48,990 research outputs found

    Cognitive Radio for Emergency Networks

    Get PDF
    In the scope of the Adaptive Ad-hoc Freeband (AAF) project, an emergency network built on top of Cognitive Radio is proposed to alleviate the spectrum shortage problem which is the major limitation for emergency networks. Cognitive Radio has been proposed as a promising technology to solve todayâ?~B??~D?s spectrum scarcity problem by allowing a secondary user in the non-used parts of the spectrum that aactully are assigned to primary services. Cognitive Radio has to work in different frequency bands and various wireless channels and supports multimedia services. A heterogenous reconfigurable System-on-Chip (SoC) architecture is proposed to enable the evolution from the traditional software defined radio to Cognitive Radio

    A Reconfigurable Radio Architecture for Cognitive Radio in Emergency Networks

    Get PDF
    Cognitive Radio has been proposed as a promising technology to solve today’s spectrum scarcity problem. Cognitive Radio is able to sense the spectrum to find the free spectrum, which can be optimally used by Cognitive Radio without causing interference to the licensed user. In the scope of the Adaptive Adhoc Freeband (AAF) project, an emergency network built on top of Cognitive Radio is proposed. New functional requirements and system specifications for Cognitive Radio have to be supported by a reconfigurable architecture. In this paper, we propose a heterogenous reconfigurable System-on-Chip (SoC) architecture to enable the evolution from the traditional software defined radio to Cognitive Radio

    Space-Based Reconfigurable Software Defined Radio Test Bed Aboard International Space Station

    Get PDF
    The National Aeronautical and Space Administration (NASA) recently launched a new software defined radio research test bed to the International Space Station. The test bed, sponsored by the Space Communications and Navigation (SCaN) Office within NASA is referred to as the SCaN Testbed. The SCaN Testbed is a highly capable communications system, composed of three software defined radios, integrated into a flight system, and mounted to the truss of the International Space Station. Software defined radios offer the future promise of in-flight reconfigurability, autonomy, and eventually cognitive operation. The adoption of software defined radios offers space missions a new way to develop and operate space transceivers for communications and navigation. Reconfigurable or software defined radios with communications and navigation functions implemented in software or VHDL (Very High Speed Hardware Description Language) provide the capability to change the functionality of the radio during development or after launch. The ability to change the operating characteristics of a radio through software once deployed to space offers the flexibility to adapt to new science opportunities, recover from anomalies within the science payload or communication system, and potentially reduce development cost and risk by adapting generic space platforms to meet specific mission requirements. The software defined radios on the SCaN Testbed are each compliant to NASA's Space Telecommunications Radio System (STRS) Architecture. The STRS Architecture is an open, non-proprietary architecture that defines interfaces for the connections between radio components. It provides an operating environment to abstract the communication waveform application from the underlying platform specific hardware such as digital-to-analog converters, analog-to-digital converters, oscillators, RF attenuators, automatic gain control circuits, FPGAs, general-purpose processors, etc. and the interconnections among different radio components

    The Space Communications and Navigation Testbed aboard International Space Station: Seven Years of Space-based Reconfigurable Software Defined Communications, Navigation, and Networking

    Get PDF
    The adoption of software defined radios offers space missions a new way to develop and operate space transceivers for communications and navigation.The SCaN Testbed on-board the ISS led groundbreaking efforts to champion use of software defined radios for space communications. The SCaN Testbed has allowed NASA, industry, academia, and international partners to pursue their respective interests in joint collaboration with NASA, and move this technology and it's applications to the space domain. Launched in 2012, The SCaN Testbed has logged over 4000 hours of operation exploring the development, reconfiguration, and operation of software defined radios and their software applications. Over the past seven years, experimenters and organizations from across the United States and around the world, have advanced the applications of software defined radios and networks using the SCaN Tested. Some of SCaN Testbed's successful experiments include the demonstration of the first Ka-band full duplex space transceiver, which became an R&D 100 award winning technology, and was inducted into the Space Technology Hall of Fame, following the launch and space deployment of a successful commercial product line based on the Testbed radios.Experiments have focused on new software development and operations concepts for understanding how to manage and apply this relatively new technology to space to improve communications and navigation for space science and exploration missions. The advanced capabilities of the software radios allow for multiple applications or functions (e.g., communication and navigation) to operate from the same radio platform. Multiple software waveform applications enable software component reuse and improve efficiency for multiple applications operating over different mission phases. The new capabilities of software defined radios such as on-orbit reconfiguration, also present new challenges such as increased operational complexity. Experiments of the SCaN testbed include more intelligent or cognitive applications to improve communications efficiency and manage the complexity of the radios, the communication channels, and the network itself. The software defined radios on the SCaN Testbed are each compliant to NASA's Space Telecommunications Radio System (STRS) Architecture. The STRS Architecture provides commonality among radio developments from different providers and different mission applications, and is designed to reduce the cost, risk, and complexity of unique and custom radio developments. This radio architecture standard defines common waveform software interfaces, methods of instantiation, operation, and documentation. As the SCaN Testbed concludes its operations on ISS, this presentation explores the advancements and accomplishments made to advance software defined radio technology and its applications for exploration. The accomplishments cover a number of experiment areas in Ka-band and S-band communications with TDRS, high rate communications, adaptive waveform operation, navigation using both GPA and Galileo constellations, complex networking and disruptive tolerant link protocols, user initiative service, and initial experiments with intelligent and cognitive applications which demonstrate the significant potential of software defined and cognitive radios

