11 research outputs found

    Solving the Multiple Traveling Salesman Problem by a Novel Meta-heuristic Algorithm

    Get PDF
    The multiple traveling salesman problem (MTSP) is a generalization of the famous traveling salesman problem (TSP), where more than one salesman is used in the solution. Although the MTSP is a typical kind of computationally complex combinatorial optimization problem, it can be extended to a wide variety of routing problems. This paper presents an efficient and evolutionary optimization algorithm which has been developed through combining Modified Imperialist Competitive Algorithm and Lin-Kernigan Algorithm (MICA) in order to solve the MTSP.  In the proposed algorithm, an absorption function and several local search algorithms as a revolution operator are used. The performance of our algorithm was tested on several MTSP benchmark problems and the results confirmed that the MICA performs well and is quite competitive with other meta-heuristic algorithms

    Approximation Algorithms and Heuristics for a Heterogeneous Traveling Salesman Problem

    Get PDF
    Unmanned Vehicles (UVs) are developed for several civil and military applications. For these applications, there is a need for multiple vehicles with different capabilities to visit and monitor a set of given targets. In such scenarios, routing problems arise naturally where there is a need to plan paths in order to optimally use resources and time. The focus of this thesis is to address a basic optimization problem that arises in this setting. We consider a routing problem where some targets have to be visited by specific vehicles. We approach this problem by dividing the routing into two sub problems: partitioning the targets while satisfying vehicle target constraints and sequencing. We solve the partitioning problem with the help of a minimum spanning tree algorithm. We use 3 different approaches to solve the sequencing problem; namely, the 2 approximation algorithm, Christofide's algorithm and the Lin - Kernighan Heuristic (LKH). The approximation algorithms were implemented in MATLAB. We also developed an integer programming (IP) model and a relaxed linear programming (LP) model in C with the help of Concert Technology for CPLEX, to obtain lower bounds. We compare the performance of the developed approximation algorithms with both the IP and the LP model and found that the heuristic performed very well and provided the better quality solutions as compared to the approximation algorithms. It was also found that the approximation algorithms gave better solutions than the apriori guarantees

    Approximation Algorithms and Heuristics for a 2-depot, Heterogeneous Hamiltonian Path Problem

    Get PDF
    Various civil and military applications of UAVs, or ground robots, require a set of vehicles to monitor a group of targets. Routing problems naturally arise in this setting where the operators of the vehicles have to plan the paths suitably in order to optimize the use of resources available such as sensors, fuel etc. These vehicles may differ either in their structural (design and dynamics) or functional (sensing) capabilities. This thesis addresses an important routing problem involving two heterogeneous vehicles. As the addressed routing problem is NP-Hard, we develop an approximation algorithm and heuristics to solve the problem. Our approach involves dividing the routing problem into two sub-problems: Partitioning and Sequencing. Partitioning the targets involves finding two distinct sets of targets, each corresponding to one of the vehicles. We then find a sequence in which these targets need to be visited in order to optimize the use of resources to the maximum possible extent. The sequencing problem can be solved either by Christofides algorithm or the Lin-Kernighan Heuristic (LKH). The problem of partitioning is tackled by solving a Linear Program (LP) obtained by relaxing some of the constraints of an Integer Programming (IP) model for the problem. We observe the performance of two LP models for the partitioning. The first LP model is obtained by relaxing only the integrality constraints whereas in the second model relaxes both integrality and degree constraints. The algorithms were implemented in a C++ environment with the help of Concert Technology for CPLEX, and Boost Graph Libraries. The performance of these algorithms was studied for 50 random instances of varying problem sizes. It was found that on an average, the algorithms based on the first LP model provided better (closer to the optimum) solutions as compared to those based on the second LP model. We also observed that for both the LP models, the average quality of solutions given by the heuristics were found to be better ( within 5% of the optimum) than the average quality of solutions obtained from the approximation algorithm (between 30 - 60% of the optimum depending on the problem size)

