167 research outputs found

    A Survey of the Routing and Wavelength Assignment Problem

    Get PDF

    On green routing and scheduling problem

    Full text link
    The vehicle routing and scheduling problem has been studied with much interest within the last four decades. In this paper, some of the existing literature dealing with routing and scheduling problems with environmental issues is reviewed, and a description is provided of the problems that have been investigated and how they are treated using combinatorial optimization tools

    Optimization of traffic flows in multiservice telecomunications networks

    Get PDF
    This dissertation investigates routing optimization in IP telecommunication networks, under normal working conditions as well as under failure conditions. The main objectives of the present optimization procedure are the minimization of the maximum link utilization in the network and to provide a configuration that guarantees a 100% survivability degree. Traditionally two different steps are used to achieve this goal. The first one aims to solve the well known “General Routing Problem (GRP)” in order to find the optimal routing network configuration and, successively, a set of “optimal” backup paths is found in order to guarantee network survivability. Furthermore, traditional survivable techniques assume that the planning tasks are performed in a network control center while restoration schemes are implemented distributively in network nodes. In this dissertation innovative linear programming models are presented that, making use of the Multi Protocol Label Switching – Traffic Engineering (MPLS-TE) techniques and IS-IS/OSPF IP routing protocol, melt routing and survivability requirements. The models are extremely flexible, thus it is possible to improve the objective function in order to fit itself to newer applications and/or traffic typologies. The models presented in this dissertation help Internet Service Providers to optimize their network resources and to guarantee connectivity in case of failure, while still be able to offer a good quality of service

    A New Multicommodity Flow Model for the Job Sequencing and Tool Switching Problem

    Get PDF
    Artigo científico.In this paper a new multicommodity flow mathematical model for the Job Sequencing and Tool Switching Problem (SSP) is presented. The proposed model has a LP relaxation lower bound equal to the number of tools minus the tool machine’s capacity. Computational tests were performed comparing the new model with the models of the literature. The proposed model performed better, both in execution time and in the number of instances solved to optimality.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES

    A New Ant Colony-Based Methodology for Disaster Relief

    Get PDF
    Humanitarian logistics in response to large scale disasters entails decisions that must be taken urgently and under high uncertainty. In addition, the scarcity of available resources sometimes causes the involved organizations to suffer assaults while transporting the humanitarian aid. This paper addresses the last mile distribution problem that arises in such an insecure environment, in which vehicles are often forced to travel together forming convoys for security reasons. We develop an elaborated methodology based on Ant Colony Optimization that is applied to two case studies built from real disasters, namely the 2010 Haiti earthquake and the 2005 Niger famine. There are very few works in the literature dealing with problems in this context, and that is the research gap this paper tries to fill. Furthermore, the consideration of multiple criteria such as cost, time, equity, reliability, security or priority, is also an important contribution to the literature, in addition to the use of specialized ants and effective pheromones that are novel elements of the algorithm which could be exported to other similar problems. Computational results illustrate the efficiency of the new methodology, confirming it could be a good basis for a decision support tool for real operations

    Randomized rounding algorithms for large scale unsplittable flow problems

    Full text link
    Unsplittable flow problems cover a wide range of telecommunication and transportation problems and their efficient resolution is key to a number of applications. In this work, we study algorithms that can scale up to large graphs and important numbers of commodities. We present and analyze in detail a heuristic based on the linear relaxation of the problem and randomized rounding. We provide empirical evidence that this approach is competitive with state-of-the-art resolution methods either by its scaling performance or by the quality of its solutions. We provide a variation of the heuristic which has the same approximation factor as the state-of-the-art approximation algorithm. We also derive a tighter analysis for the approximation factor of both the variation and the state-of-the-art algorithm. We introduce a new objective function for the unsplittable flow problem and discuss its differences with the classical congestion objective function. Finally, we discuss the gap in practical performance and theoretical guarantees between all the aforementioned algorithms

    A fast ILP-based Heuristic for the robust design of Body Wireless Sensor Networks

    Full text link
    We consider the problem of optimally designing a body wireless sensor network, while taking into account the uncertainty of data generation of biosensors. Since the related min-max robustness Integer Linear Programming (ILP) problem can be difficult to solve even for state-of-the-art commercial optimization solvers, we propose an original heuristic for its solution. The heuristic combines deterministic and probabilistic variable fixing strategies, guided by the information coming from strengthened linear relaxations of the ILP robust model, and includes a very large neighborhood search for reparation and improvement of generated solutions, formulated as an ILP problem solved exactly. Computational tests on realistic instances show that our heuristic finds solutions of much higher quality than a state-of-the-art solver and than an effective benchmark heuristic.Comment: This is the authors' final version of the paper published in G. Squillero and K. Sim (Eds.): EvoApplications 2017, Part I, LNCS 10199, pp. 1-17, 2017. DOI: 10.1007/978-3-319-55849-3\_16. The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-319-55849-3_1

    Matheuristics: using mathematics for heuristic design

    Get PDF
    Matheuristics are heuristic algorithms based on mathematical tools such as the ones provided by mathematical programming, that are structurally general enough to be applied to different problems with little adaptations to their abstract structure. The result can be metaheuristic hybrids having components derived from the mathematical model of the problems of interest, but the mathematical techniques themselves can define general heuristic solution frameworks. In this paper, we focus our attention on mathematical programming and its contributions to developing effective heuristics. We briefly describe the mathematical tools available and then some matheuristic approaches, reporting some representative examples from the literature. We also take the opportunity to provide some ideas for possible future development
    • …
    corecore