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ABSTRACT

Approximation Algorithms and Heuristics for a 2-Depot, Heterogenous Hamiltonian

Path Problem. (August 2010)

Riddhi Rajeev Doshi, B.E., North Gujarat University, Patan, India

Chair of Advisory Committee: Dr. Sivakumar Rathinam

Various civil and military applications of UAVs, or ground robots, require a

set of vehicles to monitor a group of targets. Routing problems naturally arise in

this setting where the operators of the vehicles have to plan the paths suitably in

order to optimize the use of resources available such as sensors, fuel etc. These

vehicles may differ either in their structural (design and dynamics) or functional

(sensing) capabilities. This thesis addresses an important routing problem involving

two heterogeneous vehicles. As the addressed routing problem is NP-Hard, we develop

an approximation algorithm and heuristics to solve the problem.

Our approach involves dividing the routing problem into two sub-problems: Par-

titioning and Sequencing. Partitioning the targets involves finding two distinct sets of

targets, each corresponding to one of the vehicles. We then find a sequence in which

these targets need to be visited in order to optimize the use of resources to the max-

imum possible extent. The sequencing problem can be solved either by Christofides

algorithm or the Lin-Kernighan Heuristic (LKH). The problem of partitioning is tack-

led by solving a Linear Program (LP) obtained by relaxing some of the constraints of

an Integer Programming (IP) model for the problem. We observe the performance of

two LP models for the partitioning. The first LP model is obtained by relaxing only

the integrality constraints whereas in the second model relaxes both integrality and

degree constraints.

The algorithms were implemented in a C++ environment with the help of Con-
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cert Technology for CPLEX, and Boost Graph Libraries. The performance of these

algorithms was studied for 50 random instances of varying problem sizes. It was found

that on an average, the algorithms based on the first LP model provided better (closer

to the optimum) solutions as compared to those based on the second LP model. We

also observed that for both the LP models, the average quality of solutions given by

the heuristics were found to be better ( within 5% of the optimum) than the average

quality of solutions obtained from the approximation algorithm (between 30 - 60% of

the optimum depending on the problem size).
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CHAPTER I

INTRODUCTION

Unmanned Aerial Vehicles (UAVs) and/or ground robots are routinely involved in mil-

itary applications for border patrol, mine clearance, reconnaissance, maritime surveil-

lance expeditions, etc. Their civil applications usually include remote sensing, traffic

monitoring, search and rescue, scientific research, etc. The missions employing these

vehicles usually operate with constraints on time and resource. It thus becomes very

crucial, to find an optimal path of travel for the vehicles involved. In most cases,

a heterogeneous collection of vehicles differing in either structure or function is em-

ployed for the completion of a mission. In this thesis, we mainly concern ourselves

with routing heterogeneous vehicles for various applications. This problem is more

realistic and more challenging than its homogeneous counterpart due to the inherent

differences among the vehicles.

We begin by classifying the heterogeneity of these vehicles into two basic cate-

gories: structural heterogeneity and functional heterogeneity. Vehicles that are struc-

turally heterogeneous mainly differ in the design and dynamics. Thus, they may differ

based on their fuel consumption, the maximum speed at which they can travel, the

maximum payload capacity, etc. The difference in minimum turning radius can be

sometimes ignored by assuming that the targets are reasonably distant from each

other. However, this assumption can not disregard other differences and the cost of

traveling between two targets still depends greatly on the type of vehicle employed.

The journal model is IEEE/ACM Transactions on Networking.
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Thus, some structural heterogeneity is always present among the vehicles. Even the

vehicles that are more or less identical structurally may occasionally be equipped

with different sensors and hence additional vehicle-target constraints must be met by

the vehicles. The targets may then be partitioned into disjoint subsets: targets to be

visited by specific vehicles and targets that any of the vehicles can visit. While the

cost of travel between two targets remains equal for all the vehicles, the vehicle-target

assignments induce a functional heterogeneity.

