126 research outputs found

    Moment-based fast discrete sine transforms

    Get PDF
    This paper presents a novel approach to compute discrete sine transforms (DSTs). By using a modular mapping, DSTs are approximated by the sum of a finite sequence of discrete moments. Hence, by extending our earlier technique in computing moments with an adder network only, DSTs can also be implemented easily by a systolic array primarily involving additions. The method can be applied to multidimensional DSTs as well as their inverses.published_or_final_versio

    A novel approach to fast discrete Hartley transform

    Get PDF
    The Discrete Hartley transform (DHT) is an important tool in digital signal processing. We propose a novel approach to perform DHT. We transform DHT into a form expressed in discrete moments via a modular mapping and truncating Taylor series expansion and present a completely new formula for computing DHT. We extend the use of our systolic array for fast computation of moments without any multiplications, to one that computes DHT with only a few multiplications and without any evaluations of triangular functions. The multiplication number used in our method is O(Nlog2N/log2log2N) superior to O(Nlog 2N) in the conventional FDT. The execution time of the systolic array is only O(Nlog2N/log2log2N) for 1-D DHT and O(N k) for k-D DHT (k⩾2). The systolic array consists of very simple processing elements and hence it implies an easy and potential hardware/VLSI implementation. The approach is also applicable to DHT inverses.published_or_final_versio

    A 2D DWT architecture suitable for the Embedded Zerotree Wavelet Algorithm

    Get PDF
    Digital Imaging has had an enormous impact on industrial applications such as the Internet and video-phone systems. However, demand for industrial applications is growing enormously. In particular, internet application users are, growing at a near exponential rate. The sharp increase in applications using digital images has caused much emphasis on the fields of image coding, storage, processing and communications. New techniques are continuously developed with the main aim of increasing efficiency. Image coding is in particular a field of great commercial interest. A digital image requires a large amount of data to be created. This large amount of data causes many problems when storing, transmitting or processing the image. Reducing the amount of data that can be used to represent an image is the main objective of image coding. Since the main objective is to reduce the amount of data that represents an image, various techniques have been developed and are continuously developed to increase efficiency. The JPEG image coding standard has enjoyed widespread acceptance, and the industry continues to explore its various implementation issues. However, recent research indicates multiresolution based image coding is a far superior alternative. A recent development in the field of image coding is the use of Embedded Zerotree Wavelet (EZW) as the technique to achieve image compression. One of The aims of this theses is to explain how this technique is superior to other current coding standards. It will be seen that an essential part orthis method of image coding is the use of multi resolution analysis, a subband system whereby the subbands arc logarithmically spaced in frequency and represent an octave band decomposition. The block structure that implements this function is termed the two dimensional Discrete Wavelet Transform (2D-DWT). The 20 DWT is achieved by several architectures and these are analysed in order to choose the best suitable architecture for the EZW coder. Finally, this architecture is implemented and verified using the Synopsys Behavioural Compiler and recommendations are made based on experimental findings

    Selected Papers from the First International Symposium on Future ICT (Future-ICT 2019) in Conjunction with 4th International Symposium on Mobile Internet Security (MobiSec 2019)

    Get PDF
    The International Symposium on Future ICT (Future-ICT 2019) in conjunction with the 4th International Symposium on Mobile Internet Security (MobiSec 2019) was held on 17–19 October 2019 in Taichung, Taiwan. The symposium provided academic and industry professionals an opportunity to discuss the latest issues and progress in advancing smart applications based on future ICT and its relative security. The symposium aimed to publish high-quality papers strictly related to the various theories and practical applications concerning advanced smart applications, future ICT, and related communications and networks. It was expected that the symposium and its publications would be a trigger for further related research and technology improvements in this field

    Custom Integrated Circuits

    Get PDF
    Contains reports on nine research projects.Analog Devices, Inc.International Business Machines CorporationJoint Services Electronics Program Contract DAAL03-89-C-0001U.S. Air Force - Office of Scientific Research Contract AFOSR 86-0164BDuPont CorporationNational Science Foundation Grant MIP 88-14612U.S. Navy - Office of Naval Research Contract N00014-87-K-0825American Telephone and TelegraphDigital Equipment CorporationNational Science Foundation Grant MIP 88-5876

    The application of digital techniques to an automatic radar track extraction system

    Get PDF
    'Modern' radar systems have come in for much criticism in recent years, particularly in the aftermath of the Falklands campaign. There have also been notable failures in commercial designs, including the well-publicised 'Nimrod' project which was abandoned due to persistent inability to meet signal processing requirements. There is clearly a need for improvement in radar signal processing techniques as many designs rely on technology dating from the late 1970's, much of which is obsolete by today’s standards. The Durham Radar Automatic Track Extraction System (RATES) is a practical implementation of current microprocessor technology, applied to plot extraction of surveillance radar data. In addition to suggestions for the design of such a system, results are quoted for the predicted performance when compared with a similar product using 1970's design methodology. Suggestions are given for the use of other VLSI techniques in plot extraction, including logic arrays and digital signal processors. In conclusion, there is an illustrated discussion concerning the use of systolic arrays in RATES and a prediction that this will represent the optimum architecture for future high-speed radar signal processors

    NASA Space Engineering Research Center Symposium on VLSI Design

    Get PDF
    The NASA Space Engineering Research Center (SERC) is proud to offer, at its second symposium on VLSI design, presentations by an outstanding set of individuals from national laboratories and the electronics industry. These featured speakers share insights into next generation advances that will serve as a basis for future VLSI design. Questions of reliability in the space environment along with new directions in CAD and design are addressed by the featured speakers
    • …
    corecore