major contributions of this research are as follows:

1) The first comprehensive evaluation of all aforemen-
tioned discrete Gaussian samplers, which are a core
component of lattice-based encryption and signature
schemes, with mathematical descriptions of all promi-
nent sampling techniques, discussions of their inherent
limitations and strengths, as well as previous compara-
ble hardware implementations.

2) Practical hardware FPGA designs of discrete Gaussian
samplers are presented, compared with current state-of-
the-art implementations, for appropriate practical pa-
rameters, throughput, memory consumption, and re-
source count. Novel optimisation strategies are pro-
posed for the hardware architectures of the sampling
techniques, where the results compete with, and in
many cases, significantly outperform, previous imple-
mentations.

3) The proposed hardware designs operate in
independent-time and therefore provide resistance
against timing analysis attacks.

4) Based on the performance results, recommendations
are given for the most appropriate sampler to use in
particular applications.

The paper is outlined as follows: firstly, prerequisites
are given on the discrete Gaussian distribution. Section
3 presents previous work on discrete Gaussian sampling
techniques. Section 4 addresses the desirable features
each sampler requires to operate in constant-time, and
in Section 5 the hardware architectures of each constant-
time discrete Gaussian sampler are described. Section 6
presents the performance results of the samplers, com-
pared to previous implementations, and targeted recom-
mendations for specific implementations are given.

1With the Binomial sampler used in [2] currently only applicable
for key-exchange protocols.

2 PREREQUISITES/PRELIMINARIES
2.1 The Discrete Gaussian Distribution
The discrete Gaussian distribution or discrete normal dis-
tribution DZ,σ over Z with mean 0 and standard de-
viation σ is defined to have a weight proportional to
ρσ(x) = exp(−x

2

2σ2) for all integers x ∈ Z. Considering
Sσ = ρσ(Z) =

∑∞
k=−∞ ρσ(k) ≈

√
2πσ the probability of

sampling x ∈ Z from the distribution DZ,σ is calculated
as ρσ(x)/Sσ . In this research, the standard deviation σ is
assumed fixed, thus, it is sufficient to sample from Z+

proportional to ρ(x) for all x > 0 and to set ρ(0)/2 for
x = 0, where a sign bit used to output values over Z.
2.2 Practical Discrete Gaussian Parameters
The parameters for discrete Gaussian sampling depend
significantly on the application. To appropriately eval-
uate the performance of the samplers, two of the most
common parameter sets are considered. These are en-
cryption parameters from Lindner and Peikert [19] (LP)2

with σ = 3.33 (denoted as σLP) and digital signature
parameters from Ducas et al. [10] (BLISS) with σ =
215 (denoted as σBLISS); this choice allows for a more
comprehensive analysis, covering both encryption and
digital signature schemes. Table 1 shows the parameters
required for discrete Gaussian sampling in practice.

Due to the nature of the discrete Gaussian distribu-
tion, that is with infinitely long tails and infinitely high
precision, it is essential to make practical compromises
which also do not hinder the integrity of the scheme.
The discrete Gaussian parameters needed are (σ, λ, τ),
representing the sampler’s standard deviation, precision
and tail-cut respectively, and are detailed as follows:
� The standard deviation (σ) controls the distribution’s

shape by quantifying the dispersion of data from the
mean. The standard deviation depends on the modulus
used within in the LWE or SIS scheme. For instance in
LWE, should σ be too small the hardness assumption
may become easier than expected, and if σ is too large
the problem may not be as well-defined as required.

� The precision parameter (λ) governs the level of pre-
cision required for an implementation, exacting the
statistical distance between the “perfect” theoretical
discrete Gaussian distribution and the “practical” to
be no greater than 2−λ, corresponding directly to the
scheme security level. Saarinen [36] recommends that
for a scheme with target security level λ-bits, precision
need be no greater than λ/2, arguing that there exists
no algorithm that can distinguish between a “perfect”
sampler and one with statistical distance 2−λ/2.

� The tail-cut parameter (τ) administers how much of
the less-heavy tails can be excluded in the practical
implementation, for a given security level. That is, given
a target security level of s-bits, the target distance from
“perfect” need be no less than 2−s. Therefore, instead of

2The same parameters are used for implementing the ring-LWE
encryption scheme of Lyubashevsky et al. [21], see [31] for a hardware
implementation.

2

considering samples in the range |x| ∈ {0,∞}, they can
be considered in the range |x| ∈ {0, στ}. Applying the
reduction in precision also affects the tail-cut parameter,
which is calculated as τ =

√
λ× 2 ln(2).

Parameters (σ, λ, τ)
LP Encryption [19] (3.33, 64, 9.42)
BLISS Signatures [10] (215, 64, 9.42)

TABLE 1: Secure 128-bit discrete Gaussian parameters.

2.3 Gaussian Convolution
Further reductions in memory are possible by virtue
of Peikert’s convolution lemma [24], adapted by
Pöppelmann et al. [28] using the Kullback-Leibler diver-
gence. Referring to [26], [28] for the formal definitions
of the smoothing parameter η and Kullback-Leibler diver-
gence respectively, the adaption in [28] states:

Lemma 1: Let x1 ← DZ,σ1
, x2 ← DkZ,σ2

for some
positive real σ1, σ2 and let σ−2

3 = σ−2
1 + σ−2

2 and
σ2 = σ2

1 + σ2
2 . For any ε ∈ (0, 1

2) if σ1 ≥ ηε(Z)/
√

2π

and σ3 ≥ ηε(kZ)/
√

2π, then (“perfect”) distribution P
of x1 + x2 verifies

DKL(P||DZ,σ) ≤ 2
(

1−
(1 + ε

1− ε

)2)2

≈ 32ε2.

Proof: The proof of this lemma is referred to in [28].

Utilising Lemma 1 minimises the standard deviation
σBLISS = 215. For BLISS, Lemma 1 is satisfied by setting
k = 11, which means σ′ = σ/

√
1 + k2 ≈ 19.47, and by

sampling twice x′1, x
′
2 ← DZ,σ′ a value x ← DZ,σ can

be built as x = x′1 + kx′1. The usage of the significantly
smaller σ′BLISS means that sizes of precomputed tables
within the sampling techniques are reduced to around
11x smaller, with the requirement of sampling twice.

3 SAMPLING TECHNIQUES – BACKGROUND &
PREVIOUS WORK
Lattice-based cryptoschemes, based on LWE and SIS
problems, require discrete Gaussian noise to mask the
scheme’s secret key. In this section, the main techniques
for generating discrete Gaussian noise are surveyed.

3.1 Rejection Sampling
Using rejection sampling or the acceptance-rejection
method [39], it is possible to sample from an arbitrary
target distribution f when given access to a bounded
probability distribution g. To sample from f , a sample
from g is accepted with probability f(x)/(M · g(x)),
where M is some positive real. When f(x) ≤ M for all
x, the sampler produces the exact distribution f . To use
rejection sampling to draw values from the positive half
of a discrete Gaussian distribution, a uniformly random
integer x ∈ {0, ..., τσ} is chosen and accepted with a
probability proportional to ρσ(x) = exp(−x2/2σ2) (in this

case M = 1). A uniformly random value x is selected,
a random value u chosen from [0, 1) and it is checked
whether u < ρσ(x) and thus whether a random u is
under (acceptance) or above the curve (rejection) of the
probability mass function of the Gaussian distribution.
Sampling from the full range of the discrete Gaussian
distribution involves rejection of an accepted x = 0 with
probability 1

2 and sampling of a sign bit. On average
the method requires 2τ/

√
2π trials until a sample is

accepted. As this method requires many rejections to
achieve an accepted value (an average of ≈ 8 trials)
and the costly computation of the exponential function
to high precision, rejection sampling is considered
inefficient for practical hardware instantiations.

