
ALGORITHMS FOR MULTIPLE VEHICLE ROUTING PROBLEMS

A Dissertation

by

JUNG YUN BAE

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Sivakumar Rathinam
Committee Members, Swaroop Darbha

Reza Langari
Sergiy Butenko

Head of Department, Andreas Polycarpou

May 2014

Major Subject: Mechanical Engineering

Copyright 2014 Jung Yun Bae

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Texas A&M Repository

https://core.ac.uk/display/79648558?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ABSTRACT

Surveillance and monitoring applications require a collection of heterogeneous

vehicles to visit a set of targets. This dissertation considers three fundamental rout-

ing problems involving multiple vehicles that arise in these applications. The main

objective of this dissertation is to develop novel approximation algorithms for these

routing problems that find feasible solutions and also provide a bound on the quality

of the solutions produced by the algorithms.

The first routing problem considered is a multiple depot, multiple terminal,

Hamiltonian Path problem. Given multiple vehicles starting at distinct depots, a set

of targets and terminal locations, the objective of this problem is to find a vertex-

disjoint path for each vehicle such that each target is visited once by a vehicle, the

paths end at the terminals and the sum of the distances travelled by the vehicles is a

minimum. A 2-approximation algorithm is presented for this routing problem when

the costs are symmetric and satisfy the triangle inequality. For the case where all

the vehicles start from the same depot, a 5
3
-approximation algorithm is developed.

The second routing problem addressed in this dissertation is a multiple depot,

heterogeneous traveling salesman problem. The objective of this problem is to find a

tour for each vehicle such that each of the targets is visited at least once by a vehicle

and the sum of the distances travelled by the vehicles is minimized. A primal-dual

algorithm with an approximation ratio of 2 is presented for this problem when the

vehicles involved are ground vehicles that can move forwards and backwards with a

constraint on their minimum turning radius.

Finally, this dissertation addresses a multiple depot heterogeneous traveling sales-

man problem when the travel costs are asymmetric and satisfy the triangle inequality.

ii

An approximation algorithm and a heuristic is developed for this problem with sim-

ulation results that corroborate the performance of the proposed algorithms. All the

main algorithms presented in the dissertation advance the state of art in the area of

approximation algorithms for multiple vehicle routing problems.

This dissertation has its value for providing approximation algorithms for the

routing problems that involves multiple vehicles with additional constraints. Some

algorithms have constant approximation factor, which is very useful in the application

but difficult to find. In addition to the approximation algorithms, some heuristic

algorithms were also proposed to improve solution qualities or computation time.

iii

ACKNOWLEDGEMENTS

It was such an honor for me to complete my Ph.D degree in the Department of

Mechanical Engineering at Texas A&M University. I would like to thank the people

who helped me during all those years.

My first thanks go to my advisor, Dr. Sivakumar Rathinam. It was through

his support and encouragement that I nurtured my interest in routing problems

and unmanned vehicle systems. At every challenging moment of a mental block, Dr.

Rathinam helped me stay motivated and try another direction by giving me insightful

advice with patience. His detailed guidance made me a better researcher, teacher and

presenter. I also thank Dr. Swaroop Darbha, who in all practical terms served as my

co-advisor throughout the process. I owe an enormous intellectual debt particularly

relating to optimization and its application to system control to his instruction and

guidance. Dr. Rathinam and Dr. Swaroop have shown great consideration and care

not only as my academic advisors but also as personal mentors and companions, and

I greatly appreciate everything they have done for me.

Special thanks to my committee members, Dr. Reza Langari, and Dr. Sergiy

Butenko, for their support, guidance and helpful suggestions. Their guidance was

invaluable in writing this dissertation and I owe them my heartfelt appreciation.

I was fortunate to have wonderful lab members, Kaarthik Sundar, Harsha Nagara-

jan, Manyam Satyanarayana, Navid Mohsenizadeh and Peyman Moghadas. Their

passion for research, intellectual curiosity and attitude towards life have inspired me

throughout the process.

I want to thank my parents, Sang Hoon Bae and In Soon Kwon, my sister Jin

Yung Bae and brother-in-law Noah Popp for all their support. Their encouragement

iv

was critical in my decision to pursue a Ph.D in the United States. Their endless love

enabled me to overcome any difficulties.

Finally, I thank Myoungkuk Park, my colleague and my husband. He is the one

who gave me bottomless support for everything. I really appreciate that we could go

through this tough time together. I have no doubt that, for the forthcoming journey

of our lives, he will always be my best colleague and confidant in the world. I thank

him for giving me the most precious baby, Jayna Park, the one that I live for and

provide me with such happiness. I also want to thank to my parents in law for their

endless prayers for us.

v

TABLE OF CONTENTS

Page

ABSTRACT . ii

ACKNOWLEDGEMENTS . iv

TABLE OF CONTENTS . vi

LIST OF FIGURES . viii

LIST OF TABLES . xi

1. INTRODUCTION . 1

1.1 Related Work . 3
1.2 Organization . 6

2. APPROXIMATION ALGORITHMS FOR MULTIPLE TERMINAL HAMIL-
TONIAN PATH PROBLEMS . 7

2.1 Multiple depot, multiple terminal, Hamiltonian path problems 7
2.1.1 Problem statement . 7
2.1.2 Approximation algorithm for MDMTHPP 8
2.1.3 Optimal constrained forest as a two matroid intersection problem 11

2.2 Single depot multiple terminal Hamiltonian path problems 14
2.2.1 Problem statement . 14
2.2.2 Approximation algorithm for SDMTHPP 15

3. AN APPROXIMATION ALGORITHM FOR A MULTIPLE DEPOT HET-
EROGENEOUS TRAVELING SALESMAN PROBLEM 23

3.1 Problem statement . 23
3.2 Problem formulation . 23
3.3 Main ideas in the proposed approach 26
3.4 Primal-Dual algorithm for MDHTSP 27

3.4.1 Properties of the primal-dual algorithm 35
3.4.2 Feasibility and running time analysis 37
3.4.3 Approximation ratio analysis 38

3.5 Simulation results . 43

4. ALGORITHMS FOR A MULTIPLE DEPOT HETEROGENEOUS ASYM-
METRIC TRAVELING SALESMAN PROBLEM 51

4.1 Problem statement . 51

vi

4.2 Approximation algorithm using LP relaxation 52
4.2.1 Problem formulation . 52
4.2.2 An approximation algorithm for the MDHATSP 54

4.3 A Primal-dual heuristic algorithm . 59
4.3.1 Problem formulation . 59
4.3.2 A Primal-dual heuristic algorithm 61

4.4 Computational results . 70

5. CONCLUSIONS . 74

REFERENCES . 76

vii

LIST OF FIGURES

FIGURE Page

2.1 Step 1 of approx1: Find an optimal constrained forest. In this ex-
ample, there are m = 4 depots and n = 20 targets. Also, t1 = 28,
t2 = 27, t3 = 25, t4 = 26. 10

2.2 Step 2a of approx1: For i = 1, · · · , 4, double any edge that is not on
the path from depot i to its terminal ti in the tree Ti. 10

2.3 Step 2b of approx1: For i = 1, · · · , 4, find a walk and shortcut any
target that is visited more than once such that the path starts from
depot i, visits each of the targets in Ti exactly once before reaching
the terminal ti. 11

2.4 Step 1 of approx2: Find an optimal constrained tree. In this example,
there are m = 4 vehicles and n = 24 targets. 18

2.5 Step 2 of approx2: The paths in T for each vehicle from the depot to
their respective terminals. PATHi corresponds to the ith vehicle at
the depot. 19

2.6 Step 3 of approx2: The graph GT obtained by removing all the edges
that lie on the paths, PATH1, · · · , PATHm from T ; in addition, any
vertex whose degree is zero after the removal of the edges is also elim-
inated. 19

2.7 Odd degree targets of the graph GT 20

2.8 Step 4 of approx2: The edges from the minimum cost, perfect match-
ing on the odd-degree targets are added to GT . The new graph is
denoted by Gnew. 20

2.9 Step 5 of approx2: Add the edges of each connected component of
Gnew to some graph in {G1, · · · , Gm} that shares a common target
with the connected component. 21

2.10 Step 6 of approx2: For i = 1, · · · ,m, find a walk that starts at the
depot and ends at the terminal in Gi. Shortcut any previously visited
targets so that each target is visited exactly once by some vehicle. . . 22

viii

3.1 Snapshot of the forest for an example with 3 vehicles and 9 targets
at the end of the first iteration of the main loop. The radius of the
circular region, pi(u) :=

∑
S:u∈S Yi(S), around a target u in the forest

Fi is equal to the sum of the dual variables of all the components that
contain u in Fi. An edge between target 1 and 2 is added to F1 as the
corresponding constraint of (3.10) became tight. 31

3.2 Snapshot of the forest after nine iterations of the main loop. The
constraint corresponding to the edge joining the target 8 and the depot
2 becomes tight. The edge is added to F2 and the merged component
is deactivated as the target 7 and 8 is now connected to the depot 2.
The component {7, 8} in F3 is also deactivated. These components
never become active again. 32

3.3 Snapshot of the forest after eleven iterations of the main loop. The
component {7, 8} in F1 is deactivated and marked since the corre-
sponding constraint in (3.11) became tight. 33

3.4 Snapshot of the forest after fifteen iterations of the main loop. The
edge between the target 3 and 7 is added to F1 as the corresponding
constraint becomes tight. The component {7, 8} in F1 is now merged
with the component {3} and the new component {3, 7, 8} in F1 is now
active again. 34

3.5 Snapshot of the forest at the end of the main loop 34

3.6 Snapshot of the final forest after the pruning step 35

3.7 Example instance with 2 vehicles . 45

3.8 Example instance with 4 vehicles . 46

3.9 Average approximation ratio for 50 instances 48

3.10 Maximum approximation ratio for 50 instances 49

3.11 Average running time for 50 instances 50

4.1 Snapshot of the forest for an example with 3 vehicles and 14 targets at
the end of the first iteration of the main loop. At the beginning of the
first iteration, the components which contain target 1 are chosen to
increase the dual variables. An edge coming from target 7 to target 1
is added to F1 as the corresponding constraint of (4.40) becomes tight.
Since target 1 does not form any strongly connected component and
is not reachable from d1, {1} ∈ C1 is deactivated. 65

ix

4.2 Snapshot of the forest after eight iterations of the main loop. The
components that contain target 8 are chosen to increase the dual vari-
ables and an edge coming from target 5 to target 8 is added to F1.
Since target 5 and target 8 forms a strongly connected component,
{5, 8} ∈ C1 becomes an active component. 65

4.3 Snapshot of the forest after eleven iterations of the main loop. The
components that contain target 11 are chosen to increase the dual
variables, and an edge coming from depot 2 to target 11 is added to
F2. Since the target 11 is now reachable from d2, {11, d2} ∈ C2 became
an inactive component. The subset {11} ∈ C3 is deactivated and the
superset {11} ∈ C1 is marked and deactivated. 66

4.4 Snapshot of the forest in the middle of the thirty ninth iteration of
the main loop. In the first map, we can see that the components
{13, 14}, {3}, {11} are still violated components but inactive. 66

4.5 Snapshot of the forest after thirty nine iterations of the main loop.
By following the combining procedure of the algorithm, now the com-
ponent {4, 5, 8, 13, 14} ∈ C1 became an active violated component. . . 67

4.6 Snapshot of the forest in the middle of the forty first iteration of
the main loop. The active component {4, 5, 8, 13, 14} ∈ C1 has all
inactive subsets {4, 5, 8}, {13, 14} ∈ C2, but {13, 14} ∈ C2 is a violated
component. 67

4.7 Snapshot of the forest after forty one iterations of the main loop. By
following the combining procedure of the algorithm, now the compo-
nent {4, 5, 8, 13, 14} ∈ C2 became an active violated component. . . . 68

4.8 Snapshot of the forest after the termination of the main loop. 68

4.9 Snapshot of the final forest after the pruning step 69

x

LIST OF TABLES

TABLE Page

4.1 Comparison of the theoretical and simulation results for m = 2 71

4.2 Comparison of the theoretical and simulation results for m = 3 72

4.3 Comparison of the theoretical and simulation results for m = 4 72

4.4 Comparison of the computation time in seconds for m = 2 73

4.5 Comparison of the computation time in seconds for m = 3 73

4.6 Comparison of the computation time in seconds for m = 4 73

xi

1. INTRODUCTION∗

Unmanned vehicles are commonly used in surveillance applications for monitoring

and tracking a set of targets. For example, in the Cooperative Operations in Urban

Terrain project [9] at the Air Force Research Laboratory, a team of unmanned vehi-

cles are required to monitor a set of targets and send information/videos about the

targets to the ground station. A human operator enters the locations of the targets

through a human-machine interface, and the central computer associated with the

interface has a few minutes to determine the motion plans for each of the vehicles.

A fundamental subproblem that has to be solved by this computer is the problem

of finding a tour for each vehicle so that each target is visited at least once by some

vehicle and the sum of the distances traveled by all of the vehicles is minimal. This

routing problem is known as the Traveling Salesman Problem (TSP) in the case

where there is only one vehicle. In the case where there are multiple vehicles that

possibly start from different initial locations or depots, this routing problem is known

as the Multiple Depot TSP. Once the routing problem is solved and the tours have

been determined, a nominal trajectory can be specified for each vehicle that includes

other kinematic constraints of the vehicles, using the results in [23].

A multiple depot TSP is a generalization of the single TSP and is NP-hard[27].

The main focus of this dissertation is in developing fast algorithms that produce

approximate solutions rather than finding optimal solutions, which may be relatively

difficult. Therefore, the objective of this dissertation is on developing approximation

algorithms for variants and generalizations of the multiple depot TSP. The routing

∗Reprinted with permission from J. Bae and S. Rathinam, Approximation algorithms for multiple
terminal, Hamiltonian path problems, Optimization Letters, vol. 6, no. 1, 69-85, January 2012,
Copyright by Springer 2010.

1

problems considered in this dissertation are quite general and also arise in other

surveillance applications such as crop monitoring [11], [15], and forest temperature

monitoring [30].

Approximate solutions are found for the routing problems through the framework

of approximation algorithms. An α-approximation algorithm is an algorithm that

has a polynomial running time, and returns a solution whose cost is within α times

the optimal cost for every instance of the problem. The factor α is generally referred

as the approximation ratio.

The dissertation addresses the following three variants and generalizations of the

multiple depot TSP:

• A symmetric, multiple depot, multiple terminal, Hamiltonian path problem

(MDMTHPP) is considered in section 2 and can be stated as follows: Given

m vehicles that start from distinct depots, m terminals and n targets, the

problem is to choose paths for each of the vehicles so that (1) each vehicle

starts at his respective depot (or initial location), visits at least one target and

reaches any one of the terminals not visited by other vehicles, (2) each target is

visited exactly once and (3) the sum of the distances travelled by the vehicles

is minimized. We propose an approximation algorithm for the MDMTHPP if

the costs are symmetric and satisfy the triangle inequality. First, an algorithm

that runs in O((n + 2m)3) steps with approximation ratio of 2 is presented.

Next, we consider a special case of the problem where all the vehicles start

from a single depot, known as the single depot, multiple terminal, Hamiltonian

path problem (SDMTHPP). For the SDMTHPP, an algorithm that runs in

O((n+ 2m)3) steps with approximation ratio of 5
3

is proposed.

