319 research outputs found

    An innovative EEG-based emotion recognition using a single channel-specific feature from the brain rhythm code method.

    Get PDF
    Efficiently recognizing emotions is a critical pursuit in brain–computer interface (BCI), as it has many applications for intelligent healthcare services. In this work, an innovative approach inspired by the genetic code in bioinformatics, which utilizes brain rhythm code features consisting of δ, θ, α, β, or γ, is proposed for electroencephalography (EEG)-based emotion recognition. These features are first extracted from the sequencing technique. After evaluating them using four conventional machine learning classifiers, an optimal channel-specific feature that produces the highest accuracy in each emotional case is identified, so emotion recognition through minimal data is realized. By doing so, the complexity of emotion recognition can be significantly reduced, making it more achievable for practical hardware setups. The best classification accuracies achieved for the DEAP and MAHNOB datasets range from 83–92%, and for the SEED dataset, it is 78%. The experimental results are impressive, considering the minimal data employed. Further investigation of the optimal features shows that their representative channels are primarily on the frontal region, and associated rhythmic characteristics are typical of multiple kinds. Additionally, individual differences are found, as the optimal feature varies with subjects. Compared to previous studies, this work provides insights into designing portable devices, as only one electrode is appropriate to generate satisfactory performances. Consequently, it would advance the understanding of brain rhythms, which offers an innovative solution for classifying EEG signals in diverse BCI applications, including emotion recognition

    Applied Mathematics to Mechanisms and Machines

    Get PDF
    This book brings together all 16 articles published in the Special Issue "Applied Mathematics to Mechanisms and Machines" of the MDPI Mathematics journal, in the section “Engineering Mathematics”. The subject matter covered by these works is varied, but they all have mechanisms as the object of study and mathematics as the basis of the methodology used. In fact, the synthesis, design and optimization of mechanisms, robotics, automotives, maintenance 4.0, machine vibrations, control, biomechanics and medical devices are among the topics covered in this book. This volume may be of interest to all who work in the field of mechanism and machine science and we hope that it will contribute to the development of both mechanical engineering and applied mathematics

    An innovative EEG-based emotion recognition using a single channel-specific feature from the brain rhythm code method

    Get PDF
    IntroductionEfficiently recognizing emotions is a critical pursuit in brain–computer interface (BCI), as it has many applications for intelligent healthcare services. In this work, an innovative approach inspired by the genetic code in bioinformatics, which utilizes brain rhythm code features consisting of δ, θ, α, β, or γ, is proposed for electroencephalography (EEG)-based emotion recognition.MethodsThese features are first extracted from the sequencing technique. After evaluating them using four conventional machine learning classifiers, an optimal channel-specific feature that produces the highest accuracy in each emotional case is identified, so emotion recognition through minimal data is realized. By doing so, the complexity of emotion recognition can be significantly reduced, making it more achievable for practical hardware setups.ResultsThe best classification accuracies achieved for the DEAP and MAHNOB datasets range from 83–92%, and for the SEED dataset, it is 78%. The experimental results are impressive, considering the minimal data employed. Further investigation of the optimal features shows that their representative channels are primarily on the frontal region, and associated rhythmic characteristics are typical of multiple kinds. Additionally, individual differences are found, as the optimal feature varies with subjects.DiscussionCompared to previous studies, this work provides insights into designing portable devices, as only one electrode is appropriate to generate satisfactory performances. Consequently, it would advance the understanding of brain rhythms, which offers an innovative solution for classifying EEG signals in diverse BCI applications, including emotion recognition

    Bio-Inspired Motion Vision for Aerial Course Control

    No full text

    Analysis of high-frequency financial data over different timescales: a Hilbert-Huang transform approach