3.2 Bernoulli Sampling
The approach in Section 3.1 can be optimised to re-
duce the amount of rejections. This is achieved in the
scheme by Ducas et al. [10] (Figure 1), where Bernoulli
distributed variables Bc are used, outputting one with
probability c ∈ [0, 1], and zero otherwise. The number
of rejections are reduced by using a distribution g called
binary Gaussian distribution where x is proportional to
ρσbin(x) = 2−x

2

with parameter σbin =
√

1/(2 ln 2) ≈ 0.849
(see Algorithm 1) which can be constructed on-the-fly.
Using the binary Gaussian, an intermediate distribution
k ·DZ+,σbin

+U({0 . . . k−1}) is constructed and the correct
Gaussian distribution DZ+,kσbin

is shaped using rejection
sampling (Algorithm 2), which reduces the number of
rejections to ≈ 1.47 (compared to 8 for classical rejection
sampling). For rejection sampling, a value is accepted
with probability f(x)/(M · g(x)) which usually requires
explicit computation of f(x). However, it holds for an
integer x =

∑`−1
i=0 xi2

i with xi ∈ {0, 1} that:

Bexp(−x/f) = Bexp(−
∑
i xi2

i/f) =

B∏
i exp(−xi2i/f) =

∧
i s.t. xi=1

Bexp(−2i/f),

meaning the final rejection step is performed inde-
pendently, by evaluation of Bernoulli trials, which is
efficient given precomputed biases ci for every xi. The
method only requires λ log2(2.4τσ2) bits of storage, and
it is shown in [10] that Algorithm 2 requires less than
1.47+1/k trials. Algorithm 3 then corrects z to fit the final
target distribution DZ,kσbin . One caveat to the Bernoulli
technique is that the standard deviation must be a mul-
tiple of the binary Gaussian standard deviation; that is
σ = kσbin where k = 4 for LP, k = 254 for BLISS, and
σbin =

√
1/2 ln 2. Thus, the standard deviations (Table 1)

become σLP = 3.39, σ′BLISS = 19.53, and σBLISS = 215.73.
Bernoulli sampling has been implemented without

using the binary Gaussian distribution [31] for the small
standard deviation necessary for lattice-based public-
key encryption. A complete hardware implementation
of the sampler can be found in the BLISS signature
scheme by Pöppelmann et al. [28], where the binary
Gaussian distribution ρσbin({0, 1, . . . , j}) =

∑j
i=0 2−i

2

=

3

Algorithm 1 Sampling DZ+,σbin

Ensure: An integer x ∈ Z+ according to D+
σbin

Generate a bit b← B1/2

if b = 0 then return 0
for i = 1 to ∞ do

draw random bits b1 . . . bk for k = 2i− 1
if b1 . . . bk−1 6= 0 . . . 0 then restart
if bk = 0 then return i

Algorithm 2 Sampling DZ+,kσbin
for k ∈ Z

Require: An integer k ∈ Z (σ = kσbin)
Ensure: An integer z ∈ Z+ according to D+

σ

sample x ∈ Z according to D+
σbin

sample y ∈ Z uniformly in {0, . . . , k − 1}
z ← kx+ y
sample b← Bexp(−y(y+2kx)/(2σ2))
if ¬b then restart
return z

Algorithm 3 Sampling DZ,kσbin for k ∈ Z

Generate an integer z ← D+
kσbin

if z = 0 restart with probability 1/2
Generate a bit b← B1/2 and return (−1)bz

Fig. 1: The Bernoulli sampling technique for generating discrete Gaussian noise, as described by Ducas et al. [10].

1.1001000010000001 . . . is not constructed on-the-fly. In-
stead they use two 64-bit shift registers to store the ex-
pansion precomputed up to a precision of 128 bits, which
outputs an x ∈ Dσbin . Uniformly random values y ∈
{0, 1, . . . , k − 1} are sampled which may require rejection
sampling (for instance, the probability of a rejection for
k = 254 is 2/256). The pipelined Bernoulli calculation
stage takes a (y, x) tuple as input and computes t = kx
and outputs z = t + y as well as j = y(y + 2t). While z
is retained in a register, the Bernoulli evaluation module
evaluates the Bernoulli distribution of b← Bexp(j/2σ2). If
and only if b = 1 the value z is passed to the output,
and discarded otherwise. The evaluation of Bexp(x/f)

requires independent evaluations of Bernoulli variables.
Sampling from Bc is done by evaluating s < c for
a uniformly random s ∈ [0, 1) and a precomputed c.
The precomputed tables store values ci = exp(2i/f),
for 0 ≤ i ≤ l, f = 2σ2 where l = dlog2(max(j))e, are
stored in a distributed RAM. The Bexp(−x/f) module then
searches for one-bit positions u in j and evaluates the
Bernoulli variable Bcu . They do this in a lazy manner;
the evaluation aborts when the first bit has been found
that differs between a random s and c. The technique
saves randomness and runtime but incurs non-constant
runtime. The chance of rejection is larger for the most
significant bits, therefore these are scanned first to abort
as quickly as possible. Lastly, a random one-bit is used to
“sign” the samples and reject half of the samples where
z = 0.

The Bernoulli sampler is suitable for hardware imple-
mentations as most operations work on single bits. How-
ever, due to the non-constant time behaviour of rejection
sampling, buffers were introduced in [28] between each
element to allow parallel execution and maximum utili-
sation of every component. This includes the distribution
and buffering of random bits. To reduce the impact of
buffering on resource consumption they included LIFO
buffers that solely require a single port RAM and a
counter, as the ordering of independent random elements
does not need to be preserved by the buffer (as in the case
with a FIFO). For maximum utilisation they evaluated
optimal combinations of sub-modules and implemented
two Bexp(−x/f) modules fed by two instantiations of the
Trivium stream cipher to generate pseudo-random bits.
To date, no time-independent implementations of the
Bernoulli sampler have been reported.

3.3 Cumulative Distribution (CDT) Sampling

The Cumulative Distribution Table (CDT) sampler re-
quires a precomputed table of discrete Gaussian cumula-
tive distribution function (CDF) values. The distribution
symmetry is exploited to sample from Z+, saving 50% of
required table storage space. The first and last samples
of the table are kept 0 and 1 respectively, and a total of
N = τ ×σ samples (0 = S[0] < S[1] < . . . < S[N −3] = 1)
are required. Once the CDF values S[·] are computed,
a sample r is drawn uniformly, r ∈ [0, 1), with λ bits
of precision, where the desired sample, x, is found
satisfying interval S[x] ≤ r < S[x + 1], occurring with
probability ρ[x] = S[x+1]−S[x]. Initial table values (close
to x = 0) are more probable than values near the end.

As the discrete Gaussian CDF is a sorted table, the
binary search algorithm is used to find the position of
the target value, (shown in Algorithm 4). The search
space, comprising initially of the entire CDT (N sam-
ples), is dichotomously exhausted in every iteration of
the algorithm. Pointers min and cur point to the first
and the middle of the search space, respectively, while
jmp maintains the number of search space samples re-
duced by half. In every iteration of the while loop, r
is compared to the middle value (cur) of search spaces,
whose upper or lower half is discarded depending on the
comparison result. For a bounded interval, the number
of comparisons required before a match is found does
not exceed dlog2(N)e. A uniformly sampled bit b is used
to dictate the sign of result x.

The use of discrete Gaussian sampling based on large
pre-computed CDTs was first proposed by Peikert [26],
and adapted by Ducas et al. [10] for use in their signature
scheme BLISS. Several reductions to the table size were

Algorithm 4 Sampling DZ,σ using the Cumulative Distribution
Table (CDT) and binary searches
Require: Three Integers min, cur and jmp

Discrete Gaussian CDT Samples such that, N = τ × σ, 0 = S[0] < S[1] <
. . . < S[N − 3] = 1
Sample a bit b uniformly in {0, 1}
Sample r uniformly in {0, . . . , (2λ − 1)}

Ensure: min← 0; cur ← (N/2); jmp← cur;
while (jmp > 0) do
cur ← min+ jmp;
if (r ≥ S[cur]) then
min← cur;

jmp← jmp >> 1;

return x = (−1)bmin

4

suggested by Pöppelmann et al. [28] for a reconfigurable
hardware implementation of BLISS. Firstly, the most
significant m bits of r can be hashed to reduce the
search space according to precomputed guide tables.
Choosing m = 8 cuts the 2891 entries initially required
for BLISS into 2m intervals requiring guide tables holding
the min and cur pointers. Thus, the complexity of the
binary search is reduced from [11,12] searches to [1.3,1.7]
searches. Secondly, the adoption of Lemma 1 (Section 2.3)
on BLISS parameters significantly reduces standard devi-
ation for CDT, accompanied by a table size reduction by
a factor of 11. Thirdly, a floating point representation of
CDT samples with a variable mantissa size skips leading
zero storage, halving the table size.