In this thesis, we primarily concentrate on the following 2-Depot, Heterogeneous

Hamiltonian Path Problem (2DHHPP):

Given a set of targets and two heterogeneous vehicles located at distinct

depots, find a Hamiltonian path for each vehicle such that the sum of

costs of paths traveled by both the vehicles is minimized and each target

is visited by exactly one vehicle.

The 2DHHPP is a generalization of Hamiltonian Path Problem, which is known

to be NP-Hard [1]. Hence, there are no constant factor approximation algorithms

possible for a general case of this problem unless P = NP . However, if all the costs

satisfy triangle inequality, an α-approximation algorithm [2] could possibly be used for

finding solutions to such problems. An α - approximation algorithm is characterized

by the following properties:

• The algorithm runs in polynomial time to find a solution to a given problem.

• It guarantees a solution that is at most α times the optimal or OPT(α) for

instance of the problem.

There are also several heuristics available to solve these types of problems.

Heuristics can find a feasible solution to the problem in polynomial time, however,

there are no guarantees on the quality of the solution obtained. This thesis presents



3

some approximation algorithms and heuristics for the 2DHHPP. It also presents a

computational study comparing the performance of these algorithms under various

scenarios.

The rest of the thesis is organized as follows. In Chapter II, we review and discuss

the prior work related to our problem. In Chapter III, we provide an overview of the

problem formulation and describe the integer programming model of the 2DHHPP.

In Chapter IV, we present the algorithms and heuristic along with a proof of approx-

imation. In Chapter V, we perform a computational study explaining the simulation

setup. We also present an evaluation of the performance of the algorithms based on

the results obtained. In Chapter VI, we conclude the thesis by summarizing the work

and discussing possible improvements that can be made.
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CHAPTER II

RELATED WORK

In graph theory [3], a Hamiltonian path is defined as a path in a directed or an

undirected graph that visits each vertex of the graph exactly once. A Hamiltonian

Path Problem (HPP) is thus the problem to find a Hamiltonian path in a given graph.

In this thesis, however, we use HPP to denote to a problem of finding a minimum-

cost Hamiltonian path in the graph. The 2DHHPP is then a generalization of the

HPP for two heterogeneous vehicles, each stationed at a distinct depot, subjected to

additional constraints of assigning vehicles to targets and vice-versa.

2.1 Hamiltonian Path Problem and Traveling Salesman Problem

In a graph, when the end nodes of a Hamiltonian path are connected, a Hamiltonian

cycle is formed. A Hamiltonian Cycle Problem (HCP) is then a problem of finding

a tour (in a graph) that visits each vertex exactly once. The Traveling Salesman

Problem (TSP) is equivalent to the problem of finding the minimum-cost Hamiltonian

cycle in a graph and thus is a generalization of the HCP.

We observe that the problems of TSP, HCP and HPP belong to a same class

of problems and hence are closely related. This family of problems along with its

several variations [4] has been extensively studied in the past and several algorithms,

heuristics and transformations have been developed to solve these problems. It is

well known that approximation algorithms for this class of problems can exist if the

costs satisfy the triangle inequality [2], (i.e., the cost of direct travel between any two

targets is at most as expensive as cost of traveling through an intermediate target)
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unless P=NP. Henceforth, unless otherwise mentioned, we assume that the costs

corresponding to each vehicle satisfy the triangle inequality. The following sections

will discuss some noted work done in the field of single and multi depot problems

related to the TSP family.

2.2 Single Vehicle Problems

For a single vehicle TSP (STSP), there are two approximation algorithms that are

commonly used: the 2-approximation algorithm that doubles the Minimum Span-

ning Tree (MST) to find a feasible tour and the algorithm given by Christofides [5],

known to give a solution no worse than 1.5 times the optimal solution. The latter ap-

proximation factor is obtained by combining the MST with a weighted non-bipartite

minimum cost perfect matching of its odd-degree nodes. The performance guarantee

of the Christofides algorithm has not been narrowed down for over two decades now

and finding a smaller approximation factor remains an open problem. However, for a

specific case of TSP where the distances between the nodes are either one or two, a

7

6
- approximation algorithm is presented in [6]. Also, for a Euclidean TSP, Arora pre-

sented a Polynomial Time Approximation Scheme (PTAS) which for a fixed c > 1 is

known to give a (1+1\c) - approximation to the optimum TSP tour in O(n(logn))O(c)

time [7].

