2,483 research outputs found

    Recurrent kernel machines : computing with infinite echo state networks

    Get PDF
    Echo state networks (ESNs) are large, random recurrent neural networks with a single trained linear readout layer. Despite the untrained nature of the recurrent weights, they are capable of performing universal computations on temporal input data, which makes them interesting for both theoretical research and practical applications. The key to their success lies in the fact that the network computes a broad set of nonlinear, spatiotemporal mappings of the input data, on which linear regression or classification can easily be performed. One could consider the reservoir as a spatiotemporal kernel, in which the mapping to a high-dimensional space is computed explicitly. In this letter, we build on this idea and extend the concept of ESNs to infinite-sized recurrent neural networks, which can be considered recursive kernels that subsequently can be used to create recursive support vector machines. We present the theoretical framework, provide several practical examples of recursive kernels, and apply them to typical temporal tasks

    Scalable and Interpretable One-class SVMs with Deep Learning and Random Fourier features

    Full text link
    One-class support vector machine (OC-SVM) for a long time has been one of the most effective anomaly detection methods and extensively adopted in both research as well as industrial applications. The biggest issue for OC-SVM is yet the capability to operate with large and high-dimensional datasets due to optimization complexity. Those problems might be mitigated via dimensionality reduction techniques such as manifold learning or autoencoder. However, previous work often treats representation learning and anomaly prediction separately. In this paper, we propose autoencoder based one-class support vector machine (AE-1SVM) that brings OC-SVM, with the aid of random Fourier features to approximate the radial basis kernel, into deep learning context by combining it with a representation learning architecture and jointly exploit stochastic gradient descent to obtain end-to-end training. Interestingly, this also opens up the possible use of gradient-based attribution methods to explain the decision making for anomaly detection, which has ever been challenging as a result of the implicit mappings between the input space and the kernel space. To the best of our knowledge, this is the first work to study the interpretability of deep learning in anomaly detection. We evaluate our method on a wide range of unsupervised anomaly detection tasks in which our end-to-end training architecture achieves a performance significantly better than the previous work using separate training.Comment: Accepted at European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD) 201

    Fast rates for support vector machines using Gaussian kernels

    Full text link
    For binary classification we establish learning rates up to the order of n−1n^{-1} for support vector machines (SVMs) with hinge loss and Gaussian RBF kernels. These rates are in terms of two assumptions on the considered distributions: Tsybakov's noise assumption to establish a small estimation error, and a new geometric noise condition which is used to bound the approximation error. Unlike previously proposed concepts for bounding the approximation error, the geometric noise assumption does not employ any smoothness assumption.Comment: Published at http://dx.doi.org/10.1214/009053606000001226 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Model Selection for Support Vector Machine Classification

    Get PDF
    We address the problem of model selection for Support Vector Machine (SVM) classification. For fixed functional form of the kernel, model selection amounts to tuning kernel parameters and the slack penalty coefficient CC. We begin by reviewing a recently developed probabilistic framework for SVM classification. An extension to the case of SVMs with quadratic slack penalties is given and a simple approximation for the evidence is derived, which can be used as a criterion for model selection. We also derive the exact gradients of the evidence in terms of posterior averages and describe how they can be estimated numerically using Hybrid Monte Carlo techniques. Though computationally demanding, the resulting gradient ascent algorithm is a useful baseline tool for probabilistic SVM model selection, since it can locate maxima of the exact (unapproximated) evidence. We then perform extensive experiments on several benchmark data sets. The aim of these experiments is to compare the performance of probabilistic model selection criteria with alternatives based on estimates of the test error, namely the so-called ``span estimate'' and Wahba's Generalized Approximate Cross-Validation (GACV) error. We find that all the ``simple'' model criteria (Laplace evidence approximations, and the Span and GACV error estimates) exhibit multiple local optima with respect to the hyperparameters. While some of these give performance that is competitive with results from other approaches in the literature, a significant fraction lead to rather higher test errors. The results for the evidence gradient ascent method show that also the exact evidence exhibits local optima, but these give test errors which are much less variable and also consistently lower than for the simpler model selection criteria
    • …
    corecore