These optimisations reduce the precomputed CDT
sizes, consequently reducing search space and improving
design throughput. However, hashing divides the search
intervals into irregular sizes, meaning the binary search
within intervals has non-constant bounds, making it
susceptible to timing analysis attacks. The only CDT-
based discrete Gaussian sampler promising a constant-
time throughput for small standard deviations relies
on a array of N parallel comparators, of λ-bits each,
comparing against the uniform number r [29]. Each
comparator returns a binary answer, the first comparator
x satisfying S[x] ≤ r < S[x+1] is the required result. This
fully pipelined design results in a single cycle per sample
throughput but the large number of parallel comparisons
renders it inefficient in terms of hardware resources. Du
and Bai [9] optimise the hardware area by employing a
piecewise comparison instead of a full λ-bit comparison
in the binary search algorithm. To compare any λ-bit
table sample and a uniform value of the same size,
comparing the first m bits can give a definite result of
being greater or smaller with probability (2m − 1)/2m

(99.6% for m = 8) and increases for larger m. In the case
of an equality, m is increased and a larger comparison
must be carried out. This lazy comparison scheme not
only reduces the need for large comparators, but also
economises the need for uniform sample bits required
per output. Hashing is used to further narrow down the
binary search time resulting in an area-efficient and yet
high average throughput performance.

3.4 Discrete Ziggurat Sampling

Discrete Ziggurat sampling is adapted by Buchmann et
al. [4] from an original method of continuous Ziggurat
sampling, proposed by Marsaglia and Tsang [22]. It is an
optimised form of rejection sampling, which divides the
area under the curve into several rectangles (RECNUM)
of equal area, where the left hand side of each rectangle
is aligned with the y-axis and the right hand side of each
rectangle aligns with the curve of the discrete Gaussian
distribution. This structure can be used to optimise rejec-
tion sampling of random points from a uniform distri-
bution. The increase in the number of rectangles thus
decreases the probability of rejection. Currently, there

are no hardware implementations of this sampler. How-
ever, Buchmann et al. [4] propose a C++ implementation
with several optimisations, depicted in Algorithm 5, and
also a comparison of discrete Ziggurat with alternative
sampling methods to show that this method is suitable
for use when large standard deviations are required. In
discrete Ziggurat sampling [4], firstly a random value,
x, is generated and then x is checked for cases when x
equals zero or lies comfortably within a given rectangle
(i.e. x ≤ bxi−1c). Random samples including a random
sign bit s are then generated. Otherwise, the sample is
found to lie close to the curve and further calculations
are required to establish whether x is above or below
this curve (see lines 10 onwards in Algorithm 5).

Algorithm 5 Discrete Gaussian Sampling using Discrete
Ziggurat [4]
Require: The number of rectangles, m, the lower right corners of rectangles

(bxic, byic) for i ∈ m, precision λ;
1: while true do
2: Choose rectangle, i ← {1, ...,m}, choose sign bit s ← {0, 1}, choose

random bit b ← {0, 1} choose random value x ← {0, . . . , bxic}, choose
y′ ← {0, . . . , 2λ − 1}

3: if (0 < x ≤ bxi−1c) then
4: return sx;
5: else
6: if x = 0 then
7: if b = 0 then
8: return sx;
9: else

10: ȳ = y′ · (ȳi−1 − ȳi);
11: if bxic+ 1 ≤ σ then
12: if ȳ ≤ 2λ · sLine ∨ ȳ ≤ 2λ · (ρ̄σ(xi)− ȳi) then
13: return sx;
14: else if σ ≤ bxi−1c then
15: if ȳ ≥ 2λ · sLine ∨ ȳ > 2λ · (ρ̄σ(x)− ȳi) then
16: continue;
17: else
18: return sx;
19: else
20: if ȳ ≤ 2λ · (ρ̄σ(x)− ȳi) then
21: return sx;
22: else
23: reject sample;

Algorithm 6 sLine [4] for use in Algorithm 5
Require: bxi−1c , bxic , ȳi−1, ȳi, x;
1: if bxic = bxi−1c then
2: return −1
3: Set ŷi = ȳi and
4: if i = 1 then ŷi−1 = 1
5: elseŷi−1 = ȳi−1

6: return
ŷi−ŷi−1

bxic−bxi−1c
· (x− bxic)

3.5 Knuth-Yao Sampling
Knuth and Yao [17] present a tree based algorithm for
sampling from non-uniform distributions by using a
minimal number of input uniform bits, close to the
entropy of the probability distribution. Given a prob-
ability distribution represented by p0, p1, . . . , pN , while
each sample is represented by a maximum of λ bits, the
probability matrix P can be represented as a N×λ binary
matrix (after adding leading/trailing zeros). A binary
tree, called the discrete distribution generating (DDG)
tree, can be constructed, with λ−levels, comprising of

5

two types of nodes: internal nodes (called I nodes)
having two children each or terminal nodes (called T
nodes) without children. The DDG is constructed so that
the number of terminal nodes at the ith level of the tree
equals the number of non-zero bits in the ith column of
the probability matrix P . Each terminal node is marked
by the row number of P . The sampling process is a
random walk starting from the tree root moving down,
consuming a single uniform bit at each step, taking the
left node of the next level when encountering a 0 and
right node otherwise. Hitting a terminal node outputs the
integer label associated with it, generating a successful
sample.

Figure 2 illustrates a DDG tree for a toy example. The
tree levels equal the number of columns of P , while
the number of terminal nodes match the non-zeros in
P . A DDG tree can have at most (N × λ) terminal
nodes and (N × λ)− 1 internal vertices. Figure 2 shows
equivalent tree and matrix representations of P , where
each of the ith columns of the table has no more than
(2 × i) ≤ (N × λ) entries, since that is the upper bound
on the number of terminal nodes. The entire table does
not need to be stored; instead P and the local information
of one column suffices so that the information of the next
column can be constructed at runtime.

Roy et al. [35] proposed a hardware friendly random
walk for the discrete Gaussian sampler, based on the
exploitation of ith column/tree level information to in-
terpret the next. At any level i of the tree traversal,
let d denote the distance between the visited node and
the right most node of that tree level. At the DDG tree
root (the 0th level), d = 0. Depending on a 0 or a 1
being encountered, the distance becomes 2 × d + 1 or
2 × d, respectively, after consuming one uniform bit.
Next, they exploit the fact that in the DDG tree, all the
I nodes are on the left and all the T nodes (that are
non-zero and contribute to the Hamming weight of that
particular M column) are on the right. Hence, subtracting
the Hamming weight of the current column from the
distance d at the ith level of the tree will show if the

I

I I

I 0 1 3

I 2

I 1

1 2

‘’ 1

Level 0P0 = 0.00101

P1 = 0.001001

P2 = 0.101101

Level 0 1 2 3 4 5 6

Nodes I I I I I I 1

2 I 0 2 1 2

1

2

N=3, =7

…

Level 6

I

2

Fig. 2: The Knuth-Yao based discrete Gaussian sampler
for a toy example: the probability matrix and the DDG
tree (right) with its table based representation.

Algorithm 7 Sampling DZ,σ using Knuth-Yao algorithm from
a given discrete Gaussian distribution
Require: Three Integers d, hit and ctr;
1: Discrete samples of Gaussian distribution as matrix P with N×λ dimension

and N = τ × σ;
2: Sample bits uniformly in {0, 1}, store in array r;
3: Column-wise Hamming distance of P, i.e., h dist[j] =

∑N
i=0 P [i][j];

Ensure: d← 0;hit← 0; ctr ← 0;
4: for (int col← 0 : col < λ; col← col + 1) do
5: d← 2d+ (!r[ctr + +])− h dist[col]
6: if (d < 0) then
7: for (int row ← 0 : row < N ; row ← row + 1) do
8: d← d+ P [row][col];
9: if (d == 0) then

10: hit← 1;
11: break;
12: if (hit) then
13: break;
14: return (−1)r[ctr++].row :

current node is an I node or a T node, if the result is
positive or negative respectively.

Algorithm 7 gives the procedural details of the Knuth-
Yao sampling algorithm. Assertion of the hit signal
indicates a successful sample and ctr is the iteration
over the random binary samples array r. h_dist is
a λ-element vector holding the column-wise Hamming
distances of the matrix P. The loop at line 4 iterates
over the columns, starting from the most significant bit
position, and checks if a terminal node is hit in that
level of the DDG tree, by checking the sign bit of d;
each iteration consumes one uniformly sampled bit. In
case a column is localised for a hit, the loop in line 7
iterates over all the rows in that column, until a row
is localised where a hit is found, terminating the two
loops. No uniform random bits are consumed during
these iterations. A signed bit is attached to the sample,
based on the uniformly sampled bit.

Devroye [8] shows that the required uniformly gener-
ated bits for a sample generation is at most two more
than the entropy of the distribution. Hence, for the test
case σLP = 3.33, the number of uniform bits required
per sample is 5.3. The implementation requires minimal
resources for storing the N×λ dimensional binary matrix
P, a λ element h_dist vector of dlog2(N)e bits each, and
several pointers for holding the row, col, and d, as well
as a sampling termination signal hit.

