

 Universidade de São Paulo

2013-11-13

Collision free region determination by modified

polygonal

Boolean operations

http://www.producao.usp.br/handle/BDPI/43354

Downloaded from: Biblioteca Digital da Produção Intelectual - BDPI, Universidade de São Paulo

Biblioteca Digital da Produção Intelectual - BDPI

Departamento de Mecatrônica e Sistemas Mecânicos - EP/PMR Artigos e Materiais de Revistas Científicas - EP/PMR

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)

https://core.ac.uk/display/37519022?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://www.producao.usp.br
http://www.producao.usp.br/handle/BDPI/43354

Computer-Aided Design 45 (2013) 1029–1041

Contents lists available at SciVerse ScienceDirect

Computer-Aided Design

journal homepage: www.elsevier.com/locate/cad

Collision free region determination by modified polygonal
Boolean operations
André Kubagawa Sato, Thiago Castro Martins, Marcos Sales Guerra Tsuzuki ∗
Escola Politécnica da Universidade de São Paulo, Computational Geometry Laboratory, Department of Mechatronics and Mechanical Systems Engineering,
Av. Prof. Mello Moraes, 2231 São Paulo - SP, Brazil

h i g h l i g h t s

• An algorithm to determine the collision free region is proposed.
• The collision free region is a useful tool for cutting and packing problems with irregular items.
• Degenerated elements (edges and vertexes) represent local compaction situations.
• The collision free regions determines the presence of local compaction for the current item.

a r t i c l e i n f o

Article history:
Received 6 May 2011
Accepted 25 March 2013

Keywords:
Cutting and packing problems
Boolean operations

a b s t r a c t

Cutting and packing problems are found in numerous industries such as garment, wood and shipbuilding.
The collision free region concept is presented, as it represents all the translations possible for an item to
be inserted into a container with already placed items. The often adopted nofit polygon concept and its
analogous concept inner fit polygon are used to determine the collision free region. Boolean operations
involving nofit polygons and inner fit polygons are used to determine the collision free region. New
robust non-regularized Boolean operations algorithm is proposed to determine the collision free region.
The algorithm is capable of dealing with degenerated boundaries. This capability is important because
degenerated boundaries often represent local optimal placements. A parallelized version of the algorithm
is also proposed and tests are performed in order to determine the execution times of both the serial and
parallel versions of the algorithm.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Cutting and packing problems involving irregular shapes arise
in a wide variety of industries, including shipbuilding, garments,
sheet metal cutting, plastics and shoe manufacturing. These prob-
lems usually consist in placing a number of irregular items into one
or more containers in such way that the layout is the most effi-
cient possible; all items are assigned and do not overlap. The two-
dimensional stock cutting problem was shown to be NP-hard and
is therefore intrinsically difficult to solve.

Bennell and Oliveira [1] showed that the manipulation of items
and containers’ geometry is a key point to determine whether
a layout is feasible or not. Several approaches to ensure that,
in the resulting layout, items do not overlap and fully fit inside
the container have been proposed in the literature. Adamow-
icz and Albano [2] chose to nest items into simpler shapes in
which the interference can be more easily calculated. Babu and
Babu [3] approximated the container and the items by grid squares

∗ Corresponding author. Tel.: +55 11 3091 5759.
E-mail address:mtsuzuki@usp.br (M.S.G. Tsuzuki).

represented by a matrix. Lee et al. [4] used direct trigonometry
to determine the interference among items and the container.
Recently, the nofit polygon (NFP) has been used by several re-
searchers [5–9] to ensure feasible layouts.

The NFP is the set of feasible locations for one polygon with re-
spect to another polygon, such that the polygons do not overlap.
Feasible locations are required for most of the solutions to two-
dimensional packing problems, and also for other problems such
as robot motion planning. Different approaches to generate the
NFP have been proposed in the literature. Minkowski sums were
proposed by Ghosh [10], and were later applied to cutting and
packing problems by Dean et al. [11] and Bennell and Song [12].
Agarwal et al. [13] compared different algorithms of convex sub-
polygon decomposition, such that the Minkowski sum can be
directly determined for each convex subpolygon pair. Li and
Milenkovic [14] decomposed the items into star-shaped polygons.
Burke et al. [15] proposed an orbiting algorithm in which the mov-
able item slides along the fixed item.