For a single vehicle HPP (SHPP), Hoogeveen in [8] employs adaptations of

Christofides’ algorithm to prove a
3

2
- approximation algorithm for cases where a

starting node/depot for a path is specified and a
5

3
- approximation algorithm for

cases where both the starting point and the terminal point are specified. Chekuri

and Pal [9] address the Asymmetric HPP (AHPP) and present a O(logn) - approxi-

mation algorithm for the AHPP.
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Several linear/integer programming models like the ones described in [10, 11, 12]

have also been successfully employed to solve the TSP, HPP and their variants. These

combinatorial approaches are known to give close to optimal or optimal solutions

however, the time taken to obtain a solution can be very large depending upon the

number of targets and the resource constraints that the vehicle is subjected to. There

are also heuristics like the Lin-Kernighan Heuristics (LKH) [13] and the ant-colony

optimization [14, 15] which are relatively fast.

2.3 Multi Vehicle Problems

For a homogeneous Multi TSP (MTSP) and its variations, Kara and Bektas present

some integer linear programming formulations in [16]. A branch-and-bound based

method for large scale MTSP is described in [17]. A cutting plane algorithm for

MTSP is presented in [18]. An overview of the commonly used formulations for the

MTSP is described in [19].

For Multi Depot TSP (MDTSP), HPP (MDHPP) and their variants, 2-approximation

algorithms are presented in [20, 21]. For a Euclidean multi depot vehicle routing prob-

lem, Cardon et al. have proposed a PTAS that ensures a (1 + ǫ)-approximation for

ǫ > 0 with running time (qd/ǫ)O(q3d2/ǫ2) + O(n logn), where q is the number on cus-

tomers visited by each of the d depots [22]. Rathinam and Sengupta also present a

3

2
- approximation algorithm in [23] for two variants of a 2-depot Hamiltonian Path

Problem. An 8-approximation algorithm for the 2DHHPP with vehicular constraints

was presented by Yadlapalli et al. in [24]. However, there are no computational

results currently available to test its performance. In this thesis, we present slight

variations of this algorithm along with LKH based heuristics. The approximation fac-

tor for these modified algorithms remains the same. The main focus of this thesis is
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to present a computational study for the modified algorithms and heuristics in order

to have a better insight on their actual performance.
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CHAPTER III

PROBLEM OVERVIEW

One of the challenging aspects of solving a 2DHHPP problem is to find a partition

that separates the targets into two sets such that the targets in each partition are

visited by exactly one of the two vehicles. Once we have the partitions, the task

that remains is that of finding a minimum cost path for each of the vehicles over

their corresponding targets. In the following sections, we present the formulation of

the problem and describe an integer programming approach to find an appropriate

partition of the targets.

3.1 Formulation

Let us assume that all the depots and targets are the vertices of a graph and all the

paths joining these targets are the edges joining the corresponding vertices. Let D =

{d1, d2} be the set of vertices corresponding to the two depots and T = {1, 2, ..., N}

be the set of vertices denoting all the targets to be visited by the two vehicles. Then,

V1 = T ∪ {d1} is the set of all the vertices corresponding to vehicle 1 and V2 =

T ∪ {d2} is the set of all vertices corresponding to vehicle 2. The two depots are not

connected by any edge. Each vehicle, starts from its corresponding depot and ends

some final target. The vehicles are free to choose their final destinations and hence

they are not prescribed.

Suppose, E1 and E2 are the sets containing the edges that join any two vertices

in V1 and V2 respectively. Let c1ij be the cost incurred by vehicle 1 when traveling

from vertex i to vertex j and c2ij be the corresponding cost for vehicle 2. Then,
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G1 = (V1, E1, c
1) and G2 = (V2, E2, c

2) are the weighted graphs corresponding to

vehicles 1 and 2 respectively. The overall graph that the vehicles then have to search

together in order to find their respective shortest Hamiltonian paths isG = (G1 ∪ G2).