Dwarakanath and Galbraith [11] suggest a compres-
sion of the probability matrix, as most of the distribu-
tion values close to the tail have an increasingly large
number of leading zeros. A block variant of the Knuth-
Yao algorithm was proposed that divides consecutive
probabilities in different blocks with roughly the same
number of leading zeros resulting in reasonable storage
savings of P . Roy et al. [35] exploited this block based
compression for the Knuth-Yao sampler in an FPGA
implementation with σLP = 3.33. Instead of keeping
a h_dist vector for column Hamming weight, they
iterate over the columns of the P matrix, bit by bit. The
iteration proceeds from bottom to top, consuming one
cycle for each bit of the probability matrix. Since the
discrete Gaussian values close to the centre are more
likely, working from top to bottom instead significantly

6

accelerates the algorithm’s average speed (as in Algo-
rithm 7). Consequently, the implementation [35], though
very lightweight, requires on average 17 clock cycles
to generate one discrete Gaussian sample. Subsequent
work by Roy et al. [34] improved the speed up to 2.5
cycles per sample, by table hashing in multiple stages.
As these implementations were non-constant time, a
random shuffle method is used to protect the discrete
Gaussian distributed polynomial against timing analysis
attacks, at the cost of additional FPGA slices. Clerq et
al. [7] present a software implementation of ring-LWE
encryption on a 32-bit ARM Cortex-M4F microcontroller
using a Knuth-Yao based fast discrete Gaussian sam-
pler, bettering all existing encryption implementations in
software, where discrete Gaussian sampling requires an
average 28.5 cycles per sample.

4 TIMINGS ATTACK & DESIGN GOALS
Timing attacks were proposed for the first time by
Kocher [18]. These attacks exploit the time difference
between operations to gain information about the secret
key. Exploitable timing differences can be caused by
routines whose execution time depends on the secret
data or by the difference in data access pattern caused by
memory hierarchy. These attacks have been successfully
applied against several cryptographic schema, including
lattice-based schemes (in particular NTRU [38]). Thus in
the context of LBC, it is crucial to implement schemes
resistant against timing attacks.

The need for a discrete Gaussian sampler resistant
against timing attacks is emphasised by the NIST call for
implementations of encryption and signature schemes
(of which discrete Gaussian samplers are core compo-
nents) explicitly requiring resistance against side-channel
attacks [25]. Software implementation of Gaussian sam-
plers have been shown to leak information through
the timing channel [36]. Bruinderink et al., in particu-
lar, presented a time side-channel attack, exploiting the
cache patterns [3], on the CDT sampler. The majority
of hardware designs reported so far [35], [28], [15] are
susceptible to timing attacks. Resistance against timing
attacks is achieved when all the operations involving
secret information are executed in a time which is in-
dependent from the secret data.

Time independence is a property which implies that
the computation time of an algorithm does not depend
on the input data. As a consequence, when the computed
data involve secret information, a time independent
computation guarantees that no information about it is
leaked via the timing channel. This property can be
achieved in several ways, the most common methods
are ensuring constant execution time [30] or random
shuffling [34] of the secret values.

The discrete Gaussian sampler proposed by
Pöppelmann and Güneysu [30], which targets constant
execution time, implements a time-independent CDT
sampler for encryption. The area overhead of that design
is however too high to be practical. Roy et al. [34] also

presented a discrete Gaussian sampler resistant against
timing attacks. The design implements a fast Knuth-
Yao based non-constant time Gaussian sampler which
generates a batch of samples, which is subsequently
shuffled to disassociate the related timing information.

Time independence is not the only desired feature:
implementations of discrete Gaussian samplers should
also ensure fast response time (for high throughput)
and require minimal area occupation (for constrained
devices). In this paper these design goals are considered
and the limitations of previous work are overcome by
proposing independent-time and practical implementations
of all four discrete Gaussian sampling schemes currently
used in LBC. However, throughput and area are con-
sidered as secondary variables to be optimised, since
the main objective is to ensure time-independence of the
proposed designs.

5 GAUSSIAN SAMPLER ARCHITECTURES

5.1 Constant-Time Bernoulli Sampling
Discrete Gaussian sampling using Bernoulli is performed
in constant-time when the table comparison (of values ci,
seen in Section 3.2) is always completely evaluated. Thus
a comparison would not be aborted if one mismatch
between the randomly generated bit r and the table
value c is found. However, if a rejection of the Bernoulli
variable leads to the rejection of a complete sample,
is r ≥ c an abort can be tolerated. For acceptance
(r < c) instead, the full comparison has to be made. The
dependency on the input value of x would in fact leak
information. The leakage can be mitigated by evaluating
the whole table in a pipelined fashion, so that no secret
addresses are used (the whole table has to be read).
This however requires a large number of random bits,
generated using Trivium x32 as a PRNG. The PRNG
produces 32 random bits, sufficient for the whole table
comparison, and they are stored in a register, ready to be
used when j = y(y + 2kx) is calculated. In the case of a
rejected value, the evaluation aborts early, since rejection
does not leak any secret information.

Figure 3 illustrates the high-level architecture of the
proposed constant-time Bernoulli sampler. The binary
Gaussian module includes the reduced precision λ = 64-
bits and uses a 64-bit shift register (implemented in a
LUTM on the target FPGA) to store the precomputed
expansion. This operation, as well as the uniformly ran-
dom value y ∈ {0, 1, . . . , k − 1}, are also improved by
incorporating an unrolled x8 Trivium as a PRNG. Previ-
ous designs [28] required 12-bits of randomness for the
binary Gaussian component and 8-bits of randomness
for the uniform value k. This proposed design, which
combines a x8 unrolled Trivium with a reduced precision
allows the computation in two clock cycles instead of
≈ 20 clock cycles using a single bit per clock PRNG. The
values of j and z are used in the evaluation, j is used to
evaluate b ← Bexp(−j/2σ2) where if b = 1 the value z is
accepted and output, otherwise it is rejected.

7

Fig. 3: High level architecture of the proposed constant-time Bernoulli samplers with variables and their bit lengths
given, which uses a x8 and x32 Trivium as a PRNG.

Since Gaussian convolutions are integrated (Section
2.3), employing two table evaluation components de-
creases the clock cycle count per sample. Each evaluation
is able to compute a 128-bit comparison on every clock
cycle, meaning per clock cycle two rows can be com-
pared. Once the pre-calculation components are com-
pleted and the pipeline is full, input values to the tables
will be ready after every clock cycle, meaning a discrete
Gaussian sample takes exactly ddlog2 (max(j))e/2e + 2
cycles, which includes ddlog2 (max(j))e/2e for x1 ← Dσ′ ,
+1 more clock cycle for x2 ← Dσ′ , and +1 more clock
cycle for them to be combined as x = x1 + 11x2 ← Dσ .

The sampler is designed generically such that it can
operate for both standard deviations, σLP = 3.39 and
σBLISS = 215.73, by adapting the lookup table and the
constants. Precomputed tables are stored as distributed
RAM, and calculated as λ log2 2.4τσ2 which for σBLISS =
215.73 requires 784 bits and improves on [28] by ≈ 48%
in table space, and for σLP = 3.39 requires 400 bits.
Furthermore, the proposed Bernoulli sampler generates
a Gaussian sample in 13 clock cycles for BLISS signa-
ture parameters and 7 clock cycles for LP encryption
parameters, which as well as being the first Bernoulli
sampler to operate in constant-time, also betters the
speed of the previous hardware implementations of [28],
and competes well with [15].

5.2 Constant-Time CDT Sampling
The binary search for a desired sample can result in
an early termination, when the equality comparison of
uniformly sampled r and the S[cur] results in an exact
match, though this early termination is only likely with
a very small probability. Algorithm 4 for CDT sam-
pling qualifies the inequality (instead of 64-bit equality
comparison), hence avoiding early termination bounding
the algorithm for

[
blog2(N)c, dlog2(N)e

]
search iterations

before generating a result every time. For CDT where N
is a power of two, the algorithm performs inherently in
constant-time; for all other N , the algorithm is tweaked
to occasionally perform an extra iteration to ensure the
algorithm complexity is fixed to dlog2(N)e.