When sequential placement of items is adopted, the placement
heuristic must take into account previously placed items, as well
as the container in order to obtain a feasible layout. The concept of
collision free region emerges from this heuristic, and it represents

0010-4485/$ – see front matter© 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.cad.2013.03.003

http://dx.doi.org/10.1016/j.cad.2013.03.003
http://www.elsevier.com/locate/cad
http://www.elsevier.com/locate/cad
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.cad.2013.03.003&domain=pdf
mailto:mtsuzuki@usp.br
http://dx.doi.org/10.1016/j.cad.2013.03.003

1030 A.K. Sato et al. / Computer-Aided Design 45 (2013) 1029–1041

Fig. 1. Set of translations of a shape P represented as a region containing all possible
translations from its reference point a.

the set of translations that, when applied to the movable item,
places it in the interior of the container without colliding with the
already placed items. The collision free region is determined by
unifying the NFPs determined by the movable item in respect to
the already placed items.

The NFPs unionmust bemade through non regularized Boolean
operations, in which degenerated edges and vertexes are consid-
ered. A degenerated edge represents a sliding fit (inwhich the item
position is constrained in all but one direction) and a degenerated
vertex represents an exact fit (in which the item position is fully
constrained by its surroundings).

Gomes and Oliveira [16] evaluated the point intersections be-
tween NFPs and selected the intersection points that are not
internal to any NFP and, simultaneously, internal to the inner fit
polygon. Such an approach cannot classify the vertexes in conven-
tional boundary, sliding fit and exact fit. The vertex classification
can bemade by analyzing the vertex neighborhood with appropri-
ate rules. Martins and Tsuzuki [9] used regularized Boolean oper-
ations to determine the collision free region, thus ignoring exact
and sliding fit configurations.

Here, an algorithm to determine the collision free region is pro-
posed. The paper is structured as follows. The concepts of NFP and
collision free region are defined in Section 2. Section 3 explains the
importance of determining the collision free region degenerated
elements, using specific non-regularized Boolean operations. Sec-
tion 4 shows the proposed algorithm. The proposed algorithmwas
implemented in two versions: serial and parallel. Finally, compu-
tational results are presented and conclusions are drawn.

2. Nofit polygon and collision free region

In this section, the collision free region and its primitive com-
ponents, the nofit and inner fit polygons, are defined.

2.1. The nofit polygon

TheNFP represents a set of translations of an item and ismathe-
matically represented by a set of vectors. For a better understand-
ing of the NFPs properties, the set of translations of an item are
represented by polygons in the plane. Every item has a reference
point that can be internal or external to it. The NFP represents the
set of forbidden translations that, when applied to the item, moves
the reference point to the interior of the NFP, as shown in Fig. 1.
For an item P , which is a closed data set, let i(P) be its interior, ∂P
be its boundary and c(P) be its complement.

Definition 2.1. The NFP induced by item Pi to item Pj, noted as
Υ (Pi, Pj), is the set of translation vectors that, when applied to Pj,
makes it collide with Pi. Thus,

Υ (Pi, Pj) = i(Pi) ⊖ i(Pj) =

v⃗|∃a ∈ i(Pj), a + v⃗ ∈ i(Pi)


. (1)

Fig. 2. The inner fit polygon for a given item and container.

Another way to define the NFP is [8]

Υ (Pi, Pj) = i(Pi) ⊕ (−i(Pj)) =

(v − w)|v ∈ i(Pj),w ∈ i(Pi)


. (2)

The NFP can be obtained by theMinkowski sum algorithm [13],
which can be calculated very efficiently for convex polygons. The
Minkowski sum result of two convex polygons is a convex poly-
gon built from the original polygon edges sorted in counterclock-
wise order. Non-convex polygons can be decomposed into convex
polygons in a preprocessing step, as the transformations applied
(rotations and translations) do not affect such decomposition.

Definition 2.2. The Minkowski sum of two polygons Pi and Pj,
noted Pi ⊕ Pj, is defined as the set of points {O + v⃗ + w⃗|O +

v⃗ ∈ Pi,O + w⃗ ∈ Pj}.

Definition 2.3. The opposed polygon for a given polygon Pj, noted
as −Pj, is defined as the set of points −Pj =


O − w⃗|O + w⃗ ∈ Pj


.

The opposed polygon is obtained by inverting the signal of all
the coordinates of the original polygon. From the above definitions,
one can see that
i(Pi) ⊖ i(Pj) = i(Pi) ⊕


−i(Pj)


(3)

meaning that the NFP is produced by the Minkowski sum of the
fixed item with the opposed item to be placed.

An important property is that i(Υ (Pi, Pj)) represents colliding
placements. ∂(Υ (Pi, Pj)) and c(Υ (Pi, Pj)) represent feasible place-
ments.