    Algorithms for Multiple Vehicle Routing Problems

    Get PDF
    Surveillance and monitoring applications require a collection of heterogeneous vehicles to visit a set of targets. This dissertation considers three fundamental routing problems involving multiple vehicles that arise in these applications. The main objective of this dissertation is to develop novel approximation algorithms for these routing problems that find feasible solutions and also provide a bound on the quality of the solutions produced by the algorithms. The first routing problem considered is a multiple depot, multiple terminal, Hamiltonian Path problem. Given multiple vehicles starting at distinct depots, a set of targets and terminal locations, the objective of this problem is to find a vertex-disjoint path for each vehicle such that each target is visited once by a vehicle, the paths end at the terminals and the sum of the distances travelled by the vehicles is a minimum. A 2-approximation algorithm is presented for this routing problem when the costs are symmetric and satisfy the triangle inequality. For the case where all the vehicles start from the same depot, a 5/3-approximation algorithm is developed. The second routing problem addressed in this dissertation is a multiple depot, heterogeneous traveling salesman problem. The objective of this problem is to find a tour for each vehicle such that each of the targets is visited at least once by a vehicle and the sum of the distances travelled by the vehicles is minimized. A primal-dual algorithm with an approximation ratio of 2 is presented for this problem when the vehicles involved are ground vehicles that can move forwards and backwards with a constraint on their minimum turning radius. Finally, this dissertation addresses a multiple depot heterogeneous traveling salesman problem when the travel costs are asymmetric and satisfy the triangle inequality. An approximation algorithm and a heuristic is developed for this problem with simulation results that corroborate the performance of the proposed algorithms. All the main algorithms presented in the dissertation advance the state of art in the area of approximation algorithms for multiple vehicle routing problems. This dissertation has its value for providing approximation algorithms for the routing problems that involves multiple vehicles with additional constraints. Some algorithms have constant approximation factor, which is very useful in the application but difficult to find. In addition to the approximation algorithms, some heuristic algorithms were also proposed to improve solution qualities or computation time

    Routing Vehicles with Motion, Resource and Mission Constraints: Algorithms and Bounds

    Get PDF
    Unmanned Aerial Vehicles (UAVs) are used for several military and civil applications such as reconnaissance, surveillance etc. The UAVs, due to their design and size limitations, have inherent kinematic constraints, communication constraints etc. This thesis considers the path planning problems for UAVs while satisfying a class of constraints. We consider a multiple depot UAV routing problem, where the vehicles have motion constraints due to bound on their yaw-rate. For a given set of targets, it is required that each target should be on the path of at least one of the vehicles. This problem is hard to solve and currently there are no algorithm that could find an optimal solution. We aim to find tight lower bounds for this problem via Lagrangian relaxation. The complicating constraints of the problem are relaxed, and the cost function is penalized whenever those constraints are violated. This reduces the original problem to a known problem - a standard multiple traveling salesmen problem (MTSP). Simulation results are presented to show that this method significantly improved the existing lower bounds. The second problem we consider is the routing of UAVs in GPS denied environments and with limited communication range. Two different architectures for navigation assisted by an array of Unattended Ground Sensors (UGSs) are considered. In the first case, when an UAV localizes itself by communicating with an UGS, the second UAV can orbit around the first UAV. Contact with UGS allows them to act as beacons for relative navigation eliminating the need for GPS. A randomized algorithm with approximation ratio of 9/2 and a transformation technique are developed to solve this problem. In the second architecture, when two UAVs are located at two different UGSs, the third UAV localizes by triangulation using range measurements from the first two UAVs. This three UAV case is solved using a graph transformation technique to pose it as an one-in-a-set TSP. The solutions produced by these algorithms were used to simulate the UAV routing on AMASE, a simulation tool for routing UAVs developed by the Air Force Research Laboratories

    Estimating the efficacy of mass rescue operations in ocean areas with vehicle routing models and heuristics

    Get PDF
    Tese de doutoramento, Estatística e Investigação Operacional (Optimização), Universidade de Lisboa, Faculdade de Ciências, 2018Mass rescue operations (MRO) in maritime areas, particularly in ocean areas, are a major concern for the authorities responsible for conducting search and rescue (SAR) activities. A mass rescue operation can be defined as a search and rescue activity characterized by the need for immediate assistance to a large number of persons in distress, such that the capabilities normally available to search and rescue are inadequate. In this dissertation we deal with a mass rescue operation within ocean areas and we consider the problem of rescuing a set of survivors following a maritime incident (cruise ship, oil platform, ditched airplane) that are drifting in time. The recovery of survivors is performed by nearby ships and helicopters. We also consider the possibility of ships capable of refuelling helicopters while hovering which can extend the range to which survivors can be rescued. A linear binary integer formulation is presented along with an application that allows users to build instances of the problem. The formulation considers a discretization of time within a certain time step in order to assess the possibility of travelling along different locations. The problem considered in this work can be perceived as an extension of the generalized vehicle routing problem (GVRP) with a profit stance since we may not be able to recover all of the survivors. We also present a look ahead approach, based on the pilot method, to the problem along with some optimal results using state of the art Mixed-integer linear programming solvers. Finally, the efficacy of the solution from the GVRP is estimated for a set of scenarios that combine incident severity, location, traffic density for nearby ships and SAR assets availability and location. Using traffic density maps and the estimated MRO efficacy, one can produce a combined vulnerability map to ascertain the quality of response to each scenario.Marinha Portuguesa, Plano de Atividades de Formação Nacional (PAFN
    corecore