• A multiple depot, heterogeneous traveling salesman problem (MDHTSP) is

2

considered in section 3 and can be stated as follows: Given m heterogeneous

vehicles that start from distinct depot and n targets, the problem is to choose

a tour for each vehicle such that each target is visited at least once by a

vehicle and the sum of the distances travelled by the vehicles is minimized.

Determining a tour for a vehicle specifies a sequence of targets to visit for the

vehicle. Vehicles are considered to be heterogeneous if the distance to travel

between any two targets depends on the type of the vehicle used. We propose

a 2-approximation algorithm for an important special case of this MDHTSP

when the vehicles considered as ground vehicles that can move forwards and

backwards with a minimum turning radius.

• A multiple depot, heterogeneous asymmetric salesman problem (MDHATSP)

is considered in section 4 and can be stated as follows: Given a team of small

heterogeneous vehicles located at distinct depots, a set of target locations and

the cost of traveling between any two locations for each UV, find a tour for

each vehicle such that each target is visited by a vehicle and the sum of the

travel cost of all the vehicles is minimized. First, for the MDHATSP with

m vehicles and n targets, we present a mlog2(n+ 1)-approximation algorithm

when the travel costs are asymmetric and satisfy the triangle inequality. Later,

we develop a primal-dual heuristic for the problem for a special case when the

vehicles considered are fixed-wing Unmanned Aerial Vehicles (UAVs). Simula-

tion results are also presented to corroborate the performance of the proposed

algorithms.

1.1 Related Work

The MDMTHPP is a generalization of the single TSP. TSP’s have received sig-

nificant attention in the area of combinatorial optimization [18],[27]. In general, it is

3

known that there cannot exist a constant factor approximation algorithm for a TSP

unless P = NP [27]. However, when the costs satisfy the triangle inequality, there

are constant factor approximation algorithms available for the single TSP and the

Hamiltonian Path Problems (HPPs). The algorithm by Christofides [3] with an ap-

proximation factor of 3
2

is currently one of the best known approximation algorithms

for the single TSP when the costs satisfy the triangle inequality. This approximation

algorithm has been extended by Hoogeveen to variants of the single HPP in [14].

Specifically, Hoogeveen developed a 5
3
-approximation algorithm for a Single Depot,

Single Terminal Hamiltonian Path Problem in [14].

In general, there are two basic combinatorial problems while dealing with a mul-

tiple salesman problem. One is a partitioning problem that requires a subset of

targets to be assigned for each salesman to visit. The second is the sequencing

problem of finding a suitable sequence of visiting the subset of targets assigned to

each salesman. The difficulty in dealing with a multiple salesman problem is that

both the partitioning problem and the sequencing problem are coupled. Currently,

there are 2-approximation algorithms for variants of the multiple salesman problem

available in the literature [17], [23], [21]. Specifically, Rathinam et al. present a

2-approximation algorithm for the MDMTHPP that runs in O((n + 2m)6) steps in

[21]. Each of the 2-approximation algorithms works in a sequence of two main steps.

In the first step, a constrained forest problem which is generally a relaxation of the

given multiple salesman problem is solved optimally. In the second step, edges in

the constrained forest are doubled to obtain an Eulerian graph for each salesman.

A path or a tour can then be suitably found for each salesman using the Eulerian

graphs by shortcutting any target that is visited more than once. The computational

complexity of a 2-approximation algorithm crucially depends on how fast one can

find the optimal constrained forest. In section 2, we pose this constrained forest

4

problem corresponding to the MDMTHPP as a weighted, two-matroid intersection

problem where one of the matroids in a partition matroid. Therefore, one can use

the specialized algorithm by Brezovec et al. [1] to find the optimal constrained forest

in O((n+ 2m)3) steps.

The generalization of the Christofides algorithm that can yield an approximation

factor of 3
2

to the case where there are multiple salesman and the salesmen start

from distinct depots and end at distinct terminals is currently an open problem.

However, there are some cases for which the extension of the Christofides algorithm

is available. In [8], Frieze presents a 3
2
-approximation algorithm for the case when

all the depots and the terminals are at the same location and the objective is to

find a tour for each salesman such that each salesman visits at least one target, each

target is visited by some salesman and the total cost of the tours is a minimum. In

[22], Rathinam et al. present a 3
2
-approximation algorithm for variants of a 2 depot,

HPP. When the number of depots is a constant and each salesman is required to

return to his starting depot, Xu et al. [26] have developed a novel 3
2
-approximation

algorithm for the multiple depot, TSP. In section 2, we develop a 5
3
-approximation

algorithm for the SDMTHPP where all the vehicles start from the same depot but

can terminate their paths at distinct terminals.

When the vehicles are heterogeneous, there are currently no constant factor ap-

proximation algorithms in the literature even if the costs are symmetric and satisfy

the triangle inequality. Currently, there are algorithms whose approximation factors

scale linearly in the number of heterogeneous vehicles [4],[29]. In section 3, we present

a 2-approximation algorithm for the case when the travel costs are symmetric, satisfy

the triangle inequality and a monotonicity property. In section 4, for a problem with

m vehicles and n targets, we present a m log2(n+1)-approximation algorithm for the

case when the travel costs are asymmetric and satisfy the triangle inequality. This

5

result generalizes the log2(n)-approximation algorithm for the single vehicle problem

in [7].

1.2 Organization

Each of the sections (2,3,4) formally introduces the problem, presents the approxi-

mation algorithm and proves the corresponding approximation ratio of the proposed

algorithms. The final section concludes the dissertation with directions for future

work.

6

2. APPROXIMATION ALGORITHMS FOR MULTIPLE TERMINAL

HAMILTONIAN PATH PROBLEMS∗

2.1 Multiple depot, multiple terminal, Hamiltonian path problems

2.1.1 Problem statement

Let m vehicles be initially located at depots represented by D := {1, 2, · · · ,m}.

Let U := {m + 1,m + 2, · · · ,m + n} be vertices representing the targets. As-

sume n ≤ m. Let P := {m + n + 1,m + n + 2, · · · , 2m + n} be the set of ver-

tices of possible terminals. Let V = D ∪ U ∪ P . E denotes the set of all the

undirected edges joining any two vertices in V . Let {i, j} represent the undirected

edge joining vertices i and j and C({i, j}) denote the cost of traveling {i, j}. Let

Cmax = maxi,j∈V C({i, j}). Costs are assumed to be positive and satisfy the triangle

inequality. A path for the i-th vehicle is denoted by an ordered sequence of vertices,

PATHi = {di, vi1, vi2, · · · , viki , ti}, where di ∈ D is the depot associated with the

vehicle, ti ∈ P is the terminal visited by the vehicle, ki is the number of targets

visited by the vehicle, and vij ∈ U is the target visited at j-th order by the vehicle

for all j ∈ {1, · · · , ki}. The i-th vehicle starts from depot di, visits target vi1, then

vi2, and so on until it reaches the terminal ti. The cost of the path PATHi is defined

as C(PATHi) = C({di, vi1})+
∑ki−1

j=1,j≥1C({vij, vi(j+1)})+C({viki , ti}). The problem

needs to find a path for each vehicle such that each target is visited by some vehicle,

each vehicle visits at least one target before reaching a terminal not visited by any

other vehicle while the sum of all the costs traveled by the vehicles is minimized. A

feasible solution of the MDMTHPP will have the following properties:

∗Reprinted with permission from J. Bae and S. Rathinam, Approximation algorithms for multiple
terminal, Hamiltonian path problems, Optimization Letters, vol. 6, no. 1, 69-85, January 2012,
Copyright by Springer 2010.

7

• There will be exactly m paths, PATH1, · · · , PATHm, in the solution where

the degree of each of the depots and terminals is equal to one.

• Each path visits at least one target.

• Each target is visited exactly once and the degree of each of the targets in the

solution is equal to two.

2.1.2 Approximation algorithm for MDMTHPP

Since the crux of the algorithm is the computation of an optimal constrained for-

est, we first define it before presenting the approximation algorithm for MDMTHPP.

A constrained forest associated with the given set of vertices V = D ∪ U ∪ P is a

collection of trees such that

• there is no path connecting any two depots or any two terminals,

• there are exactly m trees with at least one target in each tree,

• the degree of each of the depots and the terminals is exactly one.

An optimal constrained forest is a constrained forest where the sum of the cost of

all the edges in the forest is a minimum.

The approximation algorithm, approx1, for the MDMTHPP is presented as fol-

lows in Algorithm 1. In Figure 2.1, 2.2, and 2.3, we can see how approx1 is processed

with an example.

Clearly, approx1 produces a feasible solution for the MDMTHPP. Since the cost

of the edges satisfy the triangle inequality, shortcutting procedure does not increase

the cost of the paths. Therefore, the total cost of the Hamiltonian Paths that approx1

provide must be upper bounded by twice of the cost of the optimal constrained forest.

8

Algorithm 1 approx1
1: Find an optimal constrained forest. Let Ti be the tree corresponding to the

vehicle at the ith depot in this forest. Let ti denote the terminal present in the
tree Ti. This step essentially solves the partitioning problem; the vehicle at the
i-th depot must visit each of the targets in Ti before reaching ti.

2: for i = 1, · · · ,m do
3: (a) Double any edge in Ti that is not on the path from i to ti. Note that in

this new graph, denoted by Ei, all the vertices have an even degree except the
depot di, and the terminal ti.

4: (b) Using the graph Ei, find a Eulerian walk that starts from di, visits each
of the edges in Ei exactly once before reaching the terminal ti. Shortcut this
walk to find a Hamiltonian path that starts from di, visits each of the targets
in Ti exactly once before reaching the terminal ti.

5: end for

As finding an optimal constrained forest is a relaxation of the MDMTHPP by drop-

ping the degree constraints on the targets, the total cost of the Hamiltonian Paths

found by approx1 must be at most equal to twice the optimal cost of the MDMTHPP.

It is also clear that the computational complexity of approx1 is dominated by the

first step of approx1 which requires one to compute an optimal constrained forest.

This part of the proof is discussed in the next subsection.

9

depots

targets

terminals

4

16

17

18

19

26

10

1

5

6

7

8

9

28

2

11
12

1314

23

27

3

15
20

21

22

24

25

Figure 2.1: Step 1 of approx1: Find an optimal constrained forest. In this example,

there are m = 4 depots and n = 20 targets. Also, t1 = 28, t2 = 27, t3 = 25, t4 = 26.

depots

targets

terminals

4

16

17

18

19

26

10

1

5

6

7

8

9

28

2

11
12

1314

23

27

3

15
20

21

22

24

25

Figure 2.2: Step 2a of approx1: For i = 1, · · · , 4, double any edge that is not on the

path from depot i to its terminal ti in the tree Ti.

10

depots

targets

terminals

4

16

17

18

19

26

10

1

5

6

7

8

9

28

2

11
12

1314

23

27

3

15
20

21

22

24

25

Figure 2.3: Step 2b of approx1: For i = 1, · · · , 4, find a walk and shortcut any target

that is visited more than once such that the path starts from depot i, visits each of

the targets in Ti exactly once before reaching the terminal ti.

2.1.3 Optimal constrained forest as a two matroid intersection problem

The basic idea is to formulate the problem of finding an optimal forest in G =

(V,E) as equivalent to finding a directed forest in another graph G′. Then, it is

shown that the problem of finding a minimum cost, directed forest in G′ can be

posed as a weighted, two matroid intersection problem where one of the matroids

is a partition matroid. Hence, one can use the specialized algorithm by Brezovec et

al. [1] to solve the matroid intersection problem, and as a result, obtain an optimal

constrained forest.

G′ = (V ′, E ′) is a directed graph where V ′ := D
⋃
U
⋃
P , and E ′ consists of a

11

set of directed edges joining the vertices in V ′ and is defined as follows.

E ′ := {(i, j), ∀ i ∈ D and ∀j ∈ U}
⋃
{(i, j), ∀ i, j ∈ U, i 6= j}

⋃
{(i, j), ∀i ∈ U and j ∈ P}. (2.1)

In this directed graph G′, (i, j) denotes a directed edge from vertex i to vertex

j. Note that in G′, there is no edge directed into any of the depots and there is no

outgoing edge from any of the terminals. Also, the cost of edges in G′ are defined as

follows:

C ′(i, j) =

C({i, j}), ∀i ∈ D, ∀j ∈ U,

C({i, j}), ∀i, j ∈ U, i 6= j,

C({i, j}), ∀i ∈ U,∀j ∈ P.
(2.2)

Now define a directed forest F = (V ′, B) where B ⊆ E ′ as follows:

• F consists of m trees with exactly one depot, one terminal and at least one

target in each tree.

• The in-degree of each of the vertices in F is at most equal to one.

• The out-degree of each of the depots and the in-degree of each of the terminals

is exactly equal to one.

Note that there is a one to one correspondence between the set of all the constrained

forests in G and the set of all the directed forests in G′. Therefore, finding an optimal

constrained forest in G is equivalent to finding a minimum cost, directed forest in

G′. Now, we will pose the problem of finding the minimum cost, directed forest as a

problem of finding a common base in the intersection of two matroids.

12

Let Si be the set of all the edges directed into i ∈ V ′. Let I ′1 be a collection of

subsets of E ′ such that the number of edges in each subset directed into i is at most

equal to 1. That is, I ′1 := {A1 : A1 ⊆ E ′, |A1

⋂
Si| ≤ 1 ∀i ∈ V ′}. It is well known

that M ′
1 = (E ′, I ′1) is a partition matroid [18].

Now, for any subset B ⊆ E ′, let Bud represent the undirected counterpart of B

obtained by disregarding the directions of the edges in B. Essentially, if there are

two directed edges e1 = (i, j) and e2 = (j, i) in B, then we get two undirected edges

also labeled e1 and e2 between i and j in Bud. Let I ′2 be a collection of subsets of

E ′ such that E ′ ⊇ B ∈ I ′2 if and only if graph (V ′, Bud) is free of cycles and free

of paths connecting any pair of terminals in P . It is known that M ′
2 = (E ′, I ′2) is a

matroid (Cerdeira [2], Waqar et al. [19]).

Lemma 2.1. Consider any common base, B, in the intersection of matroids M ′
1 and

M ′
2. Each tree in this base will consist of at most one depot.

Proof. We will prove this lemma by contradiction. Suppose there is a tree T in B

that consists of at least two depots. Let two of these depots in T be denoted by d1

and d2. Also, let the terminal vertex present in T be denoted by t. Since there is no

incoming edge into d1 and there is no outgoing edge from t, and since the in-degree

of each of the vertices in T must be at most equal to 1, there must be a directed

path from depot d1 to terminal t. By a similar argument, one can also deduce that

there must be a directed path from depot d2 to terminal t. But this is not possible

again due to the fact that the in-degree of each vertex in T must be at most equal to

one. Therefore, any tree in B cannot have more than one depot. Hence proved.

As there are exactly m trees and m depots in any common base, it follows from

the above lemma that each tree in any common base will consist of exactly one depot.

13

Therefore, any common base in the intersection of matroids M ′
1 and M ′

2 will have

the following properties:

• The base will consist of m trees with a depot and a terminal in each tree.

• As there is no edge joining a depot and a terminal in E ′, each tree must consist

of at least one target.