2.2. The inner fit polygon

The inner fit polygon is another important frequently used con-
cept, which is derived from the NFP and represents a set of trans-
lations for the placement of items inside a container C. The inner
fit polygon can be computed by sliding an item along the internal
contour of the container [5] (see Fig. 2).

Definition 2.4. The inner fit polygon induced by container C to
item Pj, noted as Λ(C, Pj), is the set of translation vectors applied
to Pj that leaves it inside the container. Thus,

Λ(C, Pi) = c(c(C) ⊕ (−i(Pi))) =

v⃗|∀ a ∈ i(Pi), a + v⃗ ∈ C


. (4)

An important property is that c(Λ(C, Pi)) represents in-
valid placements. ∂(Λ(C, Pi)) and i(Λ(C, Pi)) represent feasible
placements.

2.3. The collision free region

Consider a container C and a set of already placed items P =

{P1, . . . , Pn}, as shown in Fig. 3. A new item Pn+1, will be placed
inside the container without colliding with the already placed
items. The feasible set of translations for item Pn+1 is given by the
collision free region. A similar conceptwas previously used in robot
motion planning [17, sec. 13.4], and it was originally applied to
irregular packing by Martins and Tsuzuki [18].

A.K. Sato et al. / Computer-Aided Design 45 (2013) 1029–1041 1031

Fig. 3. The collision free region is filled with a hatch pattern. The item to be placed
is filled in blue with the reference point inside, and the already placed items are
filled with a different color. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)

Definition 2.5. Collision free region is the set of all translations
that, when applied to a specific item, places the specific item inside
a container without colliding with the already placed items.

When the container is empty, the collision free region repre-
sents all the translations that place the item completely inside the
container. In this particular case, the collision free region is the al-
ready defined inner fit polygon [5]. For any given item, the calcu-
lation of the inner fit polygon is the first step in the determination
of the collision free region.

The collision free region for a specific item is determined by
removing theNFPs generated by the already placed items, from the
inner fit polygon.

Π(C, P , Pm) = Λ(C, Pm) �

Pi∈P

i(Pi) ⊖ i(Pm) (5)

where� and


are specific Boolean operations tomanipulate NFPs
and inner fit polygons. It is worth noting that only the NFP interior
must be removed from the inner fit polygon (interior and bound-
ary). This is why specific non-regularized Boolean operations are
necessary.

By analyzing expression (5), it is possible to define at least two
possible algorithms to compute the collision free region. In the first
algorithm, all the NFPs are removed from the inner fit polygon and,
therefore, only difference operators are used. The difference opera-
tions considered result in collision free regions. In the second algo-
rithm, the unions of all NFPs are calculated and then removed from
the inner fit polygon. The unions of NFPs result in NFPs and, af-
ter the final difference operator is applied, the collision free region
is obtained. The implementation of the specific non-regularized
Boolean operations is not an easy task.

3. Basic concepts

In Section 3.1, it is explained that, in thiswork, to implement ro-
bust Boolean operations, the intersections between segments are
calculated with finite precision. The difference between regular-
ized and non-regularized Boolean operations is explained in Sec-
tion 3.2. Section 3.3 shows an example in which the regularized
union misses some degenerated edges. Section 3.4 shows some
necessary characteristics of the non-regularized union and differ-
ence Boolean operators. Section 3.5 explains the data structure
used.

3.1. Segment intersection with finite precision

Boolean operations over polygons have the problem of lack-
ing robustness. They face numerical instability and theoretical dif-
ficulties during geometric computations. These difficulties occur

in boundary evaluations involving ill-conditioned geometric in-
tersections [19]. There is a great amount of research on robust
geometrical representations and computations. In the context of
floating point arithmetic, a threshold ϵ > 0 is used to compare
two numbers. Hoffmann [19] presented the incidence asymmetry
problem inwhich a vertex can be incident to another vertex but not
vice versa, and the incidence intransitivity problem, which consid-
ers three vertexes, a, b and c, where a = b since | a−b| < ϵ, b = c
since | b − c| < ϵ, but a ≠ c, since | a − c| > ϵ.

Bentley and Ottmann [20] used finite precision to achieve ro-
bust algorithms for intersecting line segments. Agarwal et al. [13]
used CGAL to implement theMinkowski sum algorithmwith exact
rational numbers, and they reported execution times that range
from a few seconds for shapes involving a small amount of con-
cavities, and up to twenty minutes for highly irregular shapes. Hu
et al. [21] used interval arithmetics to ensure robustness. Wallner
et al. [22] showed that interval arithmetic is not geometric in the
sense that it does not give exact error bounds. Several researchers
used finite precision to implement Boolean operations over poly-
gons [23,24], which was adopted in this work, too.

