4 research outputs found

    Collision free region determination by modified polygonal\ud Boolean operations

    Get PDF
    Cutting and packing problems are found in numerous industries such as garment, wood and shipbuilding. The collision free region concept is presented, as it represents all the translations possible for an item to be inserted into a container with already placed items. The often adopted nofit polygon concept and its analogous concept inner fit polygon are used to determine the collision free region. Boolean operations involving nofit polygons and inner fit polygons are used to determine the collision free region. New robust non-regularized Boolean operations algorithm is proposed to determine the collision free region. The algorithm is capable of dealing with degenerated boundaries. This capability is important because degenerated boundaries often represent local optimal placements. A parallelized version of the algorithm is also proposed and tests are performed in order to determine the execution times of both the serial and parallel versions of the algorithm.CNPqFAPES

    An algorithm for the strip packing problem using collision free region and exact fitting placement

    No full text
    The irregular shape packing problem is approached. The container has a fixed width and an open dimension to be minimized. The proposed algorithm constructively creates the solution using an ordered list of items and a placement heuristic. Simulated annealing is the adopted metaheuristic to solve the optimization problem. A two-level algorithm is used to minimize the open dimension of the container. To ensure feasible layouts, the concept of collision free region is used. A collision free region represents all possible translations for an item to be placed and may be degenerated. For a moving item, the proposed placement heuristic detects the presence of exact fits (when the item is fully constrained by its surroundings) and exact slides (when the item position is constrained in all but one direction). The relevance of these positions is analyzed and a new placement heuristic is proposed. Computational comparisons on benchmark problems show that the proposed algorithm generated highly competitive solutions. Moreover, our algorithm updated some best known results. (C) 2012 Elsevier Ltd. All rights reserved.CNPqCNPq [304.258/2007-5, 309.570/2010-7]FAPESP [2010/19646-0, 2009/14699-0, 2008/13127-2, 2010/18913-4]FAPES

    Moldable Items Packing Optimization

    Get PDF
    This research has led to the development of two mathematical models to optimize the problem of packing a hybrid mix of rigid and moldable items within a three-dimensional volume. These two developed packing models characterize moldable items from two perspectives: (1) when limited discrete configurations represent the moldable items and (2) when all continuous configurations are available to the model. This optimization scheme is a component of a lean effort that attempts to reduce the lead-time associated with the implementation of dynamic product modifications that imply packing changes. To test the developed models, they are applied to the dynamic packing changes of Meals, Ready-to-Eat (MREs) at two different levels: packing MRE food items in the menu bags and packing menu bags in the boxes. These models optimize the packing volume utilization and provide information for MRE assemblers, enabling them to preplan for packing changes in a short lead-time. The optimization results are validated by running the solutions multiple times to access the consistency of solutions. Autodesk Inventor helps visualize the solutions to communicate the optimized packing solutions with the MRE assemblers for training purposes

    Algoritmos para o encaixe de moldes com formato irregular em tecidos listrados

    Get PDF
    Esta tese tem como objetivo principal a proposição de solução para o problema do encaixe de moldes em tecidos listrados da indústria do vestuário. Os moldes são peças com formato irregular que devem ser dispostos sobre a matéria-prima, neste caso o tecido, para a etapa posterior de corte. No problema específico do encaixe em tecidos listrados, o local em que os moldes são posicionados no tecido deve garantir que, após a confecção da peça, as listras apresentem continuidade. Assim, a fundamentação teórica do trabalho abrange temas relacionados à moda e ao design do vestuário, como os tipos e padronagens de tecidos listrados, e as possibilidades de rotação e colocação dos moldes sobre tecidos listrados. Na fundamentação teórica também são abordados temas da pesquisa em otimização combinatória como: características dos problemas bidimensionais de corte e encaixe e algoritmos utilizados por diversos autores para solucionar o problema. Ainda na parte final da fundamentação teórica são descritos o método Cadeia de Markov Monte Carlo e o algoritmo de Metropolis-Hastings. Com base na pesquisa bibliográfica, foram propostos dois algoritmos distintos para lidar com o problema de encaixe de moldes em tecidos listrados: algoritmo com pré-processamento e algoritmo de busca do melhor encaixe utilizando o algoritmo de Metropolis-Hastings. Ambos foram implementados no software Riscare Listrado, que é uma continuidade do software Riscare para tecidos lisos desenvolvido em Alves (2010). Para testar o desempenho dos dois algoritmos foram utilizados seis problemas benchmarks da literatura e proposto um novo problema denominado de camisa masculina. Os problemas benchmarks da literatura foram propostos para matéria-prima lisa e o problema camisa masculina especificamente para tecidos listrados. Entre os dois algoritmos desenvolvidos, o algoritmo de busca do melhor encaixe apresentou resultados com melhores eficiências de utilização do tecido para todos os problemas propostos. Quando comparado aos melhores resultados publicados na literatura para matéria-prima lisa, o algoritmo de busca do melhor encaixe apresentou encaixes com eficiências inferiores, porém com resultados superiores ao recomendado pela literatura específica da área de moda para tecidos estampados.This thesis proposes the solution for the packing problem of patterns on striped fabric in clothing industry. The patterns are pieces with irregular form that should be placed on raw material which is, in this case, the fabric. This fabric is cut after packing. In the specific problem of packing on striped fabric, the position that patterns are put in the fabric should ensure that, after the clothing sewing, the stripes should present continuity. Thus, the theoretical foundation of this project includes subjects about fashion and clothing design, such as types and rapports of striped fabric, and the possibilities of rotation and the correct place to put the patterns on striped fabric. In the theoretical foundation, there are also subjects about research in combinatorial optimization as: characteristics about bi-dimensional packing and cutting problems and algorithms used for several authors to solve the problem. In addition, the Markov Chain Monte Carlo method and the Metropolis-Hastings algorithm are described at end of theoretical foundation. Based on the bibliographic research, two different algorithms for the packing problem with striped fabric are proposed: algorithm with pre-processing step and algorithm of searching the best packing using the Metropolis-Hastings algorithm. Both algorithms are implemented in the Striped Riscare software, which is a continuity of Riscare software for clear fabrics developed in the Masters degree of the author. Both algorithms performances are tested with six literature benchmark problems and a new problem called “male shirt” is proposed here. The benchmark problems of literature were iniatially proposed for clear raw material and the male shirt problem, specifically for striped fabrics. Between the two developed algorithms, the algorithm of searching the best packing has shown better results with better efficiencies of the fabric usage for all the problems tested. When compared to the best results published in the literature for clear raw material, the algorithm of searching the best packing has shown packings with lower efficiencies. However, it showed results higher than recommended for the specific literature of fashion design for patterned fabrics
    corecore