Now, it is clear that this common base satisfies all the requirements in a directed

forest except for the degree constraints that state that the number of edges incident

on each of the depots and the terminals must be equal to one. To meet this re-

quirement, add a large constant say λ := (n + 2m)Cmax to the cost of each of the

edges incident on all the depots and the terminals. Now, any minimum cost base in

the intersection of matroids M ′
1 and M ′

2 with the modified cost will not have more

than one edge incident on any of the depots and the terminals. Therefore, finding an

optimal directed forest can be posed as finding an optimal base in the intersection

of matroids M ′
1 and M ′

2 with the modified cost. Since M ′
1 is a partition matroid,

one can use the specialized algorithm by Brezovec et al. [1] to find the optimal base.

This algorithm runs in O((n+ 2m)3) steps.

We now summarize one of the main results of this section in the following theorem:

Theorem 2.1. The algorithm approx1 solves the MDMTHPP with an approxima-

tion factor of 2. Moreover, the number of steps required is of O((n+ 2m)3) where n

is the number of targets and m is the number of depots.

2.2 Single depot multiple terminal Hamiltonian path problems

2.2.1 Problem statement

Let m vehicle be initially located at the same depot represented by D := {1}.

Let U := {2, 3, · · · , n+ 1} be vertices representing the targets. Assume n ≤ m. Let

14

P := {n + 2, n + 3, · · · ,m + n + 1} be the set of vertices of possible terminals. Let

V = D ∪ U ∪ P . All the other notations used for the SDMTHPP are same with the

ones used for the MDMTHPP. The objective of the problem is to find a path for

each vehicle such that each target is visited by some vehicle, each vehicle visits at

least one target before reaching a terminal not visited by any other vehicle, and the

sum of the costs of the paths traveled by the vehicles is minimized.

2.2.2 Approximation algorithm for SDMTHPP

The approximation algorithm, approx2, for the SDMTHPP is as follows in Al-

gorithm 2. Figure 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, and 2.10 show how approx2 works at

each step with an example.

It is clear that each of the paths obtained using the above algorithm starts at the

depot, visits at least one target and finally reaches a distinct terminal. Also, each

of the targets is visited exactly once. Hence, the above algorithm, approx2, finds a

feasible solution, solf , for the SDMTHPP. The computational complexity of approx2

is dominated by the number of steps required to find the optimal constrained tree

and the perfect matching. Using the algorithm presented in the previous section,

the optimal constrained tree can be found in O(n + 2m)3 steps. The minimum

cost, perfect matching found by Edmonds algorithm requires O(n3) steps [6][10].

Therefore, the number of steps required to implement approx2 is of O((n+ 2m)3).

The remaining part of this section aims to prove that Cost(solf) ≤ 5
3
C∗opt where

Cost(solf) is the sum of the cost of the edges in solf and C∗opt is the optimal cost

of the SDMTHPP. This would prove that the approximation ratio of approx2 is 5
3
.

Now, since the costs satisfy the triangle inequality, short cutting the targets in the

last step of approx2 will not increase the cost of the paths. Therefore, Cost(solf),

obtained using approx2 is upper bounded by Cost(Mopt)+Cost(T) where Cost(Mopt)

15

Algorithm 2 approx2
1: Find an optimal constrained tree, T , covering the depot, all the targets and the

terminals such that
-the degree of the depot is m,
-the path joining any two terminals passes through the depot,
-the depot is not adjacent to any of the terminals, and
-the sum of the cost of the edges in the tree is a minimum.

2: Find the path joining the depot to each of the terminals in T . These paths are
denoted by PATH1, · · · , PATHm. Each path will start at the depot, visit at
least one target and finally reach a terminal. For i = 1, · · · ,m, we define the
graph Gi corresponding to PATHi as follows: A vertex is present in Gi if and
only if the vertex belongs to PATHi, and an edge is present in Gi if and only if
the edge joins two adjacent vertices in PATHi.

3: Obtain a graph GT from T by applying the following sequence of the operations:
remove all the edges that lie on each of the paths, PATH1, · · · , PATHm from
T ; remove all the vertices from T that have no edges incident on them. Observe
that GT will consist of only target vertices and the parity of the degree of any
target vertex u in GT will be the same as the parity of u in T .

4: Let the set of all the odd-degree targets in the graph GT be denoted by O. Note
that |O| is even. Find a minimum cost, perfect matching,Mopt, on all the targets
in O using Edmond’s algorithm. Add the edges in Mopt to the edges in GT to
form a new graph Gnew. At this point, all the target of Gnew must have even
degree. Let the connected components in Gnew be denoted by C1, C2, · · · , Cr.

5: for j = 1, · · · , r do
6: Let Gkj be a graph in {G1, · · · , Gm} that shares a common target with the

connected component Cj. Then do Gkj := Gkj +Cj while the operation H1+H2

is defined as H1 + H2 = (V1 ∪ V2, E1 ∪ E2), where H1 = (V1, E1) and H2 =
(V2, E2) are the disjoint union of graphs. Since Cj is an Eulerian graph, all
the vertices in Gkj will have even degree except the depot and the terminal
present in Gkj .

7: end for

16

is the sum of the cost of the edges in the optimal matching Mopt, and Cost(T) is

the sum of the cost of the edges in the optimal, constrained tree T . Also, observe

that Cost(T) ≤ C∗opt since the problem of finding an optimal, constrained tree is a

relaxation of the SDMTHPP without the degree constraints on the target vertices.

Therefore, to show that Cost(solf) ≤ 5
3
C∗opt, the only remaining part is to show that

Cost(Mopt) ≤ 2
3
C∗opt.

Bound on the cost of matching

As defined before, GT is the forest obtained from T after the following se-

quence of operations: 1) the removal of all the edges that lie on each of the paths,

PATH1,PATH2, · · · , PATHm, from T ; 2) the removal of all the zero-degree ver-

tices. If Cost(GT) denotes the sum of the cost of the edges in GT , using the results

in [24], it is known that

Cost(GT) ≥ Cost(Mopt).

The set of edges that lie on the paths, PATH1, PATH2, · · · , PATHm, can be

added to the optimal solution of the SDMTHPP to form an Eulerian graph that

spans the depot, all the destinations and the terminals. Therefore, due to Euler’s

theorem, one can find an Eulerian walk and then find a tour spanning only the

odd-degree destinations in O by short cutting any unnecessary vertex in the walk.

As in the proof of the Christofides algorithm [3], this tour spanning the odd-degree

destinations can further be decomposed into two disjoint sets of perfect matchings

on the odd-degree destinations. Again, since the costs satisfy the triangle inequality,

we have
m∑
i=1

Cost(PATHi) + C∗opt ≥ 2Cost(Mopt).

Hence, from the above arguments, it follows that

17

2C∗opt ≥ C∗opt + Cost(T)

= C∗opt +
m∑
i=1

Cost(PATHi) + Cost(GT)

≥ 2Cost(Mopt) + Cost(Mopt)

= 3Cost(Mopt). (2.3)

We now summarize the main result of this section:

Theorem 2.2. The algorithm approx2 solves the SDMTHPP when the vehicles start

from the same depot with an approximation factor of 5
3
. Moreover, the number of

steps required to implement approx2, is of O((n + 2m)3) where n is the number of

targets and m is the number of depots.

depot

targets

terminals

4

16

17

18

19

10

1

5

6

7

8

9

2 11

12

1314 23

3

15
20

21

22

24

25

Figure 2.4: Step 1 of approx2: Find an optimal constrained tree. In this example,

there are m = 4 vehicles and n = 24 targets.

18

depot

targets

terminals

16

1

5 7

9

11

1314 23

15
20

21

22

24

25

G1

G2

G3

G4

PATH1=(1,5,7,9,22)

PATH2=(1,14,13,11,23)

PATH3=(1,15,21,20,25)

PATH4=(1,16,24)

Figure 2.5: Step 2 of approx2: The paths in T for each vehicle from the depot to

their respective terminals. PATHi corresponds to the ith vehicle at the depot.

targets

4

16

17

18

19

10

6

7

8

9

2

12

13

3

20
21

GT

Figure 2.6: Step 3 of approx2: The graph GT obtained by removing all the edges

that lie on the paths, PATH1, · · · , PATHm from T ; in addition, any vertex whose

degree is zero after the removal of the edges is also eliminated.

19

targets

4

16

17

18

19

10

6

7

8

9

2

12

13

3

20
21

Odd degree

targets

GT

Figure 2.7: Odd degree targets of the graph GT .

targets

4

16

17

18

19

10

6

7

8

9

2

12

13

3

20
21

Odd degree

targets

Gnew

C1

C2

C3

C4

C5

Figure 2.8: Step 4 of approx2: The edges from the minimum cost, perfect matching

on the odd-degree targets are added to GT . The new graph is denoted by Gnew.

20

depot

targets

terminals

4

16

17

18

19

10

1

5

6

7

8

9

2 11

12

1314 23

3

15
20

21

22

24

25

G1

G2

G3

G4

Figure 2.9: Step 5 of approx2: Add the edges of each connected component of Gnew

to some graph in {G1, · · · , Gm} that shares a common target with the connected

component.

21

depot

targets

terminals

4

16

17

18

19

10

1

5

6

7

8

9

2 11

12

1314 23

3

15
20

21

22

24

25

G1

G2

G3

G4

Figure 2.10: Step 6 of approx2: For i = 1, · · · ,m, find a walk that starts at the depot

and ends at the terminal in Gi. Shortcut any previously visited targets so that each

target is visited exactly once by some vehicle.

22

3. AN APPROXIMATION ALGORITHM FOR A MULTIPLE DEPOT

HETEROGENEOUS TRAVELING SALESMAN PROBLEM

3.1 Problem statement

Let the number of vehicles be m and let D = {d1, d2, · · · , dm} be the set of vertices

that correspond to the initial depots of the vehicles. Let T = {1, · · · , n} be the set

of vertices that denotes all the targets. For each k ∈ {1, · · · ,m}, let Vk := {dk} ∪ T

denote the set of all the vertices corresponding to the kth vehicle, and let Ek be the

set of all the edges joining any two vertices in Vk. The cost to travel an edge e ∈ Ek is

represented by costke . All the costs are assumed to be positive and satisfy the triangle

inequality. We also assume that the travel costs satisfy the following monotonicity

property: For the edge e joining any two targets, cost1e ≤ cost2e ≤ · · · ≤ costme . A

tour for a vehicle starts from its depot, visits a set of targets in a sequence and finally

returns to its initial depot. The objective of the MDHTSP is to find a path for each

vehicle such that each target is visited exactly once by some vehicle and the sum of

the travel costs of all the vehicles is minimized.

3.2 Problem formulation

Let xke be an integer variable that represents whether edge e ∈ Ek is present in

the tour corresponding to the kth vehicle. For any edge e joining two targets, xke

can take values only in the set {0, 1}; xke = 1 if e is present in the tour of the kth

vehicle, otherwise xke = 0. In order for a tour to visit just one target if required, xke

is allowed to choose any of the values in the set {0, 1, 2} for an edge e joining the

depot dk and a target v ∈ T . For k = 1, · · · ,m− 1, let zkU denote a binary variable

that determines the partition of the targets connected to each depot; zkU is equal to

1 if U contains all the targets that are not visited by the vehicles {1, · · · , k} and is

23

equal to 0, otherwise. Let δk(S) for k = 1, · · · ,m, represent the subset of all the

edges of Ek with one end in S and another end in Vk\S. δk(S) is also refereed to as

the cut set of corresponding to the kth vehicle.

Consider the first vehicle. For any S ⊆ T , at least two edges must be chosen

from δ1(S) for the tour of the first vehicle if there is at least one vertex in S, that

is not connected to any of the depots in the set {d2, · · · , dm}, i.e.,
∑

e∈δ1(S) x
1
e ≥ 2 if∑

T⊇U⊇S z
1
U = 0. This requirement can be written as

∑
e∈δ1(S) x

1
e ≥ 2−2

∑
T⊇U⊇S z

1
U .

Similarly, for any vehicle k in the set {2, · · · ,m}, for any S ⊆ T , at least two

edges must be chosen from δk(S) for the tour of the kth vehicle if S contains at

least one target that is visited by the kth vehicle. This constraint can be writ-

ten as
∑

e∈δk(S) x
k
e ≥ 2

∑
T⊇U⊇S(zk−1U − zkU) for vehicles k ∈ {2, · · · ,m − 1}, and∑

e∈δm(S) x
m
e ≥ 2

∑
T⊇U⊇S z

n−1
U for the mth vehicle. Now, the MDHTSP without the

degree constraints can be formulated as an integer linear program as follows:

min
∑

k=1,··· ,m

∑
e∈Ek

costke x
k
e (3.1)

∑
e∈δ1(S)

x1e ≥ 2− 2
∑

T⊇U⊇S

z1U ∀S ⊆ T, (3.2)

∑
e∈δk(S)

xke ≥ 2
∑

T⊇U⊇S

(zk−1U − zkU) ∀S ⊆ T, and k = 2, · · · ,m− 1, (3.3)

∑
e∈δm(S)

xme ≥ 2
∑

T⊇U⊇S

zm−1U ∀S ⊆ T, (3.4)

xke ∈ {0, 1} for e = {u, v}k ∀u, v ∈ T, where k = 1, · · · ,m

xke ∈ {0, 1, 2} for e = {dk, v}k ∀v ∈ T, where k = 1, · · · ,m

zkU ∈ {0, 1} ∀U ⊆ T, and k = 1, · · · ,m− 1.

24

Consider a Linear Programming (LP) relaxation of the above problem where the

integer constraints are relaxed.

min
∑

k=1,··· ,m

∑
e∈Ek

costke x
k
e (3.5)

∑
e∈δ1(S)

x1e ≥ 2− 2
∑

T⊇U⊇S

z1U ∀S ⊆ T, (3.6)

∑
e∈δk(S)

xke ≥ 2
∑

T⊇U⊇S

(zk−1U − zkU) ∀S ⊆ T, and k = 2, · · · ,m− 1, (3.7)

∑
e∈δm(S)

xme ≥ 2
∑

T⊇U⊇S

zm−1U ∀S ⊆ T, (3.8)

xke ≥ 0 for e ∈ Ek, where k = 1, · · · ,m,

zkU ≥ 0 ∀U ⊆ T, and k = 1, · · · ,m− 1.

A dual of the above LP relaxation can be formulated as follows:

Cdual = min 2
∑
S⊆T

Y1(S) (3.9)

∑
S:e∈δk(S)

Yk(S) ≤ costke ∀e ∈ Ek, ∀k = 1, · · · ,m (3.10)

∑
S⊆U

Yk(S) ≤
∑
S⊆U

Yk+1(S) ∀U ⊆ T, ∀k = 1, · · · ,m− 1, (3.11)

Yk(S) ≥ 0 ∀S ⊆ T, ∀k = 1, · · · ,m. (3.12)

This dual problem will be used for finding a Heterogeneous Spanning Forest (HSF).

The HSF is a collection of m trees where each tree contains a distinct depot. Each

25

target is connected to at least one of the depots and each tree spans a subset of

targets and a depot dk using edges only from Ek.

3.3 Main ideas in the proposed approach

The primal-dual algorithm follows the greedy procedure outlined by Goemans

and Williamson in [12]. The basic structure of the algorithm involves maintaining

a forest of edges corresponding to each vehicle, and a solution to the dual problem.