For the generation of discrete Gaussian samples with
σLP = 3.33, the CDF table S consists of N = 32 (dτ×σLPe)

entries, each with λ = 64 bits of precision. Hence, a single
ported BRAM, with a 5-bit address and 64-bit data ports
suffices for the design. A 64× unrolled Trivium is used
as a PRNG for the generation of the uniform samples
r, where the initialisation of the module is handled
externally at the startup and controlled by the binary
search state machine (referred to as BinSearch). The
Trivium module is activated by the enable output pulse
signal from BinSearch, so the uniform samples are
only generated when required, saving circuit power. For
σ′BLISS = 19.47, the CDT table S is larger (N = 184 holding
N × λ ≈ 11K bits). According to convolution Lemma 1,
for each valid discrete Gaussian sample, two samples of
σ′BLISS = 19.47 are required. A single BinSearch state-
machine instance would take 2× dlog2(184)e = 16 cycles
for generation of a single valid sample. However, a better
throughput model uses two instances of state-machine to
parallelise two independent searches (seen in Figure 4).
The two state machines BinSearch0 and BinSearch1
each get a 64-bit uniformly random number from the
Trivium-based PRNGs, in two consecutive clock cycles.
The BinSearch state-machines initiate their processing
from the START state, resetting three pointers, namely,
min, cur, and jmp, with initial values, as given in Algo-
rithm 4. They transition unconditionally to the SEARCH
state in the next clock cycle that updates their three
pointers as per the result from their 64-bit comparison
operation. After exactly 8 cycles an appropriate x is
found, and the state generates a single bit hit to sig-
nal this occurrence. This hit also activates the Trivium
module to request a new uniformly random 64-bit value.
BinSearch0 and BinSearch1 share the same dual
ported BRAM, each port having 8-bit address and 64-
bit data ports. The state machines work independently
to generate two random samples x1, x2 ← Dσ′ in 8 clock
cycles (shown in Figure 4); the two samples are buffered
on their respective hit signals into registers. The samples
are then combined as x = x1 + 11x2 where a sign bit is
also attached.

5.3 Time-Independent Knuth-Yao Sampling
Inherently, the Knuth-Yao sampler operates in non-
constant time. Considering the column and row local-

8

K/IV

7

64

S[cur0]
64

r2

en

.

.

.

=64

cur

jmp

min

>=
CDF

Table

BinSearch0
Comparator

Registers

Trivium

x64

External

Control for

Trivium

initialization

=64

r1

cur

jmp

min

>=

Comparator

Registers

(180 Samples)

BinSearch1 r1[0]

x

1 -1

en

x

hit2hit1

hit2

1

hit1

x2

x1

+

1 -1

r2[0]

Fig. 4: The CDT discrete Gaussian sampler for σBLISS = 215, using two BinSearch state machines each accessing the
CDF table for σ′BLISS = 19.47.

isation phases take one clock cycle to jump from one
column/row to the other, successful sampling requires at
least 2 cycles if the 0th row and 0th column are localised
for a hit, with the maximum being (λ×N) when the last
row and last column get a hit. The average response time
is ≈ 10.6 cycles since the column and row localisation
each require ≈ 5.3 cycles.

Figure 5 gives an architectural description of the pro-
posed Knuth-Yao sampler in hardware, given a prob-
ability matrix P . Trivium is used as a PRNG for the
generation of the uniformly sampled bit r that is inverted
to get r_n. The initialisation of Trivium is handled
externally at startup, which afterwards is controlled via
the KYSearch state-machine. An en signal is used to
activate the PRNG to produce randomness only when
required. The KYSearch state-machine initiates its pro-
cessing from the START state, resetting output registers,
row, col, d, en and hit with initial values, as given in
Algorithm 7. It transitions unconditionally to the SEARCH
state that updates the output registers as per the state of
the d pointer. As long as d is a non-zero positive number,
the state-machine keeps changing columns, consuming
random bits and updating d accordingly. If d is a negative
number, then the column for a hit is already localised and
the row search starts without changing column values.
Since no new random bits are required, en is kept low
and d is updated by adding the P matrix values until
d reduces to 0. Assertion of a hit ends the sampling
process, where the row number is assigned a sign bit
based on a uniformly sampled bit.

To ensure ease of access, the P matrix transpose is
stored as a distributed ROM or in a BRAM in the FPGA
implementation. When using a BRAM, storing a mere
64 × 32-bit P matrix is excessive. For better resource
utilisation, the h dist vector of Hamming distances is
also stored in the same BRAM. Additionally, hashing is
employed to boost the throughput, since the response
time is non-constant and the same BRAM holding the
P matrix can also store the hash tables. To consider 8
bits of uniform random numbers at a time, a hash table
with 256 entries is easily accommodated in BRAM, for
the case where σLP = 3.33, 249 out of these 256 entries
result in a hit (97.26%). Otherwise, the hash table entries
keep the d value to be loaded in the KYSearch state-

machine directly and scanning of the first 8 columns is
skipped, improving throughput.

To make the sampler independent-time, operations
could be made constant-time, that is the largest possible
cycle count (λ × N) must be ensured before a discrete
Gaussian sample is generated as an output. For σLP =
3.33, it turns out to be too slow to be practical (2000 cycles
per valid sample generation, and worse for signature
parameters). Hence, to achieve timing independence, the
discrete Gaussian samples are instead shuffled after the
generation of a complete block. Considering a block size
of n samples, if n1 are generated by hashing then the
remaining n2 = n − n1 are generated by the KYSearch
state-machine. The samples are stored in another BRAM
such that n1 samples are accommodated at the top of
the BRAM with the remaining at the bottom. A sim-
plistic shuffling algorithm is implemented, the Fisher-
Yates shuffle [12] (also used in [34]), which goes over
each of the n2 samples, swapping these within randomly
generated locations [0, n1−1]. A simple shuffler state-
machine enables each swap in two clock cycles consid-
ering a dual-ported BRAM. Due to the small percentage
of n2 samples in BRAM (2.7%), shuffling does not sig-
nificantly exacerbate the sample generation throughput.
However, the state-machine and the BRAM require extra
FPGA resources.

The Knuth-Yao implementation relates the number of
random bits required (and consequently the running
time of the algorithm) to the distribution entropy (or
standard deviation). For σBLISS = 215, even after using
Lemma 1, the running time will be more than 20 clock
cycles per sample, which is far too slow for practical pur-
poses. Hashing would also require much larger tables to
be effective. Consequently, no further work is undertaken
on the Knuth-Yao sampler for signature parameters.

5.4 Constant-Time Discrete Ziggurat Sampling

To date, there are no existing hardware designs of the dis-
crete Ziggurat Gaussian sampler. There are several possi-
ble reasons for this: firstly, the discrete Ziggurat sampling
algorithm requires several costly computations, secondly,
the generation of suitable rectangles for sampling is non-
trivial and can require multiple iterations, and thirdly,

9

START

d[5]

en=1

row=0

col=0

hit=0

d=r_n SEARCH

en=1

hit=1

d=r_n

en=0

row++

hit=0

d+=p_r

d==0

en=1

col++

hit=0

d=2d+r_n-

h_dist[col]

.

.

.

=64

PDF

Table

=64

(32 Samples)

h_dist

K/IV

en

Triviumx1

External

Control for

Trivium

initialization

+
+

row

0

+
+

col

0

d
+

p
_

n

d

2
d

+
r_

n
+

h

_
d

is
t[

co
l]

r_n

r_n

col

h_dist[col]

r_n

Fig. 5: A Knuth-Yao based discrete Gaussian sampler for σLP = 3.33

there are several alternative sampling algorithms which
are better suited to the hardware platform.

In this research, the first hardware design of a discrete
Gaussian Ziggurat sampler on FPGA is presented. To
adapt the algorithm to suit the hardware platform, the
rectangle generation and several pre-computations are
completed offline. This is a reasonable assumption to
make, as previously mentioned in other sampling algo-
rithms (such as the precomputed lookup tables used in
Bernoulli and CDT samplers). The number of rectangles
(RECNUM) used in the proposed design is set to eight.
Such parameters would benefit from increased flexibil-
ity or on-the-fly calculation in future implementations.
Parameters are stored as binary vectors, and fixed point
precision (λ bit) is used to minimise memory consump-
tion on the FPGA. Two’s complement representation is
used for the binary sample values, where the most sig-
nificant bit represents the sign of the given sample. The
floored x coordinates and λ bit precision y coordinates
of the rectangles and a table of precomputed probability
values (that is, (ρσ(xi)− ȳi)∗2λ) are stored on the FPGA,
called STORE X, STORE Y, and STORE RHO respectively.
Additionally, SLINE COMP stores the precomputed frac-
tional division required in the sLine operation. These pre-
computations enable efficient hardware implementation
at the cost of flexibility. For this reason, software imple-
mentations of Ziggurat are preferred to any hardware
implementation.