We assume that the costs satisfy the triangle inequality, i.e., for every i, j, k ∈ V1, i 6=

j 6= k, c1ij + c1jk ≤ c1ik. Similarly, for every l, m, n ∈ V2, l 6= m 6= n, c2lm + c2mn ≤ c2ln.

We also assume a functional heterogeneity in the vehicles owing to which, vehicle 1 is

required to visit a set of vertices R1 ⊆ T and vehicle 2 is required to visit R2 ⊆ T .

Let the number of vertices visited by the ith vehicle be ni, then the sequence

of vertices visited by the ith vehicle can be given by Si = {di, a
i
1, a

i
2, ..., a

i
ni
}, where

ai1, .., a
i
ni
∈ T and Ri ⊆ Si. The cost of travel for the ith vehicle is given by

Costi = ci
diai1

+

ni∑

j=2

ciai
j−1

,ai
j
. Our problem is to find the sequences S1 and S2 such that

each vertex is visited exactly once by exactly one of the vehicles and the total cost of

travel, Cost1 + Cost2, is minimized.

3.2 Integer Programming Model

The 2DHHPP can be formulated as a multi-commodity flow problem (MCFP). Let

there be n distinct commodities corresponding to the n targets. It is required that at

least one unit of each commodity be delivered to its corresponding target by either

of the two vehicles. Any vehicle i which delivers the commodity to the targets, will

do so using the edges that carry the commodities from the ith depot. Thus, the

2DHHPP becomes the problem of delivering at least one unit of each commodity to

its corresponding destination by either of the two vehicles such that the total cost of

building the transportation network is a minimum, and the degree constraints and

the vehicle-target assignments are met.

We now formulate this MCFP as an integer programming problem. Let fk
ij and
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pkij be the flows of the k
th commodity originating from depot 1 and depot 2 respectively

and flowing from the ith node to the jth node. Though both fk
ij and pkij are free to

flow on a given arc(i, j), the total amount of flow is restricted by the capacity of the

arc.

Let xij be a binary variable that decides whether arc(i, j) is traveled by vehicle

1 and let yij be a similar variable corresponding to vehicle 2. The following capacity

constraints then arise:

0 ≤ fk
ij ≤ xij ∀ i ∈ V1, j, k ∈ T (3.1a)

0 ≤ pkij ≤ yij ∀ i ∈ V2, j, k ∈ T (3.1b)

Let ψk be a binary variable that denotes the demand of commodity k fulfilled by

depot 1. The demand fulfilled by the second depot is ηk. Thus, we get the following

flow constraints:

∑

j ∈ V1

fk
ji −

∑

j ∈ T

fk
ij = −ψk ∀k ∈ T and i = d1 (3.2a)

∑

j ∈ V1

fk
ji −

∑

j ∈ T

fk
ij = 0 ∀ i, k ∈ T and i 6= k (3.2b)

∑

j ∈ V1

fk
ji −

∑

j ∈ T

fk
ij = ψk ∀ i, k ∈ T and i = k (3.2c)

∑

j ∈ V2

pkji −
∑

j ∈ T

pkij = −ηk ∀ k ∈ T and i = d1 (3.3a)

∑

j ∈ V2

pkji −
∑

j ∈ T

pkij = 0 ∀ i, k ∈ T and i 6= k (3.3b)

∑

j ∈ V2

pkji −
∑

j ∈ T

pkij = ηk ∀ i, k ∈ T and i = k (3.3c)

The constraints (3.2a) and (3.3a) state that the flow of the kth commodity out

of the depots is equal to the demand of the commodity fulfilled by each of the de-
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pots. The constraints (3.2b) and (3.3b) ensure that no part of the kth commodity

is supplied to intermediary nodes by any of the vehicles. Finally, the demand of

the kth commodity is completely supplied to the kth target due to the constraints

(3.2c) and (3.3c).

Since, the capacity of the jth target is ψj for the first vehicle and (ηk) for the

second vehicle, we need to ensure that the total capacity of the edges entering the jth

target is equal to its capacity and the total capacity of edges leaving this target is

also at most equal to the capacity of the target j. The following equations implement

these constraints.