The edges in the forests are candidates for the set of edges that finally appear in

the output (HSF) of the algorithm. Let Fk be the edges in the forest corresponding

to the kth vehicle. Initially, Fk is an empty set for each k ∈ {1, · · · ,m}. All the

components in each Fk are active except the components that contain the depots.

During each iteration of the algorithm, at most one edge is added between two

distinct components of some Fk, thus merging the two components in the kth vehicle.

The choice of selecting the appropriate edge to be added is based on a dual solution

which is also updated during each iteration. Specifically, in each iteration, the algo-

rithm uniformly increases the dual variable of each active component by a value εmin

that is as large as possible such that none of the constraints in the dual (3.10)-(3.11)

are violated. Increasing the dual variable of an active component by εmin will cause

one of the following outcomes to happen:

• If one of the constraints in (3.10) becomes tight for some edge (u, v) ∈ Ek

(for k = 1, · · · ,m) between two distinct components in Fk, the algorithm

adds (u, v) to Fk and merges the two components. If the merged component

contains a depot, it becomes inactive; otherwise it is active. If a component

C of Fk for k ∈ {2, · · · ,m} merges with a component containing dk, then the

total dual cost,
∑

S⊆C Yk(S), corresponding to C serves as an upper bound for∑
S⊆C Yk−1(S).

26

• If a constraint in (3.11) becomes tight for a component C for some k, then C

is deactivated in Fk.

The iterative process terminates when all the components become inactive. The final

step of the algorithm removes any unnecessary edges that are not required to be in

Fk’s using a marking procedure that was previously used for the prize-collecting TSP

in [12].

3.4 Primal-Dual algorithm for MDHTSP

The initialization, the main loop and the final pruning step of the primal-dual al-

gorithm are presented in Algorithm 3. For every k ∈ {1, · · · ,m}, let the set of con-

nected components in Fk be denoted by Ck. Initially each Ck consists of components

where each vertex is in its own connected component. For every k ∈ {1, · · · ,m− 1}

and ∀C ∈ Ck, the internal variable wk(C) keeps track of
∑

S⊆C Yk(S), i.e., wk(C) =∑
S⊆C Yk(S). Similarly ∀C ∈ Ck, Boundk(C) keeps track of

∑
S⊆C Yk+1(S). wk(C)

and Boundk(C) are used to enforce constraints in (3.11). Initially, all the dual vari-

ables, wk(C) and Boundk(C) are all set to zero. Also for every k ∈ {1, · · · ,m − 1}

each vertex is v ∈ Vk is initially unmarked i.e., markk(v) is set to zero.

Suppose k1 < k2 and k1, k2 ∈ {1, · · · ,m}, then the components in Ck1 tend to

merge first because it is cheaper to travel between two targets using the vehicle k1

than using k2. For any k, and for components C1 ∈ Ck and C2 ∈ Ck+1, we define

C1 as the parent of C2 and C2 as the child of C1 if C2 ⊆ C1. Hence for every

k ∈ {1, · · · ,m − 1}, and for any C ∈ Ck, we use Children(C) to denote all the

children of C present in Ck+1. And similarly for every k ∈ {2, · · · ,m} and for any

component C ∈ Ck, dk /∈ Ck, we use Parent(C) to denote the parent component of

C in Ck−1. According to this definition, C ∈ Ck (for any k = 2, · · · ,m) does not have

a parent if it contains dk; however, to simplify the presentation, we let Parent(C)

27

Algorithm 3 : Primal-dual algorithm for MDHTSP
1: Initialization

2: Fk ← ∅, ∀k = 1, · · · ,m; Ck ← {{v} : v ∈ Vk}, ∀k = 1, · · · ,m
3: for v ∈ T do
4: markk(v)← 0; pk(v)← 0, ∀k = 1, · · · ,m
5: wk({v})← 0, ∀k = 1, · · · ,m− 1 ; Boundk({v})← 0, ∀k = 1, · · · ,m− 1
6: activek({v})← 1, ∀k = 1, · · · ,m
7: Childrenk({v})← {v}, ∀k = 1, · · · ,m− 1; Parent({v})← {v}, ∀k = 2, · · · ,m
8: end for
9: activek({dk})← 0, ∀k = 1, · · · ,m; Childrenk({dk})← ∅, ∀k = 1, · · · ,m− 1; Parent({dk})← ∅, ∀k = 2, · · · ,m

10: Main loop

11: while ∃C ∈ C1 such that active1(C) = 1 do
12: for k = 1, · · · ,m do
13: Find an edge ek = (u, v) ∈ Ek with u ∈ Ckx, v ∈ Cky where Ckx, Cky ∈ Ck, Ckx 6= Cky that minimizes

ε1k =
(costkek

−pk(u)−pk(v))

activek(Ckx)+activek(Cky)

14: end for
15: for k = 1, · · · ,m− 1 do
16: Let C := {C : activek(C) = 1, Children(C) = ∅, C ∈ Ck}. Find C ∈ C that minimizes ε2k = Boundk(C)−

wk(C)
17: end for
18: εmin = min(ε11, · · · , ε1m, ε21, ε2m−1)
19: for k = 1, · · · ,m do
20: for C ∈ Ck do
21: wk(C)← wk(C) + εmin × activek(C)
22: For all v ∈ C, pk(v)← pk(v) + εmin × activek(C)
23: if k < m, then Boundk(C)← Boundk(C) + εmin|Children(C)|
24: end for
25: end for
26: switch εmin

27: Case ε1k:
28: Fk ← Fk

⋃
{ek}; Ck ← Ck

⋃
{Ckx

⋃
Cky} − Ckx − Cky

29: wk(Ckx
⋃
Cky)← wk(Ckx) + wk(Cky)

30: if k < m, then Boundk(Ckx
⋃
Cky)← Boundk(Ckx) +Boundk(Cky)

31: Childrenk(Ckx
⋃
Cky)← Childrenk(Ckx)

⋃
Childrenk(Cky)

32: For all C ∈ Childrenk(Ckx
⋃
Cky), Parentk(C)← Ckx

⋃
Cky

33: if dk ∈ Ckx
⋃
Cky , then

34: activek(Ckx
⋃
Cky) = 0

35: if k ≤ m− 1, then deactivate every C ∈ Descendants(Ckx
⋃
Cky)

36: if k ≥ 2, then Parent(Ckx
⋃
Cky)← ∅

37: Let C ∈ {Ckx, Cky} such that dk /∈ C; Children(Parent(C))← Children(Parent(C))− C
38: end if
39: else
40: if k == 1 then activek(Ckx

⋃
Cky) = 1,

41: else
42: activek(Ckx

⋃
Cky)← 1, Parent(Ckx

⋃
Cky)← Parent(Ckx)

43: Children(Parent(Ckx))← Children(Parent(Ckx))
⋃
{Ckx

⋃
Cky} − Ckx − Cky

44: end if
45: end if
46: Case ε2k: activek(C)← 0; for every v ∈ {v : v ∈ C,markk(v) = 0}, markk(v)← C
47: end switch
48: end while

49: Pruning Step

50: for k = 1, · · · ,m− 1 do
51: V ′0 := ∅. F ′k is obtained from Fk as follows: 1) Remove all the edges incident on the vertex set V = V ′0 ∪ V ′1 ∪

· · ·∪V ′k−1 from Fk, 2) Further remove as many edges as possible from Fk so that the following properties two

properties hold: All the vertices of the set v ∈ T \ V in Fk with markk(v) = 0 are connected to the depot dk
and if any vertex in the set T \ V with a label C is connected to dk, then any other vertex in T \ V with a
label C′ ⊇ C is also connected to the depot dk.

52: end for
53: F ′m is obtained from Fm by removing as many edges as possible from Fm such that all the vertices in the set

T \ V , where V = V ′0 ∪ · · · ∪ V ′N−1, is spanned by F ′m.

28

be an empty set if C contains dk. Initially, for any target v ∈ T , Children({v}) is

assigned to be equal to {v} and Parent({v}) is assigned to be equal to {v}. Also,

the components that consist of just the depots neither have a parent nor a child.

During each iteration of the main loop, the dual variable corresponding to each of

the active components is increased by the same amount until one of the constraints

in (3.10)-(3.11) become tight. This step is implemented using the variables pi(u) =∑
S:u∈S Yi(S), i = 1, · · · ,m. As long as the targets u and v are not connected in Fi,∑
S:e∈δi(S) Yi(S) = pi(u)+pi(v) for the edge e joining u and v. It follows that the dual

variable of the components containing u and v respectively can at most be increased

by costie−pi(u)−pi(v)
activei(Cix)+activei(Ciy)

where e = (u, v), u ∈ Cix, v ∈ Ciy, and Cix, Ciy ∈ Ci. Once

the edge e = (u, v) has been added to the forest Fi, the dual cost
∑

S:e∈δi(S) Yi(S)

does not increase, and hence the packing constraint corresponding to e in (3.10) will

continue to hold.

If a constraint in (3.10) becomes tight for some vehicle k and for some edge e ∈ Ek,

Fk is augmented with this new edge and the two components (say Ckx, Cky in Ck)

connected by e are merged to form a single connected component. The children

of the components Ckx, Cky now become the children of the resulting component

Ckx ∪ Cky. The resulting component becomes inactive if it contains the depot dk;

otherwise, it is active. In the case when the resulting components becomes inactive,

all the descendants of the resulting component also become inactive; and say Ckx

was the active component during the iteration which did not contain the depot, the

parent of Ckx loses Ckx as its child (Refer to lines 28-38 of the algorithm 3). In the

case when the resulting component is active, then the parent of either Ckx or Cky is

assigned as the parent of the resulting component (If k = 1, Ckx and Cky do not have

a parent and the algorithm just merges the components and activates the merged

component). It turns out that due to our assumption about the costs, both Ckx and

29

Cky must be active and must be the children of the same parent as shown in Lemma

3.1 (Refer to line 39-45 of the algorithm 3).

Once an active parent C in some vehicle k (k = 1, · · · ,m−1) loses all its children,

Boundk(C) specifies the maximum value that can be attained by wk(C). Suppose

an active component C ∈ Ck (for some k = 1, · · · ,m− 1) does not have any children

and the increase in the dual variables results in the constraint wk(C) ≤ Boundk(C)

becoming tight, then the algorithm deactivates the component C and marks each of

the unmarked vertices in the component with C (Refer to lines 46 of the algorithm

3).

The algorithm terminates the main loop when all the components in C1 become

inactive. In the final step of the algorithm, a tree F ′k for every k ∈ {1, · · · ,m} is

obtained from Fk, from k = 1 to m− 1. Let the set of vertices spanned by the tree

F ′k be denoted by V ′k . For ease of explanation, we will also assume that V ′0 = ∅. The

tree F ′k is obtained from Fk as follows: 1) Remove all the edges incident on the vertex

set V = V ′0 ∪ V ′1 ∪ · · · ∪ V ′k−1 from Fk, 2) Further remove as many edges as possible

from Fk so that the following properties two properties hold:

• All the vertices of the set v ∈ T \ V in Fk with markk(v) = 0 are connected to

the depot dk,

• If any vertex in the set T \V with a label C is connected to dk, then any other

vertex in T \ V with a label C ′ ⊇ C is also connected to the depot dk.

Finally, the tree F ′m is obtained from Fm by removing as many edges as possible

from Fm such that all the vertices in the set T \ V , where V = V ′0 ∪ · · · ∪ V ′m−1, is

spanned by F ′m. Figure 3.1, 3.2, 3.3, 3.4, 3.5, and 3.6 are the key snapshots of the

primal-dual algorithm for an example of MDHTSP when there exist three depots

and nine targets.

30

depot
target

3

1
2

3

4

5

6

7

8

9

2
1

2

3

4

5

6

7
8

9

1

1

2

3

4

5

6

7
8

9

Figure 3.1: Snapshot of the forest for an example with 3 vehicles and 9 targets at

the end of the first iteration of the main loop. The radius of the circular region,

pi(u) :=
∑

S:u∈S Yi(S), around a target u in the forest Fi is equal to the sum of the

dual variables of all the components that contain u in Fi. An edge between target 1

and 2 is added to F1 as the corresponding constraint of (3.10) became tight.

31

depot
target

3

1
2

3

4

5

6

7

8

9

2
1

2

3

4

5

6

7
8

9

1

1

2

3

4

5

6

7
8

9

Figure 3.2: Snapshot of the forest after nine iterations of the main loop. The con-

straint corresponding to the edge joining the target 8 and the depot 2 becomes tight.

The edge is added to F2 and the merged component is deactivated as the target 7 and

8 is now connected to the depot 2. The component {7, 8} in F3 is also deactivated.

These components never become active again.

32

11

depot
target

3

1
2

3

4

5

6

7

8

9

2
1

2

3

4

5

6

7
8

9

1

1

2

3

4

5

6

7
8

9

Figure 3.3: Snapshot of the forest after eleven iterations of the main loop. The

component {7, 8} in F1 is deactivated and marked since the corresponding constraint

in (3.11) became tight.

33

11

depot
target

3

1
2

3

4

5

6

7

8

9

2
1

2

3

4

5

6

7
8

9

1

1

2

3

4

5

6

7
8

9

Figure 3.4: Snapshot of the forest after fifteen iterations of the main loop. The edge

between the target 3 and 7 is added to F1 as the corresponding constraint becomes

tight. The component {7, 8} in F1 is now merged with the component {3} and the

new component {3, 7, 8} in F1 is now active again.

11

depot
target

3

1
2

3

4

5

6

7

8

9

2
1

2

3

4

5

6

7
8

9

1

1

2

3

4

5

6

7
8

9

Figure 3.5: Snapshot of the forest at the end of the main loop

34

depot
target

3

1
2

3

4

5

6

7

8

9

2
1

2

3

4

5

6

7
8

9

1

1

2

3

4

5

6

7
8

9

Figure 3.6: Snapshot of the final forest after the pruning step

3.4.1 Properties of the primal-dual algorithm

Consider any target u ∈ T . For any vehicle k ∈ {1, · · · ,m}, at the start of the

ith iteration, let Ci
k(u) denote the component of Fk containing u.

Lemma 3.1. The following statements are true for all i and for all k ∈ {1, · · · ,m−

1}:

1. Ci
k+1(u) ⊆ Ci

k(u) unless Ci
k+1(u) contains the depot dk+1.

2. activek(C
i
k(u)) ≥ activek+1(C

i
k+1(u)).

Proof. Let us prove this lemma by induction (Note: Throughout the proof k ∈

{1, · · · ,m− 1}). At the start of the first iteration, C1
k(u) = C1

k+1(u) = {u} and the

components C1
k(u), C1

k+1(u) are both active. Therefore the lemmas 3.1.1 and 3.1.2

are correct for i = 1. Now let us assume that the lemma is true for the lth iteration

for any l = 1, · · · , i. As activek(C
l
k(u)) ≥ activek+1(C

l
k+1(u)) for any l = 1, · · · , i, it

follows that pk(u) ≥ pk+1(u) at the start of the ith iteration.

