868 research outputs found

    Model-Based Engineering for the support of Models of Computation: The Cometa Approach

    Get PDF
    The development of Real-Time Embedded Systems (RTES) increasingly requires the integration of several parts with different purposes. Consequently, the heterogeneous appearance of such systems creates a need to manage their growing complexity mainly due to the difficulty to interconnect the different parts composing them. Model-Based Engineering (MBE) has significantly participated in recent decades to find solutions in terms of methodologies and technical support tailored to the design of RTES. Indeed, several models are used to represent different aspects of the system. However, the interconnection of different modeling paradigms is still a difficult challenge. The handling of such problems requires a clear definition of the execution and interconnection semantics of the different models composing the system. Indeed, the abstraction of the execution semantics of machines or Models of Computation (MoC) can highlight properties for the whole system’s execution. In this paper, we propose an approach that captures these semantics at the earliest modeling phases with the aim of exhibiting properties that ease the design space exploration and performance analysis of systems. Our approach extends the Modeling and Analysis of Real-Time Embedded Systems profile (MARTE) by providing means to express communication semantics of models. We also review existing approaches for defining such execution semantics

    From MARTE to dynamically reconfigurable FPGAs : Introduction of a control extension in a model based design flow

    Get PDF
    System-on-Chip (SoC) can be considered as a particular case of embedded systems and has rapidly became a de-facto solution for implement- ing these complex systems. However, due to the continuous exponential rise in SoC's design complexity, there is a critical need to find new seamless method- ologies and tools to handle the SoC co-design aspects. This paper addresses this issue and proposes a novel SoC co-design methodology based on Model Driven Engineering (MDE) and the MARTE (Modeling and Analysis of Real-Time and Embedded Systems) standard proposed by OMG (Object Management Group), in order to raise the design abstraction levels. Extensions of this standard have enabled us to move from high level specifications to execution platforms such as reconfigurable FPGAs; and allow to implement the notion of Partial Dy- namic Reconfiguration supported by current FPGAs. The overall objective is to carry out system modeling at a high abstraction level expressed in UML (Unified Modeling Language); and afterwards, transform these high level mod- els into detailed enriched lower level models in order to automatically generate the necessary code for final FPGA synthesis

    Mega-modeling of complex, distributed, heterogeneous CPS systems

    Get PDF
    Model-Driven Design (MDD) has proven to be a powerful technology to address the development of increasingly complex embedded systems. Beyond complexity itself, challenges come from the need to deal with parallelism and heterogeneity. System design must target different execution platforms with different OSs and HW resources, even bare-metal, support local and distributed systems, and integrate on top of these heterogeneous platforms multiple functional component coming from different sources (developed from scratch, legacy code and third-party code), with different behaviors operating under different models of computation and communication. Additionally, system optimization to improve performance, power consumption, cost, etc. requires analyzing huge lists of possible design solutions. Addressing these challenges require flexible design technologies able to support from a single-source model its architectural mapping to different computing resources, of different kind and in different platforms. Traditional MDD methods and tools typically rely on fixed elements, which makes difficult their integration under this variability. For example, it is unlikely to integrate in the same system legacy code with a third-party component. Usually some re-coding is required to enable such interconnection. This paper proposes a UML/MARTE system modeling methodology able to address the challenges mentioned above by improving flexibility and scalability. This approach is illustrated and demonstrated on a flight management system. The model is flexible enough to be adapted to different architectural solutions with a minimal effort by changing its underlying Model of Computation and Communication (MoCC). Being completely platform independent, from the same model it is possible to explore various solutions on different execution platforms.This work has been partially funded by the EU and the Spanish MICINN through the ECSEL MegaMart and Comp4Drones projects and the TEC2017-86722-C4-3-R PLATINO project

    Development of Reconfigurable Distributed Embedded Systems with a Model-Driven Approach

    Get PDF
    International audienceIn this paper, we propose a model-driven approach allowing to build reconfigurable distributed real-time embedded (DRE) systems. The constant growth of the complexity and the required autonomy of embedded software systems management give the dynamic reconfiguration a big importance. New challenges to apply the dynamic reconfiguration at model level as well as runtime support level are required. In this direction, the development of reconfigurable DRE systems according to traditional processes is not applicable. New methods are required to build and to supply reconfigurable embedded software architectures. In this context, we propose an model-driven engineering based approach that enables to design reconfigurable DRE systems with execution framework support. This approach leads the designer to specify step by step his/her system from a model to another one more refined until the targeted model is reached. This targeted model is related to a specific platform leading to the generation of the most part of the system implementation. We also develop a new middleware that supports reconfigurable DRE systems

    An Interactive System Level Simulation Environment for Systems- on-Chip

    Get PDF
    International audienceThis article presents an interactive simulation environment for high level models intended for Design Space Exploration of Systems-On-Chip. The existing open source development environment TTool supports the MARTE compliant UML profile DIPLODOCUS and enables the designer to create, simulate and formally verify models. The goal is to obtain first performance estimations of the system intended for design while minimizing the modeling effort. The contribution outlined in this paper is an additional module providing means for controlling the simulation in real time by performing step wise execution, saving and restoring simulation states as well as animating UML models of the system. Moreover the paper elaborates on the integration of these new features into the existing framework consisting of a simulation engine on the one hand and a graphical user interface on the other hand

    Correctness Issues on MARTE/CCSL constraints

    Get PDF
    International audienceThe UML Profile for Modeling and Analysis of Real-Time and Embedded systems promises a general modeling framework to design and analyze systems. Lots of works have been published on the modeling capabilities offered by MARTE, much less on available verification techniques. The Clock Constraint Specification Language (CCSL), first introduced as a companion language for MARTE, was devised to offer a formal support to conduct causal and temporal analysis on MARTE models.This work relies on a state-based semantics for CCSL to establish correctness properties on MARTE/CCSL specifications. We propose and compare two different techniques to build the state-space of a specification. One is an extension of some previous work and is based on extended finite state machines. It relies on integer linear programming to solve the constraints and reduce the state-space. The other one is based on an intentional representation and uses pure Boolean abstractions but offers no guarantee to terminate when the specification is not safe.The approach is illustrated on one simple example where the architecture plays an important role. We describe a process where the logical description of the application is progressively refined to take into account the execution platform through allocation

    Semantic Multi-View model for Low-Power

    Get PDF
    5 pagesNational audiencePower is an important concern in embedded systems. Reduction of power consumption is achieved by balancing the control of multiple domains: switching power, reducing or increasing voltage and changing the frequency on system sections. Model-Driven Engineering gives tools to model the interactions of these domains. In this work, we propose to use MARTE combined to UPF concepts to capture the structure and behavior of these multiple domains. We adopt CCSL to unify the multiform aspects among domains and to verify their proper interaction. We provide an example to illustrate MARTE representation and a simulation of multi-domain power design, specified on CCSL and running on TIMESQUARE
    • …
    corecore