∑

i ∈ V1

xij = ψj ∀ j ∈ T (3.4a)

∑

i ∈ V2

yij = ηj ∀ j ∈ T (3.4b)

∑

i ∈ V1

xji ≤ ψj ∀ j ∈ T (3.5a)

∑

i ∈ V2

yji ≤ ηj ∀ j ∈ T (3.5b)

To make sure that only one vehicle leaves each of the depots, we have an addi-

tional degree constraint on each of the depots as follows

∑

j ∈ T

xij ≤ 1 i = d1 (3.6a)

∑

j ∈ T

yij ≤ 1 i = d2 (3.6b)

Since, both the vehicles are required to visit their assigned targets R1 and R2,
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the following vehicle-target constraints arise:

ψk = 1 ∀k ∈ R1 (3.7a)

ηk = 1 ∀k ∈ R2 (3.7b)

Furthermore, since the total demand of commodity k is 1 unit, the following

coupling constraint arises.

ψk + ηk ≥ 1 ∀ k ∈ T (3.8)

Finally, it is required that xij , yij be binary integers, i.e.,

xij , yij ∈ {0, 1} ∀ i, j ∈ V1 ∪ V2 (3.9)

The variables fk
ij , p

k
ij, ψk and ηk are non-negative real numbers.

fk
ij, p

k
ij , ψk, ηk ∈ R

∗ (3.10)

Thus, the problem of finding the minimum cost path for each vehicle can be

defined as

C2DHHPP = min
∑

(c1ijxij + c2ijyij) (3.11)

subject to the capacity constraints (3.1), flow constraints (3.2, 3.3), degree con-

straints (3.4, 3.5), vehicle-target constraints (3.7), coupling constraints (3.8), inte-

grality constraints(3.9) and non-negativity constraints (3.10).

This integer program is a binary integer program (BIP). By removing the degree

constraints (3.4, 3.5, 3.6) we obtained a relaxed problem which calculates the Hetero-

geneous Minimum Spanning Forest(HMSF). The role of the HMSF algorithm in our

algorithms will be emphasized in the next chapter.
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CHAPTER IV

THE ALGORITHMS

In order to find a solution to the 2DHHPP, we first partition the targets into two

disjoint sets, each corresponding to one of the vehicles. To obtain an approximation

algorithm we then apply the Christofides heuristic to each of these partitions in order

to find a hamiltonian path for each vehicle.

Before we present the approximation algorithm for the 2DHHPP, we present

an approximation algorithm for a relaxed problem, i.e., 2-HMSF. The basic ideas

presented for the 2-HMSF, later form the crux of the approximation algorithm for

the 2DHHPP.

4.1 Approximation Algorithm for the 2-HMSF

1. Relax the integrality constraints (3.9) and the degree constraints (3.6, 3.4, 3.5)

from the IP in section 3.2 to get a relaxation of the 2-HMSF problem. This

relaxed Linear Program (LPHMSF ) can be solved in polynomial time [25].

Assume that the optimal solution of this relaxation is (x∗ij , y
∗

ij, f
i∗
jk, p

i∗
jk, ψ

∗, η∗).

2. Find the optimal fractional amounts of the commodities shipped to each of

the targets from both the depots. Assign the targets to the depot that ships

the maximum amount of their corresponding commodities. Break the ties

arbitrarily. Thus, U1 = {k : k ∈ T, ψk ≥ ηk} is the set of targets assigned

to the first vehicle, and U2 = T\U1 is the corresponding set for the second

vehicle. Denote the partition for each vehicle as Pi(= Ui ∪ {di})

3. Compute the minimum cost spanning tree (MSTi) spanning over Pi (rooted



14

at di) using the costs associated with the corresponding vehicle i.