The design follows Algorithm 5, where a series of com-
parisons are used to generate discrete Gaussian samples.
Figure 6 depicts the proposed hardware architecture at
a high level. An unrolled Trivium x8 is employed and a

CALCULATIONS

COMPARISONS

OUTPUT

RANDOM VALUE ASSIGNMENT

STORES

PRNG

TRIVIUM X8

STORE X

STORE Y

STORE
RHO

SIGN S

SIGN B

REC VALUE

X VALUE

Y’ VALUE

-

0
 E

LSE

1

 0

SAMP SIGCURVE
CALCULATIONS

(sLine) FAIL SIG

TRIVIUM BUFFER

CURVE
COMPARISON

E
LSE

 >

X Y

STORE
SLINE COMP

X

Fig. 6: High level hardware architecture of discrete Zig-
gurat sampler for σLP = 3.33

buffer is used to store intermediate values. A counter
controlled by a state-machine is used to ensure the
buffer is full before initial sample generation. The design
require n uniformly random bits per sample, where
n = 2+λ+(2×RECNUM) given the number of rectangles
RECNUM. For sampling, a random integer value x and
a rectangle value i are randomly chosen using Trivium
outputs. If x is less than the floored x coordinate of i,
xi is stored in STORE X, it is output along with a sign
bit, s. Otherwise, several other comparisons are carried
out to verify if x falls under the discrete Gaussian curve.
In this case, a ydash value is uniformly generated with
λ-bits of precision, and subsequently used to generate ȳ,
such that ȳ = ydash · (¯yi−1 − ȳi). Note that ȳi are stored
in STORE Y. Then, ȳ is used within three inequalities to
decide whether to reject the sample x, that is, to decide
in which part of the rectangle the randomly generated
integer x lies (as seen in Algorithm 5). For further details
see the original proposed algorithm and software design
by Buchmann et al. [4].

For the signature parameters, the same design is used
twice and the sampling process is repeated to generate
two samples, and combined in the same way as in the
other sampling techniques. To make the sampler perform
in constant-time, the state-machine controls signals and
ensures all comparisons are carried out, regardless of
success or failure, within a set number of clock cycles.
This design choice brings a small cost of additional clock
cycles per sample generated.

6 COMPARISON & RESULTS

In this section the performance results are described and
compared against the same implementations for encryp-
tion (for σLP = 3.33) and signatures (for σBLISS = 215).
The designs are implemented on either the Spartan-6
LX25-3, Virtex-5 LX30, or Virtex-6 LX75 FPGA devices to
compare with previous work, where the results obtained
are all post place-and-route (PAR) using Xilinx ISE 14.7.
Throughput and throughput per area are evaluated for
all schemes in terms of sampling operations per sec-
ond (Ops/s) and sampling operations per second per
slice of FPGA (Ops/s/S), respectively, in Tables 2-5.
Significantly more random bits are required to guarantee
constant computation time. Random bits are produced
by Triviums x8 and x32. The resource needed for these

10

–when compared with the standard Trivium x1 used in
Section 5.3 – are rather negligible: 28 additional LUTs, 63
additional flip-flops, and 15 additional slices for Trivium
x8 and 26 additional LUTs, 147 additional flip-flops, and
21 additional slices for Trivium x32.

6.1 Bernoulli Results

Table 2 shows the performance of the constant-time
Bernoulli samplers in hardware. The results are com-
pared to other implementations which target lattice-
based encryption and signature schemes but without
protection against timing attacks. To achieve constant
computation time, the proposed Bernoulli samplers need
to perform many more comparisons than the previously
proposed designs [28], [15]. For this reason, the number
of flip-flops in this design is larger than others. However,
the needed comparisons can be performed in a single
clock cycle, where instead LUT and slice usage has de-
creased. This has mainly been achieved by incorporating
x8 and x32 unrolled Trivium components, which simplify
the overall design and alleviate the need for excess data
buffers. The halving of the precision parameter also
contributed to the reduction of the LUT and slice usage.
It can be seen from Table 2 that, despite the increase in
flip-flop consumption, the Bernoulli samplers for both
standard deviations improve on previous designs.

6.2 Knuth-Yao Results

Table 3 compares the proposed Knuth-Yao samplers for
encryption parameters with the state-of-the-art. Roy et
al. [35] present a discrete Gaussian sampler design requir-
ing 17 clock cycles per sample. The slow throughput was
primarily due to the bit-by-bit scanning of the probability
matrix P. Multiple bit scanning per clock after column
localisation does slightly improve throughput, with an
additional resource cost. Further, Roy et al. [34] present
low latency variants of the same architecture changing
the dimensions of the matrix P, each requiring 17 clock
cycles per sample. Multi-stage table hashing improves
throughput up to ≈ 2.5 clock cycles per sample and
subsequently a shuffler makes the sampler time inde-
pendent. However, hardware implementation results for
the shuffler are not provided [34].

The first implementation (without BRAMs and hash-
ing) compares to the existing work by [34] (without
hashing). In the second implementation, hashing is un-
dertaken; the BRAM is used to store the P matrix,
the h dist and the hashing table. At the cost of one
additional BRAM, this implementation improves on the
Ops/s/S of the best existing Knuth-Yao implementation
by a factor of 2. The last implementation also includes a
shuffler for timing independence; hence another BRAM
for generated discrete Gaussian samples is added and the
slice budget increases to accommodate the shuffler state
machine. A consequent decrease in Ops/s/S follows.

6.3 Cumulative Distribution Table Results
For the CDT sampler, FPGA implementations with and
without BRAMs are proposed. For σLP = 3.33, a single
port distributed ROM is used. The number of slices can
be significantly reduced if BRAMs are utilised, as shown
in Table 4, where one instance of RAMB36 is used in a
64×32 configuration. However, in this configuration the
maximum operable frequency is halved. The reduction
in slices is higher for σBLISS = 215 due to the larger
distribution table being shifted to BRAM.

Table 4 compares the proposed CDT samplers with
state-of-the-art. The only other constant-time CDT im-
plementation for σLP = 3.33, proposed by Pöppelmann
and Güneysu [30], operates at a frequency of more than
4× lower. The slice count is also 5x larger, contributed
primarily by as many parallel comparators as the S table
words. Hence, despite the reported CDT implementation
generating a single sample per cycle [30], the design in
this research proves to be a very lightweight, constant-
time alternative, outperforming it by a factor of around
5× in terms of Ops/s/S. The CDT sampler by Du and Bai
[9] is lightweight and achieves good average throughput.
However, their proposed design is not an independent
time implementation. For σBLISS = 215, the implemen-
tation by Pöppelmann et al. [28] also operates in non-
constant time, is costlier in terms of slice consumption,
and slower in terms of throughput per slice. Since their
reported design consumes BRAM, when compared to
this implementation (with BRAM), their design remains
≈ 5× inferior in terms of Ops/s/S. However it requires
around 3× less uniform random bits per sample, com-
pared to the proposed constant-time designs.

6.4 Discrete Ziggurat Results
Table 5 shows the performance of the proposed constant-
time discrete Ziggurat. There are no previous hardware
designs of this sampler; thus the discrete Ziggurat sam-
pler can be compared with the other samplers (Tables
2-4). The discrete Ziggurat sampler design requires a
large amount of area resources, and achieves a relatively
slow performance compared to the other samplers. For
these reasons, hardware discrete Ziggurat samplers are
not recommended and are not included in Figure 7.

7 RECOMMENDATIONS AND CONCLUSION
Figure 7 plots the post-PAR results for CDT, Knuth-Yao
(KY) and Bernoulli (Ber) samplers, with and without
RAMs, targeting the same FPGA device. Results for
the discrete Ziggurat samplers are not included, due
to their inefficiency. For encryption, the RAM-free CDT
(CDT Enc) sampler surpasses all others in terms of an
overall balanced performance with area, throughput, and
timing independence. If the use of additional BRAMs is
considered, the Knuth-Yao time-independent implemen-
tation (KY Enc RAM) has the best overall performance
in terms of low area, high throughput, and also the

11

TABLE 2: Post-place and route results of the Bernoulli sampler for encryption (σLP = 3.39) and signatures (σBLISS =
215.73), in comparison to those targeting the same discrete Gaussian parameters with non-constant operating time.

Op. Implementation Device λ
LUT/FF BRAM Freq. Clock Rand. Ops/s Ops/s/S Time
/Slice /DSP (MHz) Cycles Bits (×106) (×106/S) Ind.