35

Proof of Lemma 3.1.1: During the ith iteration, there are three possible cases for

the components Ci
k(u) and Ci

k+1(u): 1) Ci
k(u) merges with another component in Ck,

or, 2) Ci
k+1(u) merges with another component in Ck+1, or, 3) Ci

k(u) is deactivated

because its corresponding constraint in (3.11) becomes tight. It is noted that Ci+1
k+1(u)

will remain as a subset of Ci+1
k (u) in the first case. In the third case, Ci

k(u) can be

deactivated only when the target u is already connected to the one of the depots in

{dk+1, · · · , dm}. Therefore, Lemma 3.1.1 is true by default in the third case.

Let us now examine the second case. If Ci
k+1 is active and merges with another

active component Ci
k+1(v) corresponding to target v, we claim that Ci

k(u) = Ci
k(v).

Note that

ε1k =
costk(u,v) − pk(u)− pk(v)

activek(C
i
k(u)) + activek(C

i
k(v))

≤
costk+1

(u,v) − pk+1(u)− pk+1(v)

activek+1(C
i
k+1(u)) + activek+1(C

i
k+1(v))

= ε1k+1.

(3.13)

Therefore, the algorithm will not merge Ci
k+1(u) and Ci

k+1(v) unless it merges Ci
k(u)

and Ci
k(v). If Ci

k(u) = Ci
k(v), it then follows that the merged component Ci

k+1(u) ⊆

Ci
k(u).

If Ci
k+1(u) is inactive because the target u is connected to one of the depots in

{d1, · · · , dk}, we claim that Ci
k+1(u) will never merge with any other component.

If this claim is not true and say u is connected to dk and Ci
k+1(u) (which is in-

active) merges with some other component Ci
k+1(v) corresponding to the target v,

then Ci
k(u) 6= Ci

k(v) and Ci
k+1(v) must be active. Again from equation (3.13), the

algorithm will prefer to merge Ci
k(u) and Ci

k(v) before merging Ci
k+1(u) and Ci

k+1(v).

But once Ci
k(u) and Ci

k(v) are merged, the component Ci
k+1(v) becomes inactive,

since now v is also connected to the depot dk so all of Ci
k+1(v), · · · , Ci

m(v) will be

also deactivated. Therefore, Ci
k+1(u) will remain inactive and will never merge with

any other component during the ith iteration. Hence Lemma 3.1.1 is true.

36

Proof of lemma 3.1.2: If Ci
k+1(u) is inactive, either Ci

k+1(u) must contain the

depot dk+1 or u is connected to one of the depots in {d1, · · · , dk}. If Ci
k+1(u) already

contains dk+1, then Ci+1
k+1(u) must also be inactive. Therefore, activek(C

i+1
k (u)) ≥

activek+1(C
i+1
k+1(u)) = 0. If Ci

k+1(u) is inactive because u is already connected to

one of the depots in {d1, · · · , dk}, then by lemma 3.1.1, Ci
k+1(u) can never merge

with another component during the ith iteration. Therefore, activek(C
i+1
k (u)) ≥

activek+1(C
i+1
k+1(u)).

If Ci
k+1(u) is active, then activek(C

i
k(u)) ≥ activek+1(C

i
k+1(u)) implies that

Ci
k(u) is also active. From Lemma 3.1.1, it follows that Ci

k+1(u) ⊆ Ci
k(u). Since

the component, Ci
k(u) can never become inactive due to its associated constraint in

(3.11) during the ith iteration, it still has at least one active component in Fk+1

that contains the targets in Ci
k(u), which is Ci

k+1(u). The only way Ci
k(u) can

lead to an inactive Ci+1
k (u) is Ci

k(u) merges with another component containing

dk during the iteration, in which case all the components in Fk+1, · · · , Fm, contain-

ing the vertices in Ci
k(u), including Ci

k+1(u), will be also deactivated. Therefore,

activek(C
i+1
k (u)) ≥ activek+1(C

i+1
k+1(u)).

3.4.2 Feasibility and running time analysis

Lemma 3.2. The primal-dual algorithm produces a feasible heterogeneous spanning

forest in polynomial time. Suppose V ′k denotes the set of vertices that are spanned by

F ′k for any k, then the sets V ′1 , · · · , V ′m is a disjoint partition of the set of targets T .

Proof. Using the running time analysis in Goemans and Williamson, one can deduce

that our primal-dual algorithm runs in polynomial time.

If we prove that for any i ∈ {1, · · · ,m−1}, the vertex sets V ′1 , · · · , V ′i are disjoint,

the vertices in set V ′j (where j = 1, · · · , i) are connected to depot dj, and the vertices

in the set T \(V ′1∪· · ·∪V ′i) are connected one of the depots in the set {di+1, · · · , dm},

37

then we are done. Let us prove the above claim by induction. For i = 0, the claim is

trivially satisfied. We shall assume the claim to be true for i = p, and prove it holds

for i = p+ 1.

Let Xp denote the set of vertices that are not spanned by F ′1 ∪ · · · ∪F ′p. Based on

the marks of each vertex in Xp, Xp can be partitioned into disjoint, deactivated com-

ponents C1, · · · , Cr where Cj denotes the maximal label of its respective component.

Note that F ′p is formed from Fp such that every vertex v ∈ T \ {V ′1 ∪ · · · ∪V ′p−1} with

markp(v) = 0 remains connected to dp. The only vertices that are not spanned by

F ′p are some of the marked vertices. These vertices were marked because the compo-

nents in Cp that contained these vertices were deactivated for making the associated

constraints in (3.11) tight. Consider a deactivated component Cq ⊆ Xp. Cq can

be deactivated during an iteration only if
∑

S⊆Cq
Yp(S) = wp(Cq) = Boundp(Cq) =∑

S⊆Cq
Yp+1(S). Also, during the iteration when Cq becomes deactivated, no target

u ∈ Cq is connected to any other target v ∈ T \Cq in Fp. As a result, from lemma 3.1,

u does not have any adjacent vertex v in Fp+1, · · · , Fm such that v ∈ T \ Cq. Since

target u is not connected to target v ∈ T \ Cq in Fp, u and v cannot be connected

in Fp+1, · · · , Fm. Therefore, during the construction of F ′p+1, the removal of all the

edges incident on the vertex set V = V ′1 ∪ · · · ∪ V ′p does not affect the connectivity

of the targets in the set T \ V to any of the depots in the set {dp+1, · · · , dm}. As a

result, all the edges that are incident on any vertex u /∈ Xp can be dropped during the

construction of F ′p+1. Hence any vertex spanned by the edges in F ′p is not spanned

by the edges in F ′p+1.

3.4.3 Approximation ratio analysis

Theorem 3.1. The proposed algorithm has an approximation ratio of 2.

Proof. The number of steps required to implement the algorithm depends on the

38

computation of the HSF which can be computed in polynomial time. To prove

the approximation ratio we need to show that the cost of the edges in the HSF

produced by the primal-dual algorithm is at most equal to the optimal cost of the

multiple depot heterogeneous vehicle routing problem (MDHVRP). To prove this,

we first simplify the dual cost obtained by the primal dual algorithm. As mentioned

previously in lemma 3.2, let Xk (where k = 1, · · · ,m− 1) denote the set of vertices

that are not spanned by F ′1∪· · ·∪F ′k. Then, based on the labels of each vertex in Xk,

Xk can be partitioned into finite and disjoint collection of deactivated components;

let |Xk| denote the number of such partitions for each Xk. Let us represent these

partitions of Xk by C1, · · · , C |Xk| where Cj denotes the maximal label of its respective

component. Also, let the set V i for every vehicle i denotes the set of vertices that

are spanned by the tree F ′0, F
′
1, · · · , F ′i−1 (F ′0 = ∅). Then, the dual cost obtained by

the primal-dual algorithm is as follows:

2
∑
S⊆T

Y1(S) = 2
∑

S⊆T,S*X1

Y1(S) + 2

|X1|∑
i=1

∑
S⊆Ci

Y1(S)

= 2
∑
S⊆V ′1

Y1(S) + 2

|X1|∑
i=1

∑
S⊆Ci

Y2(S)

= 2
∑

S⊆T,S*X1

Y1(S) + 2
∑

S⊆T\V 2,S*X2

Y2(S) + 2

|X2|∑
i=1

∑
S⊆Ci

Y2(S)

...

= 2
m−1∑
k=1

∑
S⊆T\V k,S*Xk

Yk(S) + 2

|Xm−1|∑
i=1

∑
S⊆Ci

Ym(S)

Hence we have the following expression for the dual cost obtained by the primal-dual

39

algorithm:

2
∑
S⊆T

Y1(S) ≥ 2
m−1∑
k=1

∑
S⊆T\V k,S*Xk

Yk(S) + 2

|Xm−1|∑
i=1

∑
S⊆Ci

Ym(S) (3.14)

Now we express the cost of the edges in the forest in terms of the dual variables as

follows. An edge e is added to Fk (where k = 1, · · · ,m) and consequently appears in

F ′k only if the corresponding constraint in (3.10) is tight i.e.,
∑

S:e∈δk(S) Yk(S) = costke .

Therefore, we can express the cost of the edges in the tree F ′k (where k = 1, · · · ,m−1)

as follows:

∑
e∈F ′k

costke =
∑
e∈F ′k

∑
S:e∈δk(S)

Yk(S)

=
∑
S⊆T

Yk(S)|F ′k ∩ δk(S)|.

For any vehicle k ∈ {1, · · · ,m−1}, and for any S ⊆ Xk∪V k, we have |F ′k∩δk(S)| = 0.

This further simplifies the above equation to

∑
e∈F ′k

costke =
∑

S⊆T,S*Xk∪V k

Yk(S)|F ′k ∩ δk(S)| ∀k ∈ {1, · · · ,m− 1} (3.15)

Similarly we can express the cost of the mth tree F ′m in terms of the dual variables as

follows; from lemma 3.2, note that F ′m can be decomposed into a set of disjoint sets

F ′mi where each F ′mi consists of edges that form a tree spanning each target from Ci

(C1, · · · , C |Xm−1| is a the disjoint partition of Xm−1) and dm. An edge e is added to

F ′m and consequently appears in F ′mi only if the corresponding constraint in (3.10) is

tight, costme =
∑

e∈δmi(S),S⊆Ci
Ym(S), where δmi(S) consists of all the edges with one

40

end point in S and another end point in Ci ∪ {dm} \ S.

∑
e∈F ′m

costme =
∑

S⊆Xm−1

YN (S)|F ′m ∩ δm(S)| =
|Xm−1|∑
i=1

∑
S⊆Ci

Ym(S)|F ′mi ∩ δmi(S)|(3.16)

Therefore, from equations (3.14), (3.15) and(3.16) the proof of the theorem reduces

to showing the following result:

m−1∑
k=1

∑
S⊆T,S*Xk∪V k

Yk(S)|F ′k ∩ δk(S)|+
|Xm−1|∑
i=1

∑
S⊆Ci

Ym(S)|F ′mi ∩ δmi(S)|

≤ 2
m−1∑
k=1

∑
S⊆V ′k

Yk(S) + 2

|Xm−1|∑
i=1

∑
S⊆Ci

Ym(S) (3.17)

The above result can be proven by induction on the main loop. To see this, let us

pick any iteration of the primal dual algorithm. At the start of this iteration, for

every vehicle k ∈ {1, · · · ,m − 1}, let Nk
a be the set of all active components in Ck

such that each active component in this set is not a subset of Xk and let Nk
d be the

set of all inactive components in Ck such that each inactive component in this set is

not a subset of Xk. Note that one of the inactive components of Nk
d must contain

the depot dk. Now consider the mth vehicle; for i = 1, · · · , |Xm−1|, let Mai denote

the set of all active components in Cm such that each active component in this set

is a subset of Ci (C1, · · · , C |Xm−1| is a the disjoint partition of Xm−1). Also, let Md

denote the set of inactive components in Cm that contain the depot dm.

Now for k = 1, · · · ,m − 1, form a graph Hk with components in Nk
a ∪ Nk

d as

vertices and e ∈ F ′k ∩ δk(C) for C ∈ Nk
a ∪ Nk

d as edges of Hk. Hk is a tree that

spans all the vertices in Nk
a ∪ Nk

d . Similarly form a graph Hmi with components in

Mai ∪Md as vertices and e ∈ F ′mi ∩ δm(C) for C ∈ Mai ∪Md as edges of Hmi. Hmi

is a tree that spans all the vertices in Mai ∪Md.

41

Let deg(v,G) represent the degree of a vertex v in graph G. During the it-

eration, the dual variable corresponding to each of the active components is in-

creased by εmin. As a result, the right hand side of the inequality will increase by

2 · εmin
(∑m−1

k=1 N
k
a +

∑|Xm−1|
i=1 Mai

)
, whereas the left hand side of the inequality will

increase by εmin

(∑m−1
k=1

∑
v∈Nk

a
deg(v,Hk) +

∑|Xm−1|
i=1

∑
deg(v,Hmi)

)
. Hence if we

can show that

m−1∑
k=1

∑
v∈Nk

a

deg(v,Hk)+

|Xm−1|∑
i=1

∑
v∈Mai

deg(v,Hmi) ≤ 2

m−1∑
k=1

|Nk
a |+

|Xm−1|∑
i=1

|Mai|

 , (3.18)

then the proof will be complete. To do this, we show that all but one of the leaves

of Hk (for k = 1, · · · ,m − 1) must be active vertices. This result follows from the

fact that a component, which does not contain dk, can become inactive in Ck only

if the constraint associated with this component in (3.11) becomes tight. Therefore,

all the vertices in this inactive component must be marked. Also, if vertex v in Hk

is a leaf (deg(v,Hk) = 1) then pruning all the edges from this inactive component

will not disconnect any target with markk(v) = 0 from dk . Hence, the pruning step

of the algorithm will ensure that an inactive component can never be a leaf vertex

in Hk unless it contains dk. Hence,

m−1∑
k=1

∑
v∈Nk

d

deg(v,Hk) ≥
m−1∑
k=1

(
2|Nk

d | − 1
)
. (3.19)

42

We now show the final part of the proof:

m−1∑
k=1

∑
v∈Nk

a

deg(v,Hk) +

|Xm−1|∑
i=1

∑
v∈Mai

deg(v,Hmi)

=

m−1∑
k=1

 ∑
v∈Nk

a∪Nk
d

deg(v,Hk)−
∑
v∈Nk

d

deg(v,Hk)

+

|Xm−1|∑
i=1

 ∑
v∈Mai∪Md

deg(v,Hmi)− deg(Md, Hmi)

≤

m−1∑
k=1

 ∑
v∈Nk

a∪Nk
d

deg(v,Hk)−
∑
v∈Nk

d

deg(v,Hk)

+

|Xm−1|∑
i=1

 ∑
v∈Mai∪Md

deg(v,Hmi)

For k = 1, · · · ,m− 1, the tree Hk spans all the vertices in Nk

a ∪Nk
d . Therefore, the

sum of the degree of all the vertices in Hk is given by 2(|Nk
a |+ |Nk

d | − 1). Similarly

Hmi is a tree that spans all the vertices in Mai ∪ Md. Therefore, the sum of the

degree of all the vertices in Hmi is 2|Mai|. Hence, continuing the proof,

m−1∑
k=1

∑
v∈Nk

a

deg(v,Hk)+

|Xm−1|∑
i=1

∑
v∈Mai

deg(v,Hmi)

≤
m−1∑
k=1

(
2 · (|Nk

a |+ |Nk
d | − 1)− (2|Nk

d | − 1)
)
+ 2

|Xm−1|∑
i=1

|Mai|

= 2

m−1∑
k=1

(|Nk
a | − 1) +

|Xm−1|∑
i=1

|Mai|

< 2

m−1∑
k=1

|Nk
a |+

|Xm−1|∑
i=1

|Mai|

Hence proved.

