9 research outputs found

    Fabrication of a Dual-Tier Thin Film Micro Polarization Array

    Get PDF
    A thin film polarization filter has been patterned and etched using reactive ion etching (RIE) in order to create 8 by 8 microns square periodic structures. The micropolarization filters retain the original extinction ratios of the unpatterned thin film. The measured extinction ratios on the micropolarization filters are ~1000 in the blue and green visible spectrum and ~100 in the red spectrum. Various gas combinations for RIE have been explored in order to determine the right concentration mix of CF4 and O2 that gives optimum etching rate, in terms of speed and under-etching. Theoretical explanation for the optimum etching rate has also been presented. In addition, anisotropic etching with 1ÎĽm under cutting of a 10ÎĽm thick film has been achieved. Experimental results for the patterned structures under polarized light are presented. The array of micropolarizers will be deposited on top of a custom made CMOS imaging sensor in order to compute the first three Stokes parameters in real time

    Polarization Imaging Sensors in Advanced Feature CMOS Technologies

    Get PDF
    The scaling of CMOS technology, as predicted by Moore\u27s law, has allowed for realization of high resolution imaging sensors and for the emergence of multi-mega-pixel imagers. Designing imaging sensors in advanced feature technologies poses many challenges especially since transistor models do not accurately portray their performance in these technologies. Furthermore, transistors fabricated in advanced feature technologies operate in a non-conventional mode known as velocity saturation. Traditionally, analog designers have been discouraged from designing circuits in this mode of operation due to the low gain properties in single transistor amplifiers. Nevertheless, velocity saturation will become even more prominent mode of operation as transistors continue to shrink and warrants careful design of circuits that can exploit this mode of operation. In this research endeavor, I have utilized velocity saturation mode of operation in order to realize low noise imaging sensors. These imaging sensors incorporate low noise analog circuits at the focal plane in order to improve the signal to noise ratio and are fabricated in 0.18 micron technology. Furthermore, I have explored nanofabrication techniques for realizing metallic nanowires acting as polarization filters. These nanoscopic metallic wires are deposited on the surface of the CMOS imaging sensor in order to add polarization sensitivity to the CMOS imaging sensor. This hybrid sensor will serve as a test bed for exploring the next generation of low noise and highly sensitive polarization imaging sensors

    High-sensitivity analysis of polarization by surface reflection

    Get PDF
    © 2018, The Author(s). The exploitation of polarization information in the field of computer vision has become progressively more popular during the last few decades. This is primarily due to (1) the fact that polarization is a source of mostly untapped information for machine vision; (2) the relative computational ease by which geometrical information about a scene (e.g.surface normals) may be extracted from polarization data; and (3) the recent introduction of camera hardware able to capture polarization data in real time. The motivation for this paper is that a detailed quantitative study into the precision of polarization measurements with respect to expectation has yet to be performed. The paper therefore presents a detailed analysis and optimization of the key aspects of data capture necessary to acquire the most precise (as opposed to fast) results for the benefit of future research into the field of “polarization vision.” The paper mainly focuses on a rotating polarizer method as this is shown to be the most accurate for high-sensitivity measurements. Commercial polarization cameras by contrast generally sacrifice precision for the benefit of much shorter capture times. That said, the paper reviews the state of the art in polarization camera technology and quantitatively evaluates the performance of one such camera: the Fraunhofer “POLKA.”

    Polarization Sensor Design for Biomedical Applications

    Get PDF
    Advances in fabrication technology have enabled the development of compact, rigid polarization image sensors by integrating pixelated polarization filters with standard image sensing arrays. These compact sensors have the capability for allowing new applications across a variety of disciplines, however their design and use may be influenced by many factors. The underlying image sensor, the pixelated polarization filters, and the incident lighting conditions all directly impact how the sensor performs. In this research endeavor, I illustrate how a complete understanding of these factors can lead to both new technologies and applications in polarization sensing. To investigate the performance of the underlying image sensor, I present a new CMOS image sensor architecture with a pixel capable of operation using either measured voltages or currents. I show a detailed noise analysis of both modes, and that, as designed, voltage mode operates with lower noise than current mode. Further, I integrated aluminum nanowires with this sensor post fabrication, realizing the design of a compact CMOS sensor with polarization sensitivity. I describe a full set of experiments designed as a benchmark to evaluate the performance of compact, integrated polarization sensors. I use these tests to evaluate for incident intensity, wavelength, focus, and polarization state, demonstrating the accuracy and limitations of polarization measurements with such a compact sensor. Using these as guides, I present two novel biomedical applications that rely on the compact, real-time nature of compact integrated polarimeters. I first demonstrate how these sensors can be used to measure the dynamics of soft tissue in real-time, with no moving parts or complex optical alignment. I used a 2 megapixel integrated polarization sensor to measure the direction and strength of alignment in a bovine flexor tendon at over 20 frames per second, with results that match the current method of rotating polarizers. Secondly, I present a new technique for optical neural recording that uses intrinsic polarization reflectance and requires no fluorescent dyes or electrodes. Exposing the antennal lobe of the locust Schistocerca americana, I was able to measure a change in the polarization reflectance during the introduction of the odors hexanol and octanol with the integrated CMOS polarization sensor