This work XC6SLX25-3 64
679/1580/279 0/0 133 7 85 19 0.06 X

σLP = 516/1475/201 2/0 167 7 85 23.86 0.12 X
3.33 Howe et al. [15] XC6SLX25-3 64 846/934/297 0/0 129 ≈ 12 ≈ 26 10.75 0.03 7

Pöppelmann et al. [31] XC6SLX9-2 80 132/40/37 0/0 136 ≈ 144 ≈ 96 0.944 0.02 7

σBLISS =
This work XC6SLX25-3 64

1001/1842/356 0/0 139 13 85 10.69 0.03 X
215.73 571/1480/167 3/0 171 13 85 13.15 0.08 X

Pöppelmann et al. [28] XC6SLX25-3 128 1231/1134/452 0/1 137 ≈ 17.95 ≈ 33 7.63 0.01 7

TABLE 3: Post-place and route results of the Knuth-Yao sampler for encryption (σLP = 3.33), in comparison to existing
work with same discrete Gaussian parameters.

Op. Implementation Device λ
LUT/FF BRAM Freq. Clock Rand. Ops/s Ops/s/S Time
/Slice /DSP (MHz) Cycles Bits (×106) (×106/S) Ind.

Roy et al. [35] 5VLX30 90
140/66/47 0/0 333 ≈17 ≈5.3 19.61 0.42 7

149/69/53 0/0 303 ≈16 ≈5.3 18.94 0.36 7

Roy et al. [34] 5VLX30-3 90

101/81/38 0/0 344 ≈17 ≈5.3 20.28 0.53 7

σLP = 105/60/32 0/0 400 ≈17 ≈5.3 23.53 0.74 7

3.33 102/48/30 0/0 384 ≈17 ≈5.3 22.62 0.75 7

118/48/35 0/0 333 ≈13 ≈5.3 133.33 3.81 7

This work 5VLX30-3 64
99/21/35 0/0 310 ≈10 ≈5.3 31.02 0.89 7

59/25/22 1/0 212 ≈1.16 ≈8.3 183.02 8.32 7

133/52/48 2/0 212 ≈1.23 ≈8.3 172.60 3.60 X

lowest number of bits required per sample. For signa-
tures, the RAM-free CDT implementation (CDT Sign)
proves to be an overall winner, followed by the Bernoulli
sampler (Ber Sign), being around 2x more expensive in
terms of slices. In conclusion, this research provides a
thorough investigation of the practical discrete Gaussian
samplers (CDT, Knuth-Yao, Bernoulli, and discrete Zig-
gurat) used in lattice-based cryptosystems. Novel time-
independent implementations are presented, ensuring
resistance against timing attacks. Moreover, the proposed
hardware sampler designs clearly outperform most of
those previously proposed.

REFERENCES

[1] M. Ajtai, “Generating hard instances of lattice problems (ex-
tended abstract),” in STOC, 1996, pp. 99–108.

[2] E. Alkim, L. Ducas, T. Pöppelmann, and P. Schwabe, “Post-
quantum key exchange - a new hope,” Cryptology ePrint
Archive, Report 2015/1092, 2015, http://eprint.iacr.org/.

[3] L. G. Bruinderink, A. Hülsing, T. Lange, and Y. Yarom, “Flush,
Gauss, and reload – a cache attack on the BLISS lattice-based
signature scheme,” Cryptology ePrint Archive, Report 2016/300,
2016.

[4] J. Buchmann, D. Cabarcas, F. Göpfert, A. Hülsing, and P. Weiden,
“Discrete Ziggurat: A time-memory trade-off for sampling from
a Gaussian distribution over the integers,” in SAC, 2013, pp. 402–
417.

[5] CESG, “Quantum key distribution: A CESG white paper,”
February 2016. [Online]. Available: https://www.cesg.gov.uk/
white-papers/quantum-key-distribution

[6] CNSS, “Use of public standards for the secure sharing of informa-
tion among national security systems,” Committee on National
Security Systems: CNSS Advisory Memorandum, Information
Assurance 02-15, July 2015.

[7] R. De Clercq, S. S. Roy, F. Vercauteren, and I. Verbauwhede,
“Efficient software implementation of ring-LWE encryption,” in
DATE. EDA Consortium, 2015, pp. 339–344.

[8] L. Devroye, “Sample-based non-uniform random variate gener-
ation,” in WSC. ACM, 1986, pp. 260–265.

[9] C. Du and G. Bai, “Towards efficient discrete Gaussian sampling
for lattice-based cryptography,” in FPL ’15. IEEE, 2015, pp. 1–6.

[10] L. Ducas, A. Durmus, T. Lepoint, and V. Lyubashevsky, “Lattice
signatures and bimodal Gaussians,” in CRYPTO (1), 2013, pp.
40–56, full version: https://eprint.iacr.org/2013/383.pdf.

[11] N. C. Dwarakanath and S. D. Galbraith, “Sampling from dis-
crete Gaussians for lattice-based cryptography on a constrained
device.” Appl. Algebra Eng. Commun. Comput., pp. 159–180, 2014.

[12] R. A. Fisher and F. Yates, “Statistical tables for biological, agri-
cultural and medical research.” Statistical tables for biological,
agricultural and medical research., pp. 25–27, 1948, third Ed.

[13] L. K. Grover, “A fast quantum mechanical algorithm for database
search,” in STOC. ACM, 1996, pp. 212–219.

[14] ——, “Quantum mechanics helps in searching for a needle in a
haystack,” Physical review letters, vol. 79, no. 2, p. 325, 1997.

[15] J. Howe, C. Moore, M. O’Neill, F. Regazzoni, T. Güneysu, and

12

http://eprint.iacr.org/
https://www.cesg.gov.uk/white-papers/quantum-key-distribution
https://www.cesg.gov.uk/white-papers/quantum-key-distribution
https://eprint.iacr.org/2013/383.pdf

TABLE 4: Post-place and route results of the Cumulative Distribution Table (CDT) sampler for encryption (σLP = 3.33)
and signatures (σBLISS = 215), in comparison to existing results with same discrete Gaussian parameters.

Op. Implementation Device λ
LUT/FF BRAM Freq. Clock Rand. Ops/s Ops/s/S Time
/Slice /DSP (MHz) Cycles Bits (×106) (×106/S) Ind.

Pöppelmann &
6VLX75T-2

80 863/6/231 0/0 61 1 85 61 0.26 X
Güneysu [30] 100 1157/6/314 0/0 58 1 85 58 0.18 X

σLP =
This work 6VLX75T-2 64

112/19/43 0/0 297 5 64 59.4 1.38 X
3.33 53/17/15 1/0 193 5 64 38.6 2.57 X

Du & Bai [9] 5VLX30 90
43/33/17 1/0 259 ≈2.28 ≈9.44 113.6 6.68 7

85/65/39 1/0 256 ≈1.14 ≈9.44 224.6 5.76 7

σBLISS = Pöppelmann et al. [28] 6SLX25-3 128 928/1121/299 1/0 129 ≈7.5 ≈21 17.2 0.06 7

215
This work 6SLX25-3 64

577/64/179 0/0 130 8 64 16.3 0.09 X
130/48/44 2/0 126 8 64 15.8 0.36 X

TABLE 5: Post-place and route results of the discrete Ziggurat sampler for encryption (σLP = 3.33) and signatures
(σBLISS = 215)

Op. Implementation Device λ
LUT/FF BRAM Freq. Clock Rand. Ops/s Ops/s/S Time
/Slice /DSP (MHz) Cycles Bits (×106) (×106/S) Ind.

σLP = 3.33 This work XC6SLX25-3 64 563/785/785 0/26 60.3 9 82 6.7 0.008 X

σBLISS = 215.73 This work XC6SLX25-3 64 526/791/800 0/27 59.9 10 164 5.99 0.007 X

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400
0

20

40

60

80

100

120

Ber EncBer Enc RAM
Ber Sign

Ber Sign RAM

KY Enc RAM

KY Enc RAM Time-Dep.

KY Enc Time-Dep.

Throughput
Improvement

Area Improvement

Overall
Improvement

CDT Enc

CDT Enc RAM

CDT SignCDT Sign RAM DZigg EncDZigg Sign

Number of Slices

Sa
m

pl
er

s
Pe

r
Se

co
nd

(×
1
0
6

)

Fig. 7: Graphical performance results of the proposed discrete Gaussian samplers, on the Spartan-6 LX25-3 FPGA,
with and without RAM use. All results are time-independent unless otherwise stated (Time-Dep.).