3.5 Simulation results

The proposed primal-dual algorithm was applied to MDHTSP in the procedure of

finding a HSF. To generate tours using HSF, we used Christofides algorithm [3] and

the Lin-Kernigan Hueristic (LKH) [13]. Although the LKH does not have the perfor-

mance guarantee, it is considered to be one of the best algorithms for solving a single

43

vehicle TSP. The LKH software is available at http://www.akira.ruc.dk/ keld/research/LKH/

and was used without changing any of its default settings. All the simulations were

run on a Dell Precision T5500 workstation (Intel Xeon E5630 processor @ 2.53GHz,

12GB RAM).

For the simulation, the depots and targets were randomly generated in a square

area of 1 × 1 km2 using a uniform distribution. With the number of vehicles varying

from 2 to 5 and the number of targets varying from 15 to 50, several problem instances

were created. For each number of vehicles and targets, we generated 50 problem

instances. For the purposes of simulating heterogeneity, the minimum turning radius

(r) of each vehicle was uniformly increased according to the number of vehicles so

that for any two targets i, j ∈ T , cost1{i,j}1 ≤ cost2{i,j}2 ≤, · · · ,≤ costm{i,j}m . Reeds-

Shepp path [25] was used as the minimum distance required to travel between any

two targets. These travel distances are asymmetric and satisfy the triangle inequality.

Figure 3.7 and 3.8 show the example instance results for 2 vehicles and 4 vehicles,

respectively.

44

0 200 400 600 800 1000
0

200

400

600

800

1000

1

2

3

4

5

6

78

9

10

11

12

13

14

15
16

17

18

19

Vehicle1

1

0 200 400 600 800 1000
0

200

400

600

800

1000

1

2

3

4

5

6

78

9

10

11

12

13

14

15
16

17

18

19

Vehicle2

2

Figure 3.7: Example instance with 2 vehicles

45

0 200 400 600 800 1000
0

200

400

600

800

1000

1

2

3

4

5

67

8

9 10

11
12

13

14
15

16

17

18

19

20

21

22
23

24

Vehicle1

1

0 200 400 600 800 1000
0

200

400

600

800

1000

1

2

3

4

5

67

8

9 10

11
12

13

14
15

16

17

18

19

20

21

22
23

24

Vehicle2

2

0 200 400 600 800 1000
0

200

400

600

800

1000

1

2

3

4

5

67

8

9 10

11
12

13

14
15

16

17

18

19

20

21

22
23

24

Vehicle3

3

0 200 400 600 800 1000
0

200

400

600

800

1000

1

2

3

4

5

67

8

9 10

11
12

13

14
15

16

17

18

19

20

21

22
23

24

Vehicle4

4

Figure 3.8: Example instance with 4 vehicles

For each instance I, the following equation was used to calculate the approxima-

tion ratio of the solution produced by the algorithm for I.

ApproximationRatioI =
CostI(Approx)

CostI(DualCost)
(3.20)

where,

CostI(Approx) = Cost of the primal solution obtained by the algorithm for I,

CostI(DualCost) = Cost of the dual problem for the instance I.

46

The average and maximum approximation ratios of each problem size are shown

in Figure 3.9 and Figure 3.10, repectively. Regardless of the problem size, the aver-

age approximation ratio was around 1.2 to 1.3 when we used Christofides algorithm,

which is slightly higher than when we used LKH. The maximum approximation

ratio was lower than 1.5 when we used Christofides algorithm, regardless of the

problem size, and was stable compare to LKH. Figure 3.11 shows the average com-

putation time of both Christofides algorithm and LKH for each problem size in

seconds. The average computation time was increased as the problem size grew.

Generally Christofides algorithm was slightly faster than LKH and the gap between

the two was increased as the problem size became larger.

47

20 30 40 50
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Node

2 vehicles

20 30 40 50
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Node

3 vehicles

Average(approx)
Average(LKH)

20 30 40 50
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Node

4 vehicles

20 30 40 50
1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

Node

5 vehicles

Figure 3.9: Average approximation ratio for 50 instances

48

20 30 40 50
1

1.1

1.2

1.3

1.4

1.5

Node

2 vehicles

20 30 40 50
1

1.1

1.2

1.3

1.4

1.5

Node

3 vehicles

Max(approx)
Max(LKH)

20 30 40 50
1

1.1

1.2

1.3

1.4

1.5

Node

4 vehicles

20 30 40 50
1

1.1

1.2

1.3

1.4

1.5

Node

5 vehicles

Figure 3.10: Maximum approximation ratio for 50 instances

49

15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

Node

Ti
m

e[
Se

c]

2 vehicles

Approx
LKH

15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8
3 vehicles

Node

Ti
m

e[
Se

c]

15 20 25 30 35 40 45 50
0

2

4

6

8

10

12
4 vehicles

Node

Ti
m

e[
Se

c]

15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16
5 vehicles

Node

Ti
m

e[
Se

c]

Figure 3.11: Average running time for 50 instances

50

4. ALGORITHMS FOR A MULTIPLE DEPOT HETEROGENEOUS

ASYMMETRIC TRAVELING SALESMAN PROBLEM

In this section, we first state the problem and introduce two algorithms to solve

the problem. One is a mdlog2(n+1)e-approximation algorithm where m denotes the

number of the vehicles and n denotes the number of targets, and the other is a primal-

dual heuristic. We formulate the problem separately for each of the algorithms. In

the last section of this section, some computational results are also presented for the

proposed algorithms.

4.1 Problem statement

To state the problem, we bring the notations and conditions from the MDHTSP,

which we dealt with in section 3. All the notations and conditions we used for the

MDHATSP are the same as the ones used for the MDHTSP, except the following

ones: Let (u, v) denote the directed edge from vertex u to v. Let Ek be the set of all

the directed edges joining any two vertices in Vk. The cost to travel an edge e ∈ Ek is

represented by costke . All the costs are assumed to be positive and satisfy the triangle

inequality. We also assumed that cost1e ≤ cost2e ≤ · · · ≤ costme for an edge e joining

any two targets. The travel costs for each vehicle are assumed to be asymmetric, i.e.,

the cost of traveling from location i to location j may be different from the cost of

traveling location j to location i. For any S ⊂ Vk, let δ+k (S) represent the set of all

the edges (u, v) ∈ Ek such that u ∈ S and v ∈ Vk \ S. Similarly, let δ−k (S) represent

the set of all the edges (u, v) ∈ Ek such that u ∈ Vk \ S and v ∈ S. The objective of

the MDHATSP is to find a path for each vehicle such that each target is visited by

some vehicle and the sum of the travel costs of all the vehicles is minimized.

51

4.2 Approximation algorithm using LP relaxation

4.2.1 Problem formulation

In this section, we formulate the problem in the way we can use to develop the

approximation algorithm. Let xke denote the binary variable that decides whether

edge e is present in the path of the kth vehicle. xke = 1 if and only if the edge e

is traveled by the kth vehicle and otherwise xke = 0. Let ψki be the binary variable

used to assign target i to the kth vehicle. ψki = 1 if target i is assigned to the

kth vehicle and otherwise ψki = 0. Let x := {xke , e ∈ Ek, k = 1, · · · ,m} and ψ =

{ψki : i ∈ Vk, k = 1, · · · ,m} denote all the decision variables. A path (Pathk) for

the kth vehicle is defined by the sequence of vertices visited by the vehicle, i.e.,

Pathk := (dk, u1, u2, · · · , uik , dk) where u1, · · · , uik ∈ T . The cost of traveling Pathk

is defined as cost(Pathk):=cost
k
(dk,u1)

+
∑ik−1

j=1 cost
k
(uj ,uj+1)

+ costk(uik ,dk)
. Now, the

MDHATSP can be formulated as follows:

Copt = min
m∑
k=1

∑
e∈Ek

costke x
k
e

m∑
k=1

ψki = 1 ∀i ∈ T, (4.1)

∑
e∈δ+k ({i})

xke = ψki ∀i ∈ T, k = 1, · · · ,m, (4.2)

∑
e∈δ+k ({dk})

xke ≥ ψki ∀i ∈ T, k = 1, · · · ,m, (4.3)

∑
e∈δ−k ({i})

xke =
∑

e∈δ+k ({i})

xke ∀i ∈ Vk, k = 1, · · · ,m, (4.4)

52

∑
e∈δ+k (S)

xe ≥ ψki ∀S ⊆ T, i ∈ S, k = 1, · · · ,m, (4.5)

∑
e∈δ−k (S)

xe ≥ ψki ∀S ⊆ T, i ∈ S, k = 1, · · · ,m, (4.6)

ψki ∈ {0, 1} ∀i ∈ T, k = 1, · · · ,m, (4.7)

xke ∈ {0, 1} ∀e ∈ Ek, k = 1, · · · ,m. (4.8)

The constraints in (4.1) state that each target must be assigned to exactly one

vehicle. The out-degree constraints of each target are stated in (4.2). The constraints

in (4.3) state that the out-degree of a depot must be at least equal to 1 if any target

is assigned to the vehicle corresponding to the depot. The constraints in (4.4) state

that the in-degree and out-degree of any vertex must be equal. If target i is assigned

to the kth vehicle, then the number of edges in Ek leaving any subset of targets

containing i must be at least equal to 1. This connectivity constraint is stated in

(4.5). Similarly, if target i is assigned to the kth vehicle, constraints in (4.6) state

that the number of edges in Ek entering any subset of targets containing i must be

at least equal to 1. The constraints in (4.5),(4.6) are generally referred to as the cut

constraints.

We can get the following LP relaxation of the problem by relaxing some con-

straints.

CLP∗ = min
m∑
k=1

∑
e∈Ek

costke x
k
e (4.9)

53

m∑
k=1

ψki = 1 ∀i ∈ T (4.10)

∑
e∈δ−k ({i})

xke =
∑

e∈δ+k ({i})

xke ∀i ∈ Vk, k = 1, · · · ,m (4.11)

∑
e∈δ+k (S)

xe ≥ ψki ∀S ⊆ T, i ∈ S, k = 1, · · · ,m (4.12)

∑
e∈δ−k (S)

xe ≥ ψki ∀S ⊆ T, i ∈ S, k = 1, · · · ,m (4.13)

ψki ≥ 0 ∀i ∈ T, k = 1, · · · ,m (4.14)

xke ≥ 0 ∀e ∈ Ek, k = 1, · · · ,m (4.15)

Let this linear program be denoted by LP*. This will be used in the approximation

algorithm that is presented in the following section.

4.2.2 An approximation algorithm for the MDHATSP

The approximation algorithm partitions the targets by solving a LP relaxation

of the integer program and then uses the Frieze et al. algorithm[7] to find a path for

each vehicle. An approximation algorithm, approx3, is represented in Algorithm 4.

Algorithm 4 approx3
1: Solve LP*. Let the optimal solution be denoted by (x∗, ψ∗).
2: Partition the targets: ψki ∗ denotes the optimal fraction of the target assigned to

the kth vehicle in LP*. Assign target i to the k̂th vehicle that corresponds to the
largest fraction, i.e., ψk̂i ∗ = maxml=1 ψ

l
i∗. Break ties arbitrarily. At the end of this

step, each target will be assigned to exactly one vehicle. For k = 1, · · · ,m, let
Tk be the set of targets assigned to the kth vehicle.

3: For k = 1, · · · ,m, apply the Frieze et al. single vehicle algorithm to the vertices
in Tk ∪ {dk} to obtain a path for the kth vehicle.

Now, we show that approx3 runs in polynomial time in the following lemma.

54

Lemma 4.1. The algorithm approx3 runs in polynomial time.

Proof. The main steps in approx3 include solving LP*, and implementing the Frieze

et al. algorithm for each of the vehicles. It is already known that Frieze et al.

algorithm runs in polynomial time[7]. Therefore, the proof of the lemma would be

complete if LP* is solvable in polynomial time. The difficulty involved in solving LP*

mainly rests on addressing the cut constraints (4.12),(4.13) as all the other constraints

are polynomial in the size of the problem. For all i ∈ T and k = 1, · · · ,m, using the

max-flow, min-cut theorem, the cut constraints in (4.12) can be equivalently replaced

with flow constraints, which require at least a shipment of ψki units of commodity

from target i to depot dk. Therefore, for target i and depot dk, the cut constraints in

(4.12) can be replaced with the following set of flow constraints that are polynomial

in size:

fkuvi ≤ xk(u,v) ∀e = (u, v) ∈ Vk, (4.16)

∑
v∈T

(fkuvi − fkvui) =

ψki u = i,

0 u /∈ {i, dk},

−ψki u = dk,

(4.17)

fkuvi ≥ 0 ∀u, v ∈ V k. (4.18)

In the above constraints, fkuvi denotes the amount of commodity shipped from target

i to depot dk flowing through edge (u, v). These flow constraints can be expressed

for each target and depot, and therefore, all the cut constraints in (4.12) can be

expressed equivalently using a polynomial number of flow constraints. The same

idea can also be applied to the cut constraints in (4.13). Therefore, LP* can be

solved in polynomial time[16]. Hence proved.

55

The following is the main result of this section:

Theorem 4.1. The approximation ratio of approx3 is mdlog2(n+ 1)e.

Proof. For a single vehicle, Asymmetric TSP (ATSP) with n targets and one depot,

Williamson[28] showed that the cost of the solution produced by the Frieze et al.

algorithm is at most dlog2(n+1)e times the optimal cost of the Held-Karp relaxation

of the ATSP. In the context of our problem, this result implies that cost(Pathk) ≤

dlog2(n+ 1)eCk
relax where cost(Pathk) denotes the cost of the path found for the kth

vehicle and Ck
relax represents the optimal Held-Karp relaxation cost. If at least one

target is assigned to the kth vehicle (|Tk| ≥ 1), this Held-Karp relaxation cost is

defined as follows:

Ck
relax = min

∑
e∈Ek

costke x
k
e

∑
e∈δ+k ({i})

xke =
∑

e∈δ−k ({i})

xke = 0 ∀i ∈ T \ Tk, (4.19)

∑
e∈δ+k ({i})

xke =
∑

e∈δ−k ({i})

xke = 1 ∀i ∈ Tk ∪ {dk}, (4.20)

∑
e∈δ+k (S)

xe ≥ 1 ∀S ⊂ Tk ∪ {dk}, (4.21)

xke ≥ 0 ∀e ∈ Ek. (4.22)

As the travel costs satisfy the triangle inequality, Nguyen[20] has shown that the

degree constraints in the above formulation can be relaxed without changing the

56

optimal cost of the Held-Karp relaxation as follows:

Ck
relax = min

∑
e∈Ek

costke x
k
e

∑
e∈δ−k ({i})

xke =
∑

e∈δ+k ({i})

xke ∀i ∈ Vk, (4.23)

∑
e∈δ+k (S)

xe ≥ 1 ∀S ⊂ Tk ∪ {dk}, (4.24)

xke ≥ 0 ∀e ∈ Ek. (4.25)

Now, we prove that the sum of the optimal cost of the Held-Karp relaxations,∑m
k=1C

k
relax, can be bounded by at most m times the optimal cost of LP* defined

in (4.9)-(4.15), i.e.,
∑m

k=1C
k
relax ≤ mCLP∗. Let (x∗, ψ∗) be an optimal solution of

LP*. Then, construct a solution x̃ke := mxk∗e ∀e ∈ Vk, k = 1, · · · ,m. x̃ke is a feasible

solution to the linear program defined in (4.23)-(4.25) due to the following reasons:

For all i ∈ Vk,

∑
e∈δ−k ({i})

x̃ke = m
∑

e∈δ+k ({i})

xk∗e

= m
∑

e∈δ−k ({i})

xk∗e (from equation 4.11)

=
∑

e∈δ−k ({i})

x̃ke .

