We address the problem of model selection for Support Vector Machine (SVM)
classification. For fixed functional form of the kernel, model selection
amounts to tuning kernel parameters and the slack penalty coefficient C. We
begin by reviewing a recently developed probabilistic framework for SVM
classification. An extension to the case of SVMs with quadratic slack penalties
is given and a simple approximation for the evidence is derived, which can be
used as a criterion for model selection. We also derive the exact gradients of
the evidence in terms of posterior averages and describe how they can be
estimated numerically using Hybrid Monte Carlo techniques. Though
computationally demanding, the resulting gradient ascent algorithm is a useful
baseline tool for probabilistic SVM model selection, since it can locate maxima
of the exact (unapproximated) evidence. We then perform extensive experiments
on several benchmark data sets. The aim of these experiments is to compare the
performance of probabilistic model selection criteria with alternatives based
on estimates of the test error, namely the so-called ``span estimate'' and
Wahba's Generalized Approximate Cross-Validation (GACV) error. We find that all
the ``simple'' model criteria (Laplace evidence approximations, and the Span
and GACV error estimates) exhibit multiple local optima with respect to the
hyperparameters. While some of these give performance that is competitive with
results from other approaches in the literature, a significant fraction lead to
rather higher test errors. The results for the evidence gradient ascent method
show that also the exact evidence exhibits local optima, but these give test
errors which are much less variable and also consistently lower than for the
simpler model selection criteria