K. Beeden, “Lattice-based Encryption Over Standard Lattices in
Hardware,” in DAC ’16. ACM, 2016, pp. 162:1–162:6. [Online].
Available: http://doi.acm.org/10.1145/2897937.2898037

[16] J. Howe, T. Pöppelmann, M. O’Neill, E. O’Sullivan, and
T. Güneysu, “Practical lattice-based digital signature schemes,”
TECS, vol. 14, no. 3, p. 41, 2015.

[17] D. E. Knuth and A. C. Yao, “The complexity of nonuniform
random number generation,” Algorithms and complexity: new di-
rections and recent results, pp. 357–428, 1976.

[18] P. C. Kocher, “Timing attacks on implementations of Diffie-
Hellman, RSA, DSS, and other systems,” in CRYPTO. Springer,
1996, pp. 104–113.

[19] R. Lindner and C. Peikert, “Better key sizes (and attacks) for
LWE-based encryption,” in CT-RSA, 2011, pp. 319–339.

[20] V. Lyubashevsky and D. Micciancio, “Generalized compact knap-
sacks are collision resistant,” in ICALP. Springer, 2006, pp. 144–
155.

[21] V. Lyubashevsky, C. Peikert, and O. Regev, “On ideal lattices and

13

http://doi.acm.org/10.1145/2897937.2898037

learning with errors over rings,” in EUROCRYPT, 2010, pp. 1–23.
[22] G. Marsaglia, W. W. Tsang et al., “The Ziggurat method for

generating random variables,” Journal of statistical software, vol. 5,
no. 8, pp. 1–7, 2000.

[23] D. Micciancio, “Generalized compact knapsacks, cyclic lattices,
and efficient one-way functions,” Comput. Complex., vol. 16, no. 4,
pp. 365–411, Dec. 2007.

[24] D. Micciancio and C. Peikert, “Hardness of SIS and LWE with
small parameters,” in CRYPTO (1), 2013, pp. 21–39.

[25] D. Moody, “Post-quantum cryptography: NIST’s plan for the
future,” Talk given at PQCrypto ’16 Conference, 23-26 February
2016, Fukuoka, Japan, February 2016. [Online]. Available:
https://pqcrypto2016.jp/data/pqc2016 nist announcement.pdf

[26] C. Peikert, “An efficient and parallel Gaussian sampler for lat-
tices,” in CRYPTO, 2010, pp. 80–97.

[27] C. Peikert and A. Rosen, “Efficient collision-resistant hash-
ing from worst-case assumptions on cyclic lattices,” in TCC.
Springer, 2006, pp. 145–166.

[28] T. Pöppelmann, L. Ducas, and T. Güneysu, “Enhanced lattice-
based signatures on reconfigurable hardware,” in CHES, 2014,
pp. 353–370, full version: https://eprint.iacr.org/2014/254.pdf.

[29] T. Pöppelmann and T. Güneysu, “Towards efficient arithmetic
for lattice-based cryptography on reconfigurable hardware,” in
LATINCRYPT, 2012, pp. 139–158.

[30] T. Pöppelmann and T. Güneysu, “Towards practical lattice-based
public-key encryption on reconfigurable hardware,” in SAC,
2013, pp. 68–85.

[31] T. Pöppelmann and T. Güneysu, “Area optimization of
lightweight lattice-based encryption on reconfigurable hard-
ware,” in ISCAS, 2014, pp. 2796–2799.

[32] O. Regev, “On lattices, learning with errors, random linear codes,
and cryptography,” in STOC, 2005, pp. 84–93.

[33] O. Reparaz, S. S. Roy, F. Vercauteren, and I. Verbauwhede, “A
masked ring-LWE implementation,” in CHES, 2015, pp. 683–702.

[34] S. S. Roy, O. Reparaz, F. Vercauteren, and I. Verbauwhede,
“Compact and side channel secure discrete Gaussian sampling,”
IACR Cryptology ePrint Archive, vol. 2014, p. 591, 2014.

[35] S. S. Roy, F. Vercauteren, and I. Verbauwhede, “High Precision
Discrete Gaussian Sampling on FPGAs,” in SAC, 2013, pp. 1–39.

[36] M.-J. O. Saarinen, “Gaussian sampling precision and information
leakage in lattice cryptography,” Cryptology ePrint Archive, Re-
port 2015/953, 2015.

[37] P. W. Shor, “Polynomial-time algorithms for prime factorization
and discrete logarithms on a quantum computer,” SIAM J. Com-
put., vol. 26, no. 5, pp. 1484–1509, Oct. 1997.

[38] J. H. Silverman and W. Whyte, “Timing attacks on NTRUEncrypt
via variation in the number of hash calls,” in CT-RSA. Springer,
2007, pp. 208–224.

[39] J. Von Neumann, “Various techniques used in connection with
random digits,” Applied Math Series, vol. 12, no. 36-38, p. 1, 1951.

James Howe received first-class honours BSc
degree in Mathematics at the University of
Greenwich, and MSc degree in the Mathematics
of Cryptography and Communications at Royal
Holloway, University of London. He is a re-
search assistant at the Centre for Secure Infor-
mation Technologies (CSIT), Queen’s University
Belfast. His research interests include crypto-
graphic hardware and software, public-key cryp-
tography, post-quantum cryptography, and crypt-
analysis.

Ayesha Khalid completed her B.E. in Computer
Systems Engineering from National University of
Sciences and Technology (NUST), Pakistan and
her M.S. in Electrical Engineering from Center for
Advanced Studies in Engineering (CASE), affili-
ated with University of Engineering and Technol-
ogy, UET-Taxila, Pakistan. From 2008 to 2010,
she served as a Lecturer in the Department of
Electrical Engineering at Muhammad Ali Jinnah
University, Islamabad and later joined RWTH
Aachen, Germany for her doctoral studies. She

is the recipient of DAAD scholarship award for PhD. Currently, she is a
Research Fellow at Queens University Belfast.

Ciara Rafferty (M’14) received first-class hon-
ours in the BSc. degree in Mathematics with Ex-
tended Studies in Germany at Queen’s Univer-
sity Belfast in 2011 and the Ph.D. degree in elec-
trical and electronic engineering from Queen’s
University Belfast in 2015. She is currently a Re-
search Assistant at Queen’s University Belfast.
Her research interests include hardware crypto-
graphic designs for homomorphic encryption and
lattice-based cryptography.

Francesco Regazzoni received the MS degree
from Politecnico di Milano, Italy. He is a postdoc-
toral researcher at the ALaRI Institute of Univer-
sity of Lugano, Switzerland, where he completed
the PhD degree. Previously, he has been an
assistant researcher with the Crypto Group at
Universit Catholique de Louvain (UCL) and at TU
Delft. His research interests include embedded
systems security, side channel attacks, crypto-
graphic hardware, electronic design automation
for security, and random number generators.

Máire O’Neill (M’03-SM’11) received the M.Eng.
degree with distinction and the PhD degree
in electrical and electronic engineering from
Queen’s University Belfast, U.K., in 1999 and
2002, respectively. She is a Chair of Information
Security at Queen’s and holds an EPSRC Lead-
ership fellowship to conduct research into next
generation data security architectures. She pre-
viously held a UK Royal Academy of Engineering
research fellowship from 2003 to 2008. She has
authored two research books and has more than

100 peer-reviewed conference and journal publications. Her research
interests include hardware cryptographic architectures, side channel
analysis, physical unclonable functions and post-quantum cryptography.
In 2014 she was awarded a Royal Academy of Engineering Silver Medal,
which recognises outstanding personal contribution by an early or mid-
career engineer that has resulted in successful market exploitation.

14

https://pqcrypto2016.jp/data/pqc2016_nist_announcement.pdf
https://eprint.iacr.org/2014/254.pdf

	Introduction
	Prerequisites/Preliminaries
	The Discrete Gaussian Distribution
	Practical Discrete Gaussian Parameters
	Gaussian Convolution

	Sampling Techniques – Background & Previous Work
	Rejection Sampling
	Bernoulli Sampling
	Cumulative Distribution (CDT) Sampling
	Discrete Ziggurat Sampling
	Knuth-Yao Sampling

	Timings Attack & Design Goals
	Gaussian Sampler Architectures
	Constant-Time Bernoulli Sampling
	Constant-Time CDT Sampling
	Time-Independent Knuth-Yao Sampling
	Constant-Time Discrete Ziggurat Sampling

	Comparison & Results
	Bernoulli Results
	Knuth-Yao Results
	Cumulative Distribution Table Results
	Discrete Ziggurat Results

	Recommendations and Conclusion
	References
	Biographies
	James Howe
	Ayesha Khalid
	Ciara Rafferty
	Francesco Regazzoni
	Máire O'Neill