57

For all S ⊆ Tk, |S| ≥ 1,

∑
e∈δ+k (S)

x̃ke = m
∑

e∈δ+k (S)

xk∗e

≥ mψk∗i ∀i ∈ S (from equation 4.12)

≥ 1. (As ψk∗i ≥
1

m
for any i ∈ Tk)

For all S ⊂ Tk ∪ {dk}, |S ∩ {dk}| ≥ 1,

∑
e∈δ+k (S)

x̃ke =
∑

e∈δ−k (Vk\S)

x̃ke

= m
∑

e∈δ−k (Vk\S)

xk∗e

≥ mψk∗i for all i ∈ Vk \ S (from equation 4.13)

≥ 1. (As |Tk \ S| ≥ 1, there is at least one

target i ∈ Vk \ S such that ψk∗i ≥
1

m
)

Therefore, for k = 1, · · · ,m, x̃ke is a feasible solution for the linear program in (4.23)-

(4.25). Consequently,
∑m

k=1C
k
relax ≤

∑
e∈Ek

costke x̃
k
e = m

∑
e∈Ek

costke x
k∗
e = mCLP∗.

By putting together all the above results, we have,

m∑
k=1

cost(Pathk) ≤ dlog2(n+ 1)e
m∑
k=1

Ck
relax

≤ mdlog2(n+ 1)eCLP∗

≤ mdlog2(n+ 1)eCopt.

58

4.3 A Primal-dual heuristic algorithm

4.3.1 Problem formulation

In this section, we formulate the problem in a way we can use in the primal-dual

heuristic. Let xke denote the binary variable that decides whether edge e is present in

the path of the kth vehicle. xke = 1 if and only if edge e is traveled by the kth vehicle

and otherwise xke = 0. For k = 1, · · · ,m − 1, let zkU denote the binary variable

that determines the set of targets not visited by vehicles at any of the depots in

{1, · · · , k − 1}. A target u is visited by the kth vehicle if and only if zk−1U − zkU = 1.

Then, an integer linear program for the MDHATSP can be formulated as follows:

CIP = min
∑

k=1,··· ,m

∑
e∈Ek

costke x
k
e (4.26)

∑
e∈δ+1 (S)

x1e +
∑

T⊇U⊇S

z1U ≥ 1 ∀S ⊆ T, (4.27)

∑
e∈δ+k (S)

xke ≥
∑

T⊇U⊇S

(zk−1U − zkU) ∀S ⊆ T, k = 2, · · · ,m− 1, (4.28)

∑
e∈δ+m(S)

xne ≥
∑

T⊇U⊇S

zm−1U ∀S ⊆ T, (4.29)

∑
e∈δ−1 (S)

x1e +
∑

T⊇U⊇S

z1U ≥ 1 ∀S ⊆ T, (4.30)

∑
e∈δ−k (S)

xke ≥
∑

T⊇U⊇S

(zk−1U − zkU) ∀S ⊆ T, k = 2, · · · ,m− 1, (4.31)

∑
e∈δ−m(S)

xne ≥
∑

T⊇U⊇S

zm−1U ∀S ⊆ T, (4.32)

zkU ≤
∑
R⊇U

zk−1R , ∀U ⊆ T, k = 2, · · · ,m, (4.33)

59

∑
U⊆T

zkU ≤ 1, k = 1, · · · ,m− 1 (4.34)

xke ∈ {0, 1} ∀e ∈ Ek, k = 1, · · · ,m

zkU ∈ {0, 1} ∀U ⊆ T, k = 1, · · · ,m− 1.

By relaxing some of the constraints, LP relaxation of the MDHATSP can be written

as follows:

CLP = min
∑

k=1,··· ,n

∑
e∈Ek

costke x
k
e (4.35)

∑
e∈δ+1 (S)

x1e +
∑

T⊇U⊇S

z1U ≥ 1 ∀S ⊆ T, (4.36)

∑
e∈δ+k (S)

xke ≥
∑

T⊇U⊇S

(zk−1U − zkU) ∀S ⊆ T, k = 2, · · · ,m− 1, (4.37)

∑
e∈δ+m(S)

xne ≥
∑

T⊇U⊇S

zm−1U ∀S ⊆ T, (4.38)

xke ≥ 0 ∀e ∈ Ek, k = 1, · · · ,m,

zkU ≥ 0 ∀U ⊆ T, k = 1, · · · ,m− 1.

A dual problem of the LP relaxation can be formulated as follows:

CDual = min
∑
S⊆T

Y +
1 (S) (4.39)

60

∑
S:e∈δ+k (S)

Y +
k (S) ≤ costke ∀e ∈ Ek, k = 1, · · · ,m, (4.40)

∑
S⊆U

Y +
k (S) ≤

∑
S⊆U

Y +
k+1(S) ∀U ⊆ T, k = 1, · · · ,m− 1, (4.41)

Y +
k (S) ≥ 0 ∀S ⊆ T, k = 1, · · · ,m. (4.42)

Similar to the symmetric problem, this dual problem will be used for finding a

Heterogeneous Directed Spanning Forest (HDSF). The HDSF is a collection of m

trees, and each tree spans a subset of targets from a depot.

4.3.2 A Primal-dual heuristic algorithm

The initialization, the main loop and the final pruning step of the primal-dual

algorithm are presented in Algorithm 5. Similar to a primal-dual algorithm for

the symmetric problem in Algorithm 3, for every k ∈ {1, · · · ,m}, let Fk denote

the edges in the forest corresponding to the kth vehicle, and let the set of connected

components in Fk be denoted by Ck. In the algorithm, an active component represents

a component that is not reachable from any of the depots and does not have any

incoming edges. An inactive component denotes a component that is reachable from

one of the depots or has at least one incoming edge. A violated component denotes

a component which does not have any incoming edges. Initially, Fk is an empty set

for each k ∈ {1, · · · ,m}, and each Ck consists of components where each vertex is in

its own connected component. All components containing the targets are active and

all components containing depots are inactive at the initialization step. For every

k ∈ {1, · · · ,m}, each vertex in v ∈ Vk is initially unmarked and all the dual variables

are all set to zero.

During each iteration of the main loop, we first choose an active violated compo-

nent S1 for the first vehicle and one of its subsets from each Ck for all k ∈ {2, · · · ,m},

61

Algorithm 5 : Primal-dual algorithm for MDHATSP
1: Initialization

2: Fk ← ∅, ∀k = 1, · · · ,m; Ck ← {{v} : v ∈ Vk}, ∀k = 1, · · · ,m
3: for v ∈ T do
4: All the vertices are unmarked.
5: All the dual variables are set to zero.
6: activek({v})← 1, ∀k = 1, · · · ,m
7: end for
8: activek({dk})← 0, ∀k = 1, · · · ,m
9: Main loop

10: while there exists any active component in C1, · · · , Cm do
11: Choose active violated components S = {S1, S2, · · · , Sm} from Ck, ∀k ∈ {1, · · · ,m}, such that S1 ⊇ S2 ⊇

· · · ⊇ Sm.
12: Find an edge ek ∈ Ek that has the minimum cost among all the incoming edges to the components in S.
13: Fk ← {ek} ∪ Fk

14: if ek forms a new strongly connected component, and the component is not reachable from the depot dk
then

15: Let the strongly connected component be an active component.
16: else if ek makes any vertex v ∈ Sk reachable from the depot dk then
17: Let the depot and the all vertices that are reachable from the depot be an inactive component.
18: if k < m then
19: Deactivate all the subsets of this component in Ck+1, · · · , Cm.
20: end if
21: if k > 1 then
22: Mark all the vertices in the supersets of this component in C1, · · · , Ck−1. Deactivate it if the corre-

sponding component consists of all marked vertices.
23: end if
24: else
25: Deactivate Sk.
26: end if
27: if there is no active violated component in C1 then
28: Pick an inactive strongly connected component in C1, which is not reachable from d1, and check all the

incoming edges to the chosen set.
29: if one of the connected components consists of all unmarked vertices then
30: Drop the chosen component and let this unmarked component be a new chosen component. Check the

incoming edges to the new chosen set.
31: else
32: Combine them and check all the incoming edges. Repeat combining marked components until there is

no incoming edge to the combined component. Let this new component be active.
33: end if
34: end if
35: if an active violated C ∈ Ck set has all inactive subsets in Ck+1 but there exists any violated component

among them then
36: Combine some of the subsets in the same way as in line 25-31 and let it be active.
37: end if
38: end while

39: Pruning Step

40: Let F = {F1, · · · , Fm} and ei be the edge that is added to F at ith iteration.
41: for i = 1 of iterations, down to 1 do
42: if F \ ei is feasible then
43: F ← F \ ei
44: end if
45: end for

62

{S2, · · · , Sm}, such that S1 ⊇ S2 ⊇ · · · ⊇ Sm.

Now, we increase the dual variables of the chosen components {S1, · · · , Sm} by

the same amount until one of the constraints in (4.40) becomes tight. Let the cor-

responding incoming edge be denoted by ek ∈ Ek. Add this new edge to its corre-

sponding tree Fk. There are three possible cases that could arise by adding ek. 1) If a

new strongly connected component is formed, and it is not reachable from the depot

dk, then let the new strongly connected component be an active component. 2) If

any vertex, which was active at the beginning of the iteration, becomes reachable

from the depot dk, then let the depot and all the vertices that are reachable from

the depot be an inactive component. If k < m, deactivate all the subsets of this

component in Ck+1, · · · , Cm. If k > 1, mark all the vertices in the supersets of this

component in C1, · · · , Ck−1 and deactivate it if the corresponding component only

consist of marked vertices. This marking process is to make sure that the constraints

in (4.41) are not violated at any time. 3) Neither 1) nor 2) happens, deactivate Sk.

Before the termination condition is satisfied, if there is no active component

without any incoming edge in C1, at least one of the components which contains

unmarked vertices can be combined with a component which consists of marked

vertices, and we let it be a new active violated component in C1. This is true because

during an iteration, every inactive component that contains unmarked vertices should

have at least one incoming edge, and if it is not reachable from the depot d1, it

should be reachable from at least one of the components with marked vertices. In the

algorithm, we do this combining as follows: 1) Pick an inactive component which has

at least one incoming edge and contains some unmarked vertices in C1. 2) Check all

the incoming edges to the selected component. 3) If one finds a connected component

that consists of all unmarked vertices, drop the selected component and let that

connected component be the new selected component. If one finds a component that

63

all of its directly connected components contain marked vertices, combine them and

let it to be a new selected component. 4) Repeat 2) and 3) until there is no incoming

edge to the new combined component.

If an active violated component C ∈ Ck, which consists of both the marked and

unmarked vertices, has all inactive subsets in Ck+1 for some k ∈ {1, · · · ,m− 1} and

there exists any violated components in them, combine some of the subsets in the

same way we did for C ∈ C1 as stated above.

The algorithm terminates its main loop when all components become inactive.

As the final step of the algorithm, we perform reverse deleting steps to obtain the

final HSF. Let ei be the edge that is added to F at ith iteration of the main loop. In

reverse order, i.e., from i =the total number of the iterations of the main loop down

to 1, if F is feasible without ei, then remove it from F . Otherwise, leave ei in F .

Figure 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8, and 4.9 show some essential steps of

the algorithm with an example of three depots and fourteen targets.

Finally, we prove the feasibility of the algorithm in the following lemma 4.2.

64

2

4

5

8

3

13

14
7

1

12

10
9 6

11

1

2

4

5

8

3

13

14
7

1

12

10
9 6

11

2

2

4

5

8

3

13

14
7

1

12

10
9 6

11

3

Figure 4.1: Snapshot of the forest for an example with 3 vehicles and 14 targets at the

end of the first iteration of the main loop. At the beginning of the first iteration, the

components which contain target 1 are chosen to increase the dual variables. An edge

coming from target 7 to target 1 is added to F1 as the corresponding constraint of

(4.40) becomes tight. Since target 1 does not form any strongly connected component

and is not reachable from d1, {1} ∈ C1 is deactivated.

2

4

5

8

3

13

14
7

1

12

10
9 6

11

1

2

4

5

8

3

13

14
7

1

12

10
9 6

11

2

2

4

5

8

3

13

14
7

1

12

10
9 6

11

3

Figure 4.2: Snapshot of the forest after eight iterations of the main loop. The

components that contain target 8 are chosen to increase the dual variables and an

edge coming from target 5 to target 8 is added to F1. Since target 5 and target 8

forms a strongly connected component, {5, 8} ∈ C1 becomes an active component.

65

2

4

5

8

3

13

14
7

1

12

10
9 6

11

1

2

4

5

8

3

13

14
7

1

12

10
9 6

11

2

2

4

5

8

3

13

14
7

1

12

10
9 6

11

3

Figure 4.3: Snapshot of the forest after eleven iterations of the main loop. The

components that contain target 11 are chosen to increase the dual variables, and

an edge coming from depot 2 to target 11 is added to F2. Since the target 11 is

now reachable from d2, {11, d2} ∈ C2 became an inactive component. The subset

{11} ∈ C3 is deactivated and the superset {11} ∈ C1 is marked and deactivated.

2

4

5

8

3

13

14
7

1

12

10
9 6

11

1

2

4

5

8

3

13

14
7

1

12

10
9 6

11

2

2

4

5

8

3

13

14
7

1

12

10
9 6

11

3

Figure 4.4: Snapshot of the forest in the middle of the thirty ninth iteration of the

main loop. In the first map, we can see that the components {13, 14}, {3}, {11} are

still violated components but inactive.

66

2

4

5

8

3

13

14
7

1

12

10
9 6

11

1

2

4

5

8

3

13

14
7

1

12

10
9 6

11

2

2

4

5

8

3

13

14
7

1

12

10
9 6

11

3

Figure 4.5: Snapshot of the forest after thirty nine iterations of the main loop.

By following the combining procedure of the algorithm, now the component

{4, 5, 8, 13, 14} ∈ C1 became an active violated component.

2

4

5

8

3

13

14
7

1

12

10
9 6

11

1

2

4

5

8

3

13

14
7

1

12

10
9 6

11

2

2

4

5

8

3

13

14
7

1

12

10
9 6

11

3

Figure 4.6: Snapshot of the forest in the middle of the forty first iteration of the

main loop. The active component {4, 5, 8, 13, 14} ∈ C1 has all inactive subsets

{4, 5, 8}, {13, 14} ∈ C2, but {13, 14} ∈ C2 is a violated component.

67

2

4

5

8

3

13

14
7

1

12

10
9 6

11

1

2

4

5

8

3

13

14
7

1

12

10
9 6

11

2

2

4

5

8

3

13

14
7

1

12

10
9 6

11

3

Figure 4.7: Snapshot of the forest after forty one iterations of the main loop.