    Get PDF
    This thesis provides a better understanding of the complex dynamics of high-frequency financial data. We develop a methodology that successfully and simultaneously character¬izes both the short and the long-term fluctuations latent in a time series. We extensively investigate the applications of the empirical mode decomposition (EMD) and the Hilbert transform to the analysis of intraday financial data. The applied methodology reveals the time-dependent amplitude and frequency attributes of non-stationary and non-linear time series. We uncover a scaling law that links the amplitude of the oscillating components to their respective period. We relate such scaling law to distinctive properties of financial markets. This research is relevant because financial data contain patterns specific to the observa¬tion frequency and are thus, of interest to different type of market agents (market traders, intraday traders, hedging strategist, portfolio managers and institutional investors), each characterized by a different reaction time to new information and by the frequency of its intervention in the market. Understanding how the investment horizons of these agents in¬teract may reveal significant details about the physical processes that generate or influence financial time series. We use the EMD to estimate volatility, generalising the idea of the popular realised volatility estimator by decomposing financial time series into several timescales compo¬nents which are related to different investment horizons. We also investigate the dynamic correlation at different timescales and at different time-lags, revealing a complex structure of financial signals. Following the multiscale analysis approach, we propose a novel empirical method to es¬timate a time-dependent scaling parameter in analogy to the scaling exponent for self-similar processes. Using numerical simulations, we investigate the robustness of our estimator to heavy-tailed distributions. We apply the scaling estimator to intraday stock market prices and uncover scaling properties which differ from what would be expected from a random walk. We also introduce a novel entropy-like measure which estimates the regularity of a time series. This measure of complexity can be used to identify periods of high and low volatility x which could help investors to choose the appropriate time for investment. Finally, we pro¬pose a multistep-ahead forecasting framework based on EMD combined with support vector regression. The originality of our models is the inclusion of a coarse-to-fine reconstruction step to analyse the forecasting capabilities of a combination of oscillating functions. We compare our models with popular benchmark models which do not use the EMD as a pre¬processing tool, obtaining better results with our proposed framework. Part of the research developed on this thesis is published in Physica A: Statistical Me¬chanics and its Applications [137] and in the European Physical Journal, Special Topics [136]. It was also presented at international conferences, including the 20th annual work¬shop on the Economic Science with Heterogeneous Interacting Agents (WEHIA) 2015 and the 21st Computing in Economics and Finance (CEF) conference 2015

    30th International Conference on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2017)

    Get PDF
    Proceedings of COMADEM 201

    Sensor-based Nonlinear and Nonstationary Dynaimc Analysis of Online Structural Health Monitoring

    Get PDF
    This dissertation focuses on robust online Structural Health Monitoring (SHM) framework for civil engineering structures. The proposed framework improves the diagnostic and prognostic schemes for damage-state awareness and structural life prediction in civil engineering structures. The underlying research achieves three main objectives, namely, (1) sensor placement optimization using partial differential equation modeling and Fisher information matrix, (2) structural damage detection using quasi-recursive correlation dimension (QRCD), and (3) structural damage prediction using online empirical mode decomposition (EMD).The research methodology includes three research tasks: Firstly, to formulate the optimal criteria for the sensor placement optimization damage detection problem based upon a partial differential equation (PDE) analytical model. The PDE model is derived and then validated through experimental results using correlation analysis. Secondly, to develop a novel quasi-recursive correlation dimension method for structural damage detection. The QRCD algorithm is integrated with an attractor analysis and overlapping windowing technique. Thirdly, to design an online structural damage prediction method based on empirical mode decomposition. The proposed SHM prediction scheme consists of two steps: prediction based change point detection using Hilbert instantaneous phase, and damage severity prediction using the energy index of the most representative intrinsic mode function (IMF).Study results show that; (1) the proposed optimal sensor placement method leads to an optimal spatial location for a collection of sensors, which are sensitive to structural damage, (2) the proposed damage detection algorithm can significantly alleviate the complexity of computation for correlation dimension to approximate O(N), making the online monitoring of nonlinear/nonstationary processes more applicable and efficient; and (3) the proposed empirical mode decomposition method for online damage prediction overcomes the boundary effects of the sifting process, and it has significant prediction accuracy improvement (greater than 30%) over other commonly used prediction techniques.Industrial Engineering & Managemen

    Sensor Signal and Information Processing II

    Get PDF
    In the current age of information explosion, newly invented technological sensors and software are now tightly integrated with our everyday lives. Many sensor processing algorithms have incorporated some forms of computational intelligence as part of their core framework in problem solving. These algorithms have the capacity to generalize and discover knowledge for themselves and learn new information whenever unseen data are captured. The primary aim of sensor processing is to develop techniques to interpret, understand, and act on information contained in the data. The interest of this book is in developing intelligent signal processing in order to pave the way for smart sensors. This involves mathematical advancement of nonlinear signal processing theory and its applications that extend far beyond traditional techniques. It bridges the boundary between theory and application, developing novel theoretically inspired methodologies targeting both longstanding and emergent signal processing applications. The topic ranges from phishing detection to integration of terrestrial laser scanning, and from fault diagnosis to bio-inspiring filtering. The book will appeal to established practitioners, along with researchers and students in the emerging field of smart sensors processing

    Advanced Sensors for Real-Time Monitoring Applications

    Get PDF
    It is impossible to imagine the modern world without sensors, or without real-time information about almost everything—from local temperature to material composition and health parameters. We sense, measure, and process data and act accordingly all the time. In fact, real-time monitoring and information is key to a successful business, an assistant in life-saving decisions that healthcare professionals make, and a tool in research that could revolutionize the future. To ensure that sensors address the rapidly developing needs of various areas of our lives and activities, scientists, researchers, manufacturers, and end-users have established an efficient dialogue so that the newest technological achievements in all aspects of real-time sensing can be implemented for the benefit of the wider community. This book documents some of the results of such a dialogue and reports on advances in sensors and sensor systems for existing and emerging real-time monitoring applications
    • …
    corecore