    Accelerated neuromorphic cybernetics

    Get PDF
    Accelerated mixed-signal neuromorphic hardware refers to electronic systems that emulate electrophysiological aspects of biological nervous systems in analog voltages and currents in an accelerated manner. While the functional spectrum of these systems already includes many observed neuronal capabilities, such as learning or classification, some areas remain largely unexplored. In particular, this concerns cybernetic scenarios in which nervous systems engage in closed interaction with their bodies and environments. Since the control of behavior and movement in animals is both the purpose and the cause of the development of nervous systems, such processes are, however, of essential importance in nature. Besides the design of neuromorphic circuit- and system components, the main focus of this work is therefore the construction and analysis of accelerated neuromorphic agents that are integrated into cybernetic chains of action. These agents are, on the one hand, an accelerated mechanical robot, on the other hand, an accelerated virtual insect. In both cases, the sensory organs and actuators of their artificial bodies are derived from the neurophysiology of the biological prototypes and are reproduced as faithfully as possible. In addition, each of the two biomimetic organisms is subjected to evolutionary optimization, which illustrates the advantages of accelerated neuromorphic nervous systems through significant time savings

    An Analog VLSI Chip Emulating Polarization Vision of Octopus Retina

    No full text

    Biomimetic Based Applications

    Get PDF
    The interaction between cells, tissues and biomaterial surfaces are the highlights of the book "Biomimetic Based Applications". In this regard the effect of nanostructures and nanotopographies and their effect on the development of a new generation of biomaterials including advanced multifunctional scaffolds for tissue engineering are discussed. The 2 volumes contain articles that cover a wide spectrum of subject matter such as different aspects of the development of scaffolds and coatings with enhanced performance and bioactivity, including investigations of material surface-cell interactions

    Augmentation of Brain Function: Facts, Fiction and Controversy. Volume III: From Clinical Applications to Ethical Issues and Futuristic Ideas

    Get PDF
    The final volume in this tripartite series on Brain Augmentation is entitled “From Clinical Applications to Ethical Issues and Futuristic Ideas”. Many of the articles within this volume deal with translational efforts taking the results of experiments on laboratory animals and applying them to humans. In many cases, these interventions are intended to help people with disabilities in such a way so as to either restore or extend brain function. Traditionally, therapies in brain augmentation have included electrical and pharmacological techniques. In contrast, some of the techniques discussed in this volume add specificity by targeting select neural populations. This approach opens the door to where and how to promote the best interventions. Along the way, results have empowered the medical profession by expanding their understanding of brain function. Articles in this volume relate novel clinical solutions for a host of neurological and psychiatric conditions such as stroke, Parkinson’s disease, Huntington’s disease, epilepsy, dementia, Alzheimer’s disease, autism spectrum disorders (ASD), traumatic brain injury, and disorders of consciousness. In disease, symptoms and signs denote a departure from normal function. Brain augmentation has now been used to target both the core symptoms that provide specificity in the diagnosis of a disease, as well as other constitutional symptoms that may greatly handicap the individual. The volume provides a report on the use of repetitive transcranial magnetic stimulation (rTMS) in ASD with reported improvements of core deficits (i.e., executive functions). TMS in this regard departs from the present-day trend towards symptomatic treatment that leaves unaltered the root cause of the condition. In diseases, such as schizophrenia, brain augmentation approaches hold promise to avoid lengthy pharmacological interventions that are usually riddled with side effects or those with limiting returns as in the case of Parkinson’s disease. Brain stimulation can also be used to treat auditory verbal hallucination, visuospatial (hemispatial) neglect, and pain in patients suffering from multiple sclerosis. The brain acts as a telecommunication transceiver wherein different bandwidth of frequencies (brainwave oscillations) transmit information. Their baseline levels correlate with certain behavioral states. The proper integration of brain oscillations provides for the phenomenon of binding and central coherence. Brain augmentation may foster the normalization of brain oscillations in nervous system disorders. These techniques hold the promise of being applied remotely (under the supervision of medical personnel), thus overcoming the obstacle of travel in order to obtain healthcare. At present, traditional thinking would argue the possibility of synergism among different modalities of brain augmentation as a way of increasing their overall effectiveness and improving therapeutic selectivity. Thinking outside of the box would also provide for the implementation of brain-to-brain interfaces where techniques, proper to artificial intelligence, could allow us to surpass the limits of natural selection or enable communications between several individual brains sharing memories, or even a global brain capable of self-organization. Not all brains are created equal. Brain stimulation studies suggest large individual variability in response that may affect overall recovery/treatment, or modify desired effects of a given intervention. The subject’s age, gender, hormonal levels may affect an individual’s cortical excitability. In addition, this volume discusses the role of social interactions in the operations of augmenting technologies. Finally, augmenting methods could be applied to modulate consciousness, even though its neural mechanisms are poorly understood. Finally, this volume should be taken as a debate on social, moral and ethical issues on neurotechnologies. Brain enhancement may transform the individual into someone or something else. These techniques bypass the usual routes of accommodation to environmental exigencies that exalted our personal fortitude: learning, exercising, and diet. This will allow humans to preselect desired characteristics and realize consequent rewards without having to overcome adversity through more laborious means. The concern is that humans may be playing God, and the possibility of an expanding gap in social equity where brain enhancements may be selectively available to the wealthier individuals. These issues are discussed by a number of articles in this volume. Also discussed are the relationship between the diminishment and enhancement following the application of brain-augmenting technologies, the problem of “mind control” with BMI technologies, free will the duty to use cognitive enhancers in high-responsibility professions, determining the population of people in need of brain enhancement, informed public policy, cognitive biases, and the hype caused by the development of brain- augmenting approaches
    corecore