77,385 research outputs found

    Design of an emulation framework for evaluating large-scale open content aware networks

    Get PDF
    The popularity of multimedia services has resulted in new revenue opportunities for network and service providers but has also introduced important new challenges. The large amount of resources and stringent quality requirements imposed by multimedia services has triggered the need for open content aware networks, where specific management algorithms that optimize the delivery of multimedia services can be dynamically plugged in when required. In the past, a plethora of algorithms have been proposed ranging from specific cache algorithms to video client heuristics that are optimized for a specific multimedia service type and its corresponding delivery. However, it remains difficult to accurately characterize the performance of these algorithms and investigate the impact of an actual deployment in multimedia services. In this paper, we present a framework that allows evaluating the performance of such algorithms for open content aware networks. The proposed evaluation framework has two important advantages. First, it performs an emulation of the novel algorithms instead of using a simulation approach, which is often carried out to characterize performance. Second, the emulation framework allows evaluating the impact of combining different multimedia algorithms with each other. We present the architecture of the emulation framework and discuss the main software components used. Furthermore, we present a performance evaluation of an illustrative use case, which identifies the need for emulation-based evaluation

    A cloud-enabled small cell architecture in 5G networks for broadcast/multicast services

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The evolution of 5G suggests that communication networks become sufficiently flexible to handle a wide variety of network services from various domains. The virtualization of small cells as envisaged by 5G, allows enhanced mobile edge computing capabilities, thus enabling network service deployment and management near the end user. This paper presents a cloud-enabled small cell architecture for 5G networks developed within the 5G-ESSENCE project. This paper also presents the conformity of the proposed architecture to the evolving 5G radio resource management architecture. Furthermore, it examines the inclusion of an edge enabler to support a variety of virtual network functions in 5G networks. Next, the improvement of specific key performance indicators in a public safety use case is evaluated. Finally, the performance of a 5G enabled evolved multimedia broadcast multicast services service is evaluated.Peer ReviewedPostprint (author's final draft

    Control-level call differentiation in IMS-based 3G core networks

    Get PDF
    The 3GPP-defined IP Multimedia Subsystem is becoming the de facto standard for IP-based multimedia communication services. It consists of an overlay control and service layer that is deployed on top of IP-based mobile and fixed networks, in order to enable the seamless provisioning of IP multimedia services to 3G users. Service differentiation, which implies the network\u27s ability to distinguish between different classes of traffic (or service) and provide each class with the appropriate treatment, is an important aspect that is considered in 3G networks. In this article, we present a critical review of existing service differentiation solutions and propose a new control-level call differentiation solution for IMS-based 3G core networks. The solution consists of a novel call differentiation scheme, enabling the definition of various categories of calls with different QoS profiles. To enable the support of such profiles, an extended IMS architecture, relying on two adaptive resource management mechanisms, is proposed. Furthermore, simulations are used to evaluate the system performance. Compared to existing service differentiation solutions, our solution offers several benefits, such as: flexible QoS negotiation mechanisms, control over many communication aspects as means for differentiation, and a dynamic and adaptive resource management strategy. © 2011 IEEE

    Design and implementation of a fault management service for heterogeneous networks using Tina Network Resource architecture

    Get PDF
    Master of Science in Engineering - EngineeringFaults are unavoidable and cause network downtime and degradation of large and complex communication networks. The need for fault management capabilities for improving network reliability is critical to rectify these faults. Current communication networks are moving towards the distributed computing environment enabling these networks to transport heterogeneous multimedia information across end to end connections. An advanced fault management system is thus required for such communication networks. Fault Management provides information on the status of the network by locating, detecting, identifying, isolating, and correcting network problems thereby increasing network reliability. The TINA (Telecommunication Information Networking Architecture) standards define a Network Resource Architecture (NRA) that provides a framework of a transport network that is capable of transporting heterogeneous multimedia media information across heterogeneous networks. TINA also defines a Management Architecture that follows the functional area organization defined in the OSI (Open Systems Interconnection) Management Framework, namely fault, configuration, accounting, performance, and security management (FCAPS). The aim of this project is to utilise the TINA NRA and Management Architecture concepts and principles to design and implement a distributed Fault Management Service for heterogeneous networks. The design presented here utilises TINA’s fault management specifi- cations, together with UML modelling tools to developed this Fault Management Service. The design incorporates the use of CORBA and SNMP to provide a distributed management functionality capable of providing fault management support across heterogeneous networks. The generic nature of the fault management service is tested on the SATINA Trial platform which consists of both an ATM network as well as an IP MPLS network. The report concludes that the Fault Management Service is applicable to any connectionoriented network that is modeled using the TINA NRA specification and principles

    The Design of a System Architecture for Mobile Multimedia Computers

    Get PDF
    This chapter discusses the system architecture of a portable computer, called Mobile Digital Companion, which provides support for handling multimedia applications energy efficiently. Because battery life is limited and battery weight is an important factor for the size and the weight of the Mobile Digital Companion, energy management plays a crucial role in the architecture. As the Companion must remain usable in a variety of environments, it has to be flexible and adaptable to various operating conditions. The Mobile Digital Companion has an unconventional architecture that saves energy by using system decomposition at different levels of the architecture and exploits locality of reference with dedicated, optimised modules. The approach is based on dedicated functionality and the extensive use of energy reduction techniques at all levels of system design. The system has an architecture with a general-purpose processor accompanied by a set of heterogeneous autonomous programmable modules, each providing an energy efficient implementation of dedicated tasks. A reconfigurable internal communication network switch exploits locality of reference and eliminates wasteful data copies

    Service Migration from Cloud to Multi-tier Fog Nodes for Multimedia Dissemination with QoE Support.

    Get PDF
    A wide range of multimedia services is expected to be offered for mobile users via various wireless access networks. Even the integration of Cloud Computing in such networks does not support an adequate Quality of Experience (QoE) in areas with high demands for multimedia contents. Fog computing has been conceptualized to facilitate the deployment of new services that cloud computing cannot provide, particularly those demanding QoE guarantees. These services are provided using fog nodes located at the network edge, which is capable of virtualizing their functions/applications. Service migration from the cloud to fog nodes can be actuated by request patterns and the timing issues. To the best of our knowledge, existing works on fog computing focus on architecture and fog node deployment issues. In this article, we describe the operational impacts and benefits associated with service migration from the cloud to multi-tier fog computing for video distribution with QoE support. Besides that, we perform the evaluation of such service migration of video services. Finally, we present potential research challenges and trends

    Multicast broadcast services support in OFDMA-based WiMAX systems [Advances in mobile multimedia]

    Get PDF
    Multimedia stream service provided by broadband wireless networks has emerged as an important technology and has attracted much attention. An all-IP network architecture with reliable high-throughput air interface makes orthogonal frequency division multiplexing access (OFDMA)-based mobile worldwide interoperability for microwave access (mobile WiMAX) a viable technology for wireless multimedia services, such as voice over IP (VoIP), mobile TV, and so on. One of the main features in a WiMAX MAC layer is that it can provide'differentiated services among different traffic categories with individual QoS requirements. In this article, we first give an overview of the key aspects of WiMAX and describe multimedia broadcast multicast service (MBMS) architecture of the 3GPP. Then, we propose a multicast and broadcast service (MBS) architecture for WiMAX that is based on MBMS. Moreover, we enhance the MBS architecture for mobile WiMAX to overcome the shortcoming of limited video broadcast performance over the baseline MBS model. We also give examples to demonstrate that the proposed architecture can support better mobility and offer higher power efficiency
    • …
    corecore