By following the combining procedure of the algorithm, now the component

{4, 5, 8, 13, 14} ∈ C2 became an active violated component.

2

4

5

8

3

13

14
7

1

12

10
9 6

11

1

2

4

5

8

3

13

14
7

1

12

10
9 6

11

2

2

4

5

8

3

13

14
7

1

12

10
9 6

11

3

Figure 4.8: Snapshot of the forest after the termination of the main loop.

68

2

4

5

8

3

13

14
7

1

12

10
9 6

11

1

2

4

5

8

3

13

14
7

1

12

10
9 6

11

2

2

4

5

8

3

13

14
7

1

12

10
9 6

11

3

Figure 4.9: Snapshot of the final forest after the pruning step

Lemma 4.2. The algorithm produces a feasible heterogeneous directed spanning for-

est, i.e., the trees specified by the collection of edges in F ′1, · · · , F ′n makes each of

the targets reachable from one of the depots. Every vertex appears only once in the

forest.

Proof. The main loop terminates when all components in C1, · · · , Cm are inactive. A

component can be deactivated if one of the following cases occur:

1) The incoming edge added to the component does not form any new strongly

connected component, and the vertices in the component are not reachable

from any of the depots.

2) The newly added edge makes the component reachable from the depot dk.

3) One of its subsets or supersets becomes reachable from its depot.

Since the condition 1) only deactivates one of m chosen components, a target in

C1, · · · , Cm cannot be all inactive at the same time by going through only the condi-

tion 1). Thus, each target should be deactivated through the condition 2) or 3) at

least once to satisfy the termination condition. This implies that each of the targets

69

in T is reachable from at least one of the depots when the main loop is terminated.

At the pruning step, the algorithm goes through all the edges in the forest and checks

if it is necessary to maintain the feasibility and remove all the unnecessary edges.

Therefore, even if a target is connected to the multiple depots during the main loop,

it would be connected to only one depot after the pruning step. Hence, the algorithm

produces a feasible heterogeneous directed spanning forest.

4.4 Computational results

Both the the approximation algorithm using LP relaxation in Algorithm 4 and the

primal-dual heuristic algorithm in Algorithm 5 have been implemented. In addition

to these two, we also implemented a modification of approx3 referred to as approxlkh,

to improve the performance. In the modification, we solve the LP* and partition the

targets as done in approx3. After partitioning, we use Lin-Kernigan Hueristic (LKH)

[13] instead of Frieze et al. algorithm to find a path for each vehicle. Similar to the

previous section, the LKH was used without changing any of its default settings to

solve the ATSP. All the simulations were run on a Dell Precision T5500 workstation

(Intel Xeon E5630 processor @ 2.53GHz, 12GB RAM).

For the simulations, the number of vehicles were varied from 2 to 4 and the

number of targets were varied from 20 to 40. All the targets were randomly generated

in 5 × 5 km2 area using a uniform distribution. For the purposes of simulating

heterogeneity, the minimum turning radius (r) of each vehicle was chosen uniformly

from the interval [100, 150] meters. The approach, or the heading angle at each

target was fixed and randomly chosen from a uniform distribution from the interval

[0, 2π]. Dubins’ result[5] was used to calculate the minimum distance required to

travel between any two targets. These travel distances are asymmetric and satisfy

the triangle inequality.

70

For a given number of vehicles (m) and targets (n), 50 instances were randomly

generated. For a given problem instance I, the bound on the a posterior guarantee

provided by an algorithm is defined as
CI

solf

CI
LP∗

, where CI
solf

is the cost of the feasible

solution found by the implemented algorithm and CI
LP ∗ is the optimal cost of the

LP* defined in (4.9).

The average a posterior guarantee of the solutions found by approx3, approxlkh,

and the primal-dual heuristic are shown in Table 4.1, 4.2, 4.3 along with the theo-

retical approximation guarantees. The average computation time found by each of

the algorithms are shown in Table 4.4, 4.5, 4.6. As we can see from the results, the

quality solutions that are, on average, within 1% of the optimum can be found by

using approxlkh. Also, even though the theoretical a priori guarantee of the approx-

imation algorithm is quite large, the simulation results show that the a posterior

guarantee of the solutions found by approx3 was approximately 1.50. These results

imply that approx3 finds solutions with bounds that are significantly better than

the guarantees indicated by the approximation factor. The quality solutions found

by the primal-dual heuristic lie in between approx3 and approxlkh. The primal-dual

heuristic was the fastest algorithm, and the increasing rate by the problem size is

significantly slow compared to approx3 and approxlkh.

Table 4.1: Comparison of the theoretical and simulation results for m = 2

No. of Targets
Theoretical upper

bound
(mdlog2(n+ 1)e)

A Posteriori
Bound using
approx3

A Posteriori
Bound using
approxlkh

A Posteriori
Bound using
primal − dual

20 8.7846 1.4942 1.0058 1.0495
25 9.4009 1.4516 1.0075 1.0316
30 9.9084 1.4896 1.0061 1.0357
35 10.3399 1.5251 1.0066 1.0230
40 10.7151 1.4830 1.0089 1.0260

71

Table 4.2: Comparison of the theoretical and simulation results for m = 3

No. of Targets
Theoretical upper

bound
(mdlog2(n+ 1)e)

A Posteriori
Bound using
approx3

A Posteriori
Bound using
approxlkh

A Posteriori
Bound using
primal − dual

20 13.1770 1.4714 1.0045 1.0880
25 14.1013 1.4825 1.0068 1.0489
30 14.8626 1.4577 1.0094 1.0453
35 15.5098 1.4897 1.0084 1.0428
40 16.0727 1.4843 1.0102 1.0403

Table 4.3: Comparison of the theoretical and simulation results for m = 4

No. of Targets
Theoretical upper

bound
(mdlog2(n+ 1)e)

A Posteriori
Bound using
approx3

A Posteriori
Bound using
approxlkh

A Posteriori
Bound using
primal − dual

20 17.5693 1.4469 1.0046 1.0761
25 18.8018 1.4769 1.0077 1.0784
30 19.8168 1.4477 1.0072 1.0576
35 20.6797 1.5049 1.0085 1.0526
40 21.4302 1.4973 1.0092 1.0628

72

Table 4.4: Comparison of the computation time in seconds for m = 2

No. of Targets approx3 approxlkh primal-dual heuristic

20 1.648 1.571 0.808
25 5.189 5.157 1.124
30 12.468 12.320 1.465
35 27.478 27.469 1.580
40 52.339 53.776 1.985

Table 4.5: Comparison of the computation time in seconds for m = 3

No. of Targets approx3 approxlkh primal-dual heuristic

20 2.998 3.121 1.044
25 8.373 8.465 1.143
30 19.690 19.875 1.791
35 40.025 40.567 2.037
40 72.348 72.348 2.391

Table 4.6: Comparison of the computation time in seconds for m = 4

No. of Targets approx3 approxlkh primal-dual heuristic

20 3.930 3.871 1.151
25 11.013 11.124 1.457
30 23.968 24.351 1.863
35 45.508 45.795 2.439
40 86.713 86.908 2.763

73

5. CONCLUSIONS

This dissertation considered three variants/generalizations of a fundamental rout-

ing problem involving multiple vehicles and developed approximation algorithms to

address each of them. Developing approximation algorithms are difficult for multi-

ple vehicle routing problems because it involves partitioning the targets among the

vehicles and then solving a single TSP for each vehicle. This dissertation advances

the state of art by developing new algorithms with better approximation factors for

each of the considered problems. In particular, a novel 2-approximation algorithm

is developed for a multiple terminal, Hamiltonian path problem by using a matroid

intersection algorithm. For a special case of this multiple terminal problem where all

the vehicles start from the same depot, the dissertation developed a 5
3
-approximation

algorithm.

The second routing problem addressed in this dissertation is a multiple vehicle

routing problem where the cost of traveling between any two target locations depend

on the type of the vehicle. A novel primal-dual algorithm with an approximation ratio

of 2 was developed for a special case of this problem where the costs are symmetric,

satisfy the triangle inequality and a monotonicity property. This is the first approx-

imation result in the literature that provides a bound independent of the number

of vehicles for a multiple depot, heterogeneous vehicle problem. Simulation results

were also presented to corroborate the performance of the proposed approximation

algorithm.

Finally, we develop the first approximation algorithm for a multiple, heteroge-

neous vehicle routing problem where the costs are asymmetric and satisfy the triangle

inequality. The approximation ratio of this algorithm is mdlog2(n + 1)e where m is

74

the number of vehicles and n is the number of targets. A primal-dual heuristic was

also developed and the performance of all the proposed algorithms were corroborated

using simulation results.

The following are the fundamental problems that are open in the area of approx-

imation algorithms for multiple vehicle routing problems.

• Currently, there is no constant factor approximation algorithm for a general

multiple depot, heterogeneous vehicle routing problem when all the travel costs

satisfy the triangle inequality. Due to the difficulty involved in addressing

heterogeneous costs, it is even possible that no constant factor approximation

algorithms are possible. Any contribution is answering this question will be

useful.

• Another important class of multiple vehicle routing problems includes cases

where the vehicles may be homogenous but there may be additional vehicle-

target assignments that must be satisfied. These problems arise in applications

where the vehicles may carry different types of sensors and due to resource

constraints, some targets must be visited only by some vehicles. Even though

some special cases of this class of problems has constant factor approximation

algorithms, the scenario where there are general vehicle-target constraints is

still open.

• Currently, simulation results suggest that assigning targets to vehicles by round-

ing a tight LP relaxation (section 4) leads to good approximate solutions.

However, a better analysis of this rounding technique is required if a good

approximation ratio is desired.

75

REFERENCES

[1] Cornuejols G. Brezovec, C. and F. Glover. A matroid algorithm and its appli-

cation to the efficient solution of two optimization problems on graphs. Mathe-

matical Programming, 42:471–487, 1988.

[2] J. O. Cerdeira. Matroids and a forest cover problem. Mathematical Programming

66, pages 403–405, 1994.

[3] Nicos Christofides. Worst-case analysis of a new heuristic for the travelling

salesman problem. Technical report, 1976.

[4] R. Doshi, S. Yadlapalli, S. Rathinam, and S. Darbha. Approximation algo-

rithms and heuristics for a 2-depot, heterogeneous hamiltonian path problem.

International Journal of Robust and Nonlinear Control, 21(12):1434–1451, 2011.

[5] Lester E Dubins. On curves of minimal length with a constraint on average cur-

vature, and with prescribed initial and terminal positions and tangents. Amer-

ican Journal of Mathematics, 79(3):497–516, 1957.

[6] J Edmonds. Maximum matching and a polyhedron with 0,1-vertices. J.Res.

Natl. Bur. Stand., 69B:125–130, 1965.

[7] Alan M Frieze, Giulia Galbiati, and Francesco Maffioli. On the worst-case per-

formance of some algorithms for the asymmetric traveling salesman problem.

Networks, 12(1):23–39, 1982.

[8] AM Frieze. An extension of christofides heuristic to the¡ i¿ k¡/i¿-person travelling

salesman problem. Discrete Applied Mathematics, 6(1):79–83, 1983.

76

[9] J. E. Davis M. Holland G. L. Feithans, A. J. Rowe and L. Berger. Vigilant spirit

control station (vscs) the face of counter. In Proc. AIAA Guidance, Navigation

and Control Conf. Exhibition, Honululu, Hawaii, United States, 2008. AIAA.

[10] H.N. Gabow. Data structures for weighted matching and nearest common an-

cestors with linking. In Proceedings of the 1st Annual ACM-SIAM Symposium

on Discrete Algorithms, 1990.

[11] K. Geiser, D. Slack, E. Allred, and K. Stange. Irrigation scheduling using crop

canopyair temperature differences. Transactions of the American Society of

Agricultural and Biological Engineers, 25(3):689–694, 1982.

[12] Michel X. Goemans and David P. Williamson. A general approximation tech-

nique for constrained forest problems. SIAM Journal on Computing, 24(2):296–

317, April 1995.

[13] Keld Helsgaun. An effective implementation of the lin–kernighan traveling sales-

man heuristic. European Journal of Operational Research, 126(1):106–130, 2000.

[14] J. Hoogeveen. Analysis of christofideśı heuristic: Some paths are more difficult

than cycles. Operations Research Letters, (10):291–295, 1991.

[15] R. Jackson, S. Idso, R. Reginato, and P. Pinter. Canopy temperature as a crop

water stress indicator. Water Resources Research, 17(4):1133–1138, 1981.

[16] Narendra Karmarkar. A new polynomial-time algorithm for linear program-

ming. In Proceedings of the Sixteenth Annual ACM Symposium on Theory of

Computing, pages 302–311, 1984.

[17] Markakis V. Kempe D. Keskinocak P. Koenig S. Kleywegt A. Tovey C. Mey-

erson A. Lagoudakis, M. and S. Jain. Auction-based multi-robot routing. In

77

Proceedings of the International Conference on Robotics: Science and Systems,

pages 343–350, 2005.

[18] E. L. Lawler. Combinatorial Optimization: Networks and Matroids. Dover

Publications, 2001.

[19] Rathinam S. Malik, W. and S. Darbha. An approximation algorithm for a

symmetric generalized multiple depot, multiple travelling salesman problem.

Operations Research Letters, 35:747–753, November 2007.

[20] Viet Hung Nguyen. A 2log2 (n)-approximation algorithm for directed tour cover.

In Combinatorial Optimization and Applications, pages 208–218. Springer, 2009.

[21] S. Rathinam and R. Sengupta. Lower and upper bounds for a multiple depot

uav routing problem. In IEEE Control and Decision Conference, San Diego,

California, 2006.

[22] S. Rathinam and R. Sengupta. 3/2-approximation algorithm for variants of

a 2-depot, hamiltonian path problem. Operations Research Letters, 38:63–68,

2010.

[23] Sengupta R. Rathinam, S. and S. Darbha. A resource allocation algorithm for

multi-vehicle systems with non-holonomic constraints. IEEE Transactions on

Automation Sciences and Engineering, 4(1):98–104, 2007.

[24] Sivakumar Rathinam. Routing and monitoring algorithms for UAVs. PhD the-

sis, University of California, Berkeley, 2007.

[25] JA Reeds and LA Shepp. Optimal paths for a car that goes both forwards and

backwards. Pacific Journal of Mathematics, 145(2):367–393, 1990.

78

[26] B. Rodrigues and Z. Xu. A 3/2-approximation algorithm for multiple depot

multiple traveling salesman problem. Scandinavian Symposium and Workshops

on Algorithm Theory, 2010.

[27] Vijay V. Vazirani. Approximation Algorithms. Springer, March 2004.

[28] David Paul Williamson. Analysis of the Held-Karp heuristic for the traveling

salesman problem. PhD thesis, Massachusetts Institute of Technology, 1990.

[29] S. Yadlapalli, S. Rathinam, and S. Darbha. 3-approximation algorithm for a two

depot, heterogeneous traveling salesman problem. Optimization Letters, pages

1–12, 2010.

[30] T. Zajkowski, S. Dunagan, and J. Eilers. Small uas communications mission.

In Eleventh Biennial USDA Forest Service Remote Sensing Applications Con-

ference, Salt Lake City, UT, 2006.

79