Algorithm 1 Christofides Algorithm

for Partition Pi : i← {1, 2} do

procedure Christofides(Pi)

MST ← FindKruskalMST(Pi) ⊲ Find a MST that spans across Pi

M ← ∅ ⊲ M is a set of odd degree nodes

for eachv ∈ G do

if degree is odd then

M ← {v}

end if

end for

M∗ = BlossomVmatch(M) ⊲ M∗ is the result of minimum matching on M

EulerGraph = Add(MST,M∗) ⊲ combine M∗ and MST to form an Euler

Graph

ConstructEulerWalk(EulerGraph) ⊲ See Algorithm 2

Transform the walk into a Hamiltonian tour(path) by short-cutting the vis-

ited vertices.

end procedure

end for

4.2 Approximation Algorithm for the 2DHHPP

1. Partition the nodes into sets P1 and P2 using steps (1) and (2) in the 2-HMSF

algorithm described in section 4.1. Denote the feasible 2-HMSF solution by

HMSFfeasible

2. For each minimum spanning treeMSTi, find the nodes with odd-degree. The
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Handshaking lemma [3] , states that there will be an even number of such

nodes. Let theM1 andM2 be the sets of odd-degree nodes for the two MSTs.

3. Perform a minimum cost perfect matching on sets Mi and add the matching

edges to the corresponding MST to obtain a connected Eulerian subgraph.

4. Find an Euler Walk in the subgraph using Fleury’s algorithm [26] or the cycle

finding algorithm (see algorithm 2). The Eulerian walk traverses each edge

in the subgraph exactly once.

5. Shortcut the Eulerian walk to obtain a Hamiltonian Path for each vehicle.

This assures that each target is visited exactly once.

Algorithm 2 Algorithm for Euler Walk

procedure ConstructEulerWalk(Graph)

walkPos← 0

EulerWalk(start) ⊲ The starting vertex

end procedure

procedure EulerWalk(u)

for each vertex v adjacent to u do

RemoveEdge(u, v)

EulerWalk(v)

end for

Walk[walkPos++]← u

end procedure

4.3 Proof of 8 - Approximation

We now prove an 8 - Approximation for our algorithm. For this, we first prove that

the 2-HMSF algorithm is a 4-approximation algorithm.
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Theorem 4.3.1 The cost of feasible solution produced by the 2-HMSF is at the most

four times the cost of the relaxed linear program. It is thus, less than 4Copt(HMSF ),

i.e., the 2-HMSF algorithm has an approximation factor of four.

At the end of the 2-HMSF algorithm, let the cost of MST for the two vehicles

be denoted by Cfeasible(MST1) and Cfeasible(MST2). Let the optimal cost of the

relaxed linear program for the 2-HMSF problem be Copt(HMSF ). We see that the

variables corresponding to both the vehicles are coupled only through constraint (3.8).

Consider another LP relaxation where (3.8) is replaced by the following constraints:

ψk ≥ 1 ∀ k ∈ U1 (4.1a)

ηk ≥ 1 ∀ k ∈ U2 (4.1b)

This new LP formulation(HMSFnew) now allows us to split the main problem

into two sub-problems. The first sub-problem is a relaxation of the HPP for the first

vehicle over P1 and the second is relaxation for the second vehicle over P2. Thus, if

we assume the optimal cost of the new LP formulation to be Copt(HMSFnew), then

we have

Copt(HMSFnew) = Copt(P1) + Copt(P2) (4.2)

where, Copt(P1) and Copt(P2) are the optimal costs of the LP relaxations of the HPPs

corresponding to vehicle 1 and 2 respectively.

We can thus prove theorem 4.3.1 by proving the lemmas 4.3.2 and 4.3.3.

Lemma 4.3.2

Copt(HMSFnew) ≤ 2Copt(HMSF )
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Lemma 4.3.3

1

2
Cfeasible(MST1) ≤ Copt(P1)

1

2
Cfeasible(MST2) ≤ Copt(P2)

A detailed proof of these lemmas and theorem 4.3.1, can be found in [24]. Thus,

finally we can deduce from these two lemmas that

Copt(P1) + Copt(P2) ≤ 2Copt(HMSF )

1

2
Cfeasible(HMSF ) ≤ 2Copt(HMSF )

Cfeasible(HMSF ) ≤ 4Copt(HMSF )

Now, to prove the 8-approximation, let C(Si) be the total cost of all edges on the

path Si. Since, the costs satisfy the triangle inequality, we may apply lemma 4.3.4

described below for our proof.

