8,948 research outputs found

    On the diagonalization of the discrete Fourier transform

    Get PDF
    The discrete Fourier transform (DFT) is an important operator which acts on the Hilbert space of complex valued functions on the ring Z/NZ. In the case where N=p is an odd prime number, we exhibit a canonical basis of eigenvectors for the DFT. The transition matrix from the standard basis to the canonical basis defines a novel transform which we call the discrete oscillator transform (DOT for short). Finally, we describe a fast algorithm for computing the discrete oscillator transform in certain cases.Comment: Accepted for publication in the journal "Applied and Computational Harmonic Analysis": Appl. Comput. Harmon. Anal. (2009), doi:10.1016/j.acha.2008.11.003. Key words: Discrete Fourier Transform, Weil Representation, Canonical Eigenvectors, Oscillator Transform, Fast Oscillator Transfor

    Linear approach to the orbiting spacecraft thermal problem

    Get PDF
    We develop a linear method for solving the nonlinear differential equations of a lumped-parameter thermal model of a spacecraft moving in a closed orbit. Our method, based on perturbation theory, is compared with heuristic linearizations of the same equations. The essential feature of the linear approach is that it provides a decomposition in thermal modes, like the decomposition of mechanical vibrations in normal modes. The stationary periodic solution of the linear equations can be alternately expressed as an explicit integral or as a Fourier series. We apply our method to a minimal thermal model of a satellite with ten isothermal parts (nodes) and we compare the method with direct numerical integration of the nonlinear equations. We briefly study the computational complexity of our method for general thermal models of orbiting spacecraft and conclude that it is certainly useful for reduced models and conceptual design but it can also be more efficient than the direct integration of the equations for large models. The results of the Fourier series computations for the ten-node satellite model show that the periodic solution at the second perturbative order is sufficiently accurate.Comment: 20 pages, 11 figures, accepted in Journal of Thermophysics and Heat Transfe

    Banach algebras of pseudodifferential operators and their almost diagonalization

    Get PDF
    We define new symbol classes for pseudodifferntial operators and investigate their pseudodifferential calculus. The symbol classes are parametrized by commutative convolution algebras. To every solid convolution algebra over a lattice we associate a symbol class. Then every operator with such a symbol is almost diagonal with respect to special wave packets (coherent states or Gabor frames), and the rate of almost diagonalization is described precisely by the underlying convolution algebra. Furthermore, the corresponding class of pseudodifferential operators is a Banach algebra of bounded operators on L2L^2 . If a version of Wiener's lemma holds for the underlying convolution algebra, then the algebra of pseudodifferential operators is closed under inversion. The theory contains as a special case the fundamental results about Sj\"ostrand's class and yields a new proof of a theorem of Beals about the H\"ormander class of order 0.Comment: 28 page

    Symmetry-Adapted Phonon Analysis of Nanotubes

    Full text link
    The characteristics of phonons, i.e. linearized normal modes of vibration, provide important insights into many aspects of crystals, e.g. stability and thermodynamics. In this paper, we use the Objective Structures framework to make concrete analogies between crystalline phonons and normal modes of vibration in non-crystalline but highly symmetric nanostructures. Our strategy is to use an intermediate linear transformation from real-space to an intermediate space in which the Hessian matrix of second derivatives is block-circulant. The block-circulant nature of the Hessian enables us to then follow the procedure to obtain phonons in crystals: namely, we use the Discrete Fourier Transform from this intermediate space to obtain a block-diagonal matrix that is readily diagonalizable. We formulate this for general Objective Structures and then apply it to study carbon nanotubes of various chiralities that are subjected to axial elongation and torsional deformation. We compare the phonon spectra computed in the Objective Framework with spectra computed for armchair and zigzag nanotubes. We also demonstrate the approach by computing the Density of States. In addition to the computational efficiency afforded by Objective Structures in providing the transformations to almost-diagonalize the Hessian, the framework provides an important conceptual simplification to interpret the phonon curves.Comment: To appear in J. Mech. Phys. Solid

    Measuring the galaxy power spectrum and scale-scale correlations with multiresolution-decomposed covariance -- I. method

    Get PDF
    We present a method of measuring galaxy power spectrum based on the multiresolution analysis of the discrete wavelet transformation (DWT). Since the DWT representation has strong capability of suppressing the off-diagonal components of the covariance for selfsimilar clustering, the DWT covariance for popular models of the cold dark matter cosmogony generally is diagonal, or jj(scale)-diagonal in the scale range, in which the second scale-scale correlations are weak. In this range, the DWT covariance gives a lossless estimation of the power spectrum, which is equal to the corresponding Fourier power spectrum banded with a logarithmical scaling. In the scale range, in which the scale-scale correlation is significant, the accuracy of a power spectrum detection depends on the scale-scale or band-band correlations. This is, for a precision measurements of the power spectrum, a measurement of the scale-scale or band-band correlations is needed. We show that the DWT covariance can be employed to measuring both the band-power spectrum and second order scale-scale correlation. We also present the DWT algorithm of the binning and Poisson sampling with real observational data. We show that the alias effect appeared in usual binning schemes can exactly be eliminated by the DWT binning. Since Poisson process possesses diagonal covariance in the DWT representation, the Poisson sampling and selection effects on the power spectrum and second order scale-scale correlation detection are suppressed into minimum. Moreover, the effect of the non-Gaussian features of the Poisson sampling can be calculated in this frame.Comment: AAS Latex file, 44 pages, accepted for publication in Ap
    corecore