    ETSI reconfigurable radio systems: status and future directions on software defined radio and cognitive radio standards

    Get PDF
    This article details the current work status of the ETSI Reconfigurable Radio Systems Technical Committee, positions the ETSI work with respect to other standards efforts (IEEE 802, IEEE SCC41) as well as the European Regulatory Framework, and gives an outlook on the future evolution. In particular, software defined radio related study results are presented with a focus on SDR architectures for mobile devices such as mobile phones. For MDs, a novel architecture and inherent interfaces are presented enabling the usage of SDR principles in a mass market context. Cognitive radio principles within ETSI RRS are concentrated on two topics, a cognitive pilot channel proposal and a Functional Architecture for Management and control of reconfigurable radio systems, including dynamic self-organizing planning and management, dynamic spectrum management, joint radio resource management. Finally, study results are indicated that are targeting a SDR/CR security framework.Postprint (published version

    Studies in Software-Defined Radio System Implementation

    Get PDF
    Over the past decade, software-defined radios (SDRs) have an increasingly prevalent aspect of wireless communication systems. Different than traditional hardware radios which implement radio protocols using static electrical circuit, SDRs implement significant aspects of physical radio protocol using software programs running on a host processor. Because they use software to implement most of the radio functionality, SDRs are much more easily modified, edited, and upgraded than their hardware-defined counterparts. Consequently, researchers and developers have been developing previously hardware-defined radio systems within software. Thus, communication standards can be tested under different conditions or swapped out entirely by simply changing some code. Additionally, developers hope to implement more advanced functionality with SDRs such as cognitive radios that can sense the conditions of the environment and change parameters or protocol accordingly. This paper will outline the major aspects of SDRs including their explanation, advantages, and architecture. As SDRs have become more commonplace, many companies and organizations have developed hardware front-ends and software packages to help develop software radios. The most prominent hardware front-ends to date have been the USRP hardware boards. Additionally, many software packages exist for SDR development, including the open source GNU Radio and OSSIE and the closed source Simulink and Labview SDR packages. Using these development tools, researchers have developed many of the most relevant radio standards. This paper will explain the major hardware and software development tools for creating SDRs, and it will explain some of the most important SDR projects that have been implemented to date

    ETSI Reconfigurable Radio Systems – Status and Future Directions on Software Defined Radio and Cognitive Radio Standards

    Get PDF
    This article details the current work status of the ETSI Reconfigurable Radio Systems Technical Committee, positions the ETSI work with respect to other standards efforts (IEEE 802, IEEE SCC41) as well as the European Regulatory Framework, and gives an outlook on the future evolution. In particular, software defined radio related study results are presented with a focus on SDR architectures for mobile devices such as mobile phones. For MDs, a novel architecture and inherent interfaces are presented enabling the usage of SDR principles in a mass market context. Cognitive radio principles within ETSI RRS are concentrated on two topics, a cognitive pilot channel proposal and a Functional Architecture for Management and control of reconfigurable radio systems, including dynamic self-organizing planning and management, dynamic spectrum management, joint radio resource management. Finally, study results are indicated that are targeting a SDR/CR security framework

    A Novel RF Architecture for Simultaneous Communication, Navigation, and Remote Sensing with Software-Defined Radio

    Get PDF
    The rapid growth of SmallSat and CubeSat missions at NASA has necessitated a re-evaluation of communication and remote-sensing architectures. Novel designs for CubeSat-sized single-board computers can now include larger Field-Programmable Gate Arrays (FPGAs) and faster System-on-Chip (SoCs) devices. These components substantially improve onboard processing capabilities so that varying subsystems no longer require an independent processor. By replacing individual Radio Frequency (RF) systems with a single software-defined radio (SDR) and processor, mission designers have greater control over reliability, performance, and efficiency. The presented architecture combines individual processing systems into a single design and establishes a modular SDR architecture capable of both remote-sensing and communication applications. This new approach based on a multi-input multi-output (MIMO) SDR features a scalable architecture optimized for Size, Weight, Power, and Cost (SWaP-C), with sufficient noise performance and phase-coherence to enable both remote-sensing and navigation applications, while providing a communication solution for simultaneous S-band and X-band transmission. This SDR design is developed around the NASA CubeSat Card Standard (CS2) that provides the required modularity through simplified backplane and interchangeable options for multiple radiation-hardened/tolerant processors. This architecture provides missions with a single platform for high-rate communication and a future platform to develop cognitive radio systems
    corecore