Lemma 4.3.4 If the costs satisfy the triangle inequality, then

Cmatching ≤ Cfeasible(HMSF )

The proof of lemma 4.3.4 can be found in [27]. Thus, we have

C(S1) + C(S2) ≤ Cfeasible(HMSF ) + Cmatching

≤ 2CfeasibleHMSF

Therefore,

∑

i=1,2

C(Si) ≤ 8Copt(HMSF ) (from theorem 4.3.1)

≤ 8Copt(2DHPP )

where, Copt(2DHPP ) is the optimal cost of the 2DHPP.
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4.4 Heuristic

The 2DHHPP can also be solved by applying the Lin-Kernighan Heuristic (LKH)

instead of the Christofides algorithm to the partition obtained by the 2-HMSF. The

Lin-Kernighan Heuristic(LKH), employs a variable k-opt algorithm to find the short-

est tour/path in a given graph. It begins by randomly selecting a feasible tour on the

graph. At each iteration, for increasing values of k, the heuristic checks whether an

interchange of k-edges between the current tour and the rest of the graph will result

in a shorter tour. These edges are selected such that a feasible tour maybe formed at

any stage of the algorithm. This process is continued until no further improvement

is possible or until all possible exchanges are exhausted.

The search strategy and the termination criterion for the LKH play a very crucial

role in its performance. Also, the selection of a good starting tour may reduce the

computation time for finding the final solution. Helsgaun in [28] devised a better

implementation which restricted the search for the replacement edges within the set

of edges that are ranked according to their closeness to the dual solution of the TSP

obtained by the Held-Karp relaxation. This reduces the search set drastically. Also,

the starting tour is calculated such that most of the edges belong to the optimal dual

solution or are close to it. These improvements along with many others described

in [28, 29] have drastically improved the performance of the LKH and enabled it to

provide optimal solutions for many large instances of TSP.

4.5 Alternative Approximation Algorithm and Heuristic

For both the algorithms mentioned in the previous sections, the HMSF algorithm used

for partitioning the targets into two disjoint sets, utilized an LP relaxation which

had both degree constraints and integrality constraints relaxed. In an alternative
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approach, we relax only the integrality constraints thus keeping the relaxation closer

to the actual IP formulation.

The proof of 8-approximation factor for the approximation algorithms still re-

mains the same. However, one can expect that the feasible solutions given by both

the algorithms may be improved by using this alternative relaxation.
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CHAPTER V

COMPUTATIONAL STUDY

5.1 Details of Implementation

The implementation of our algorithms has been done in C++. The CPLEX callable

libraries available from IBM’s ILOG Concert Technology have been embedded in the

implementation for solving the relaxed linear and integer programs.

The Boost Graph Library(BGL) [30] was used to implement the Christofides al-

gorithm. The minimum cost matching required for this algorithm is obtained through

Blossom V [31], an implementation of Edmonds’ blossom algorithm [32]. For details,

see algorithm 1

For applying LKH to the partitions, we used the implementation developed by

Helsgaun [28, 29], which is available online [33]. This implementation of the LKH is

known to give very high quality solutions in a reasonably short time. In order to be

able to use this implementation, the costs of traveling between any two nodes was

rounded up to a positive integer value. Also, since this implementation doesn’t solve

an HPP. We used the implementation for the Asymmetric TSP assuming the costs of

all the edges incoming to the depot are zero.

The algorithms were applied to a test area of 5000 by 5000 sq. units. Fifty

random instances were generated for each problem size ranging from 15 to 50 nodes

(in increments of 5).

Two test cases were designed based on the heterogeneity in vehicles. In the first

case, we simulated a functional heterogeneity by assigning about first fifth of all the

targets to the first depot and the last fifth of the targets to the second depot. For
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the second test case, we multiplied the cost matrix of the first vehicle with a factor of

1.5. This simulated the differences in the costs of travel that arise due to structural

heterogeneity. Thus, in the second case both structural and functional heterogeneity

were introduced.

For both these cases, the Integer Programming solutions were obtained using the

CPLEX solver. Two different relaxations for the Linear Program were tested. The

first according to section 4.5 had only the integrality constraints relaxed. We denote

this relaxation by LP1. The second as described in the HMSF algorithm(section 4.1),

had both the integrality and the degree constraints relaxed. This is denoted by LP2.

The time taken by CPLEX to solve each problem instance was noted for all

the methods. However, since the time taken by the Christofides algorithm and LKH

heuristics was almost negligible, we compare only the time taken to solve the two LP

relaxations with time taken to solve the integer program.

5.2 Results

All the tests were implemented on an Intelr Xeonr X5450 3.00GHz/16GB machine.

For the first case with only functional heterogeneity introduced, the average quality

of lower bound was found to be tighter in case of LP2. This is indicated in Figure 1.

Given an algorithm a and an instance I, the following equation was used to

calculate the quality of the solutions produced by the algorithm on I.

QualityI =
CostI(a)− CostI(IP )

CostI(IP )
.100% (5.1)

where,

CostI(a) = Cost of the solution obtained by the algorithm a on the instance I

CostI(IP ) = Optimal cost of the 2DHHPP obtained by solving the Integer Program-
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Fig. 1. Comparison of the lower bounds obtained by the two LP relaxations(with func-

tional heterogeneity in the vehicles)

ming problem on the instance I.

When the qualities were compared for the approximation algorithm and the

heuristic the results improved in the cases with only the integrality constraints relaxed.

Figure 2 shows a clear comparison of the average quality of solution provided by each

of the algorithms.
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ations(with functional heterogeneity in vehicles)
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The time study for each of the LP relaxations and IP is presentend in Figure 3.
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Fig. 3. Average Solution time for the IP and the LP relaxations(with functional het-

erogeneity in vehicles)

Similar results were also observed for the case with both structural and functional

heterogeneity among the vehicles. The lower bound was again found to be better in

case of LP1 as can be seen from Figure 4.
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The quality of the approximation algorithms and heuristics was found to be in

accordance to Figure 5.
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Figure 6 shows the time comparison for the performance of the IP formulation

and the LP relaxations in case when both structural and functional heterogeneity is

present among the vehicles.
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tional heterogeneity in vehicles)

5.3 Evaluation

The LP relaxations provide a lower bound for our problem. We find that the relax-

ation with only the integrality constraints relaxed, provide a tighter lower bound on

the solution as compared to the case where the degree constraints are also relaxed.

Moreover, the solutions obtained by the heuristic also improves when only the degree
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constraints are relaxed. The improvement can also be seen in the results obtained

from the approximation algorithm even though the improvement is not drastic. This

improvement in the results may be due to the fact that the formulation of LP with

only the integrality constraints relaxed shares more similarities with the IP formula-

tion.

However, the improvement comes at an expense of solution time. The solution

time for the relaxation without the degree constraints is lower than the one with

degree constraints. Since, the time required to solve the LP formulations, increases

exponentially with the increase in number of nodes, the difference in the time taken

by the two relaxations even though smaller for the observed instances, may increase to

a much higher value with the increase in number of nodes. Thus, a trade-off between

the quality of the solution and the time taken needs to be found.
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CHAPTER VI

CONCLUSION AND FUTURE WORK

In this thesis we present a detailed computational study of the algorithms and the

heuristic for the 2DHHPP. This study helps us get a better idea of the actual perfor-

mance of these algorithms. So far, no computational studies like the one presented in

this work, have been available for the 2DHHPP. The approximation algorithm can be

easily extended to cases with more than two vehicles. In that case, the approximation

factor will be 4m, where m is the number of depots.

The performance of our algorithm may be improved by adopting a slightly mod-

ified version Christofides algorithm for finding a Hamiltonian Path [8]. However, this

hypothesis has not been tested as yet. In future, we plan to test if this hypothesis

is true. The case of 2DHHPP with both the end-points of the path are fixed is also

quite interesting. This appears to be a more challenging case as compared to the

current case with just the starting point fixed. Finding algorithms to solve this new

case, is also left for future consideration.
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