3.2. Regularized Boolean operations

Conventional polygons are expected not to contain isolated
points or lines. The regularization of a point set A, r(A), is defined
by r(A) = ∂(i(A)). Sets that satisfy r(A) = A are said to be reg-
ular [25]. Some combinations of polygons do not quite satisfy the
regularity concept. Consider, for instance, the case shown in Fig. 4.
According to the ordinary definition of intersection, the intersec-
tion between the two polygons consists of a rectangular polygon
plus a degenerated edge. The Boolean operation over conventional
polygons needs to preserve the regularity property. The regular-
ized intersection is defined as A


∗ B = ∂(i(A


B)), where


denotes the ordinary set operation. In the literature, several pro-
posals to implement regularized Boolean operations were pro-
posed [23,24,26–28].

3.3. Nofit polygon and collision free region boundaries

The collision free region cannot be determined using reg-
ularized Boolean operations because it will miss eventual de-
generated elements that represent local minima for the packing
problem. Fig. 5(a) shows a critical example in which four rectan-
gular items are already placed and a fifth rectangular item is to be
placed. The reference is the central point of the movable rectangu-
lar item. This example shows the difference between regularized
and non regularized unions. Fig. 5(b) shows the union of the four
NFPs, represented by a rectangle with two internal degenerated
edges. In this case, the degenerated situation refers to a situation
in which the item can slide within a segment. If regularized union
is applied to the four NFPs, the two degenerated edges are lost (see
Fig. 5(c)).

3.4. Collision free region and NFP determination

This section explains how tomodify regularized Boolean opera-
tions to correctly implement the specific non-regularized Boolean
operations which can manipulate NFPs and collision free regions.
Implementations of regularized Boolean operations over conven-
tional polygons have the following steps [23,24,26–28]: intersec-
tion determination, classification of boundaries and collection of
appropriate boundaries to compose the result.

Fig. 6 shows two conventional polygons A and B with their
boundary orientations. The intersections between the conven-
tional polygons are determined and the edges are divided. The
intersection determination is a common module in all types of

1032 A.K. Sato et al. / Computer-Aided Design 45 (2013) 1029–1041

a

b c

Fig. 4. (a) Polygons A, B and A


B are shown. (b) Non regularized intersection with a degenerated edge. (c) Regularized intersection with no degenerated element.

a b c

Fig. 5. Critical placement example in which the regularized union of NFPs does not result in a correct NFP. (a) On the right, four rectangular items are already placed and
the movable item is shown on the left. (b) NFPs for each fixed item. The union of the four NFPs is a rectangle with two internal degenerated edges. The movable item can
be placed between the fixed items as its reference point lays on a degenerated edge. (c) When the regularized union is used to combine the NFPs the degenerated edges are
missed as a consequence of the regularization.

Fig. 6. Two conventional polygons A and B are shown, they have one coincident vertex and three partially coincident edges. The intersections are determined and the edges
are divided.

Boolean operation implementations [23,24,26–28]. New vertexes
are created at the intersecting positions and the intersecting edges
are divided in both conventional polygons. Subsequently, vertexes
and edges must be classified.

The vertexes of a conventional polygon are classified as internal,
external and on boundary. The classification of edges must con-
sider the case in which two polygons share an edge. The shared
edge may be in opposed orientations on the original polygons or
coincident orientations. Consequently, the edges of a conventional
polygon can be classified according to four attributes: internal, ex-
ternal, coincident shared and opposite shared. Fig. 7 shows the
classifications of the all edges for the example described in Fig. 6.

The collection of the appropriate edges occurs differently
depending on the Boolean operation type: subtraction or union.

This module is responsible for determining which edges from
the original conventional polygons will be used and which will
be discarded. The edges can be used to define a conventional
boundary or to define a degenerated element. The rules to define
a conventional boundary are the same as for regularized Boolean
operations. New rules are defined to create degenerated elements
from conventional polygons.

The union is exclusively used to combine NFPs, and the subtrac-
tion is exclusively used to combine a collision free regionwith NFP.
Fig. 8 shows both cases; on the left, the result of the union of two
NFPs and, on the right, the difference between a collision free re-
gion and an NFP. The edges classified as shared play a very impor-
tant role, creating degenerated placements in both results. In the
union case, opposed shared edges generate internal degenerated

A.K. Sato et al. / Computer-Aided Design 45 (2013) 1029–1041 1033

Fig. 7. Example in which the edges from conventional polygons A and B are
classified according to the four attributes: external, internal, coincident shared and
opposite shared.

Fig. 8. On the left, the result of A


B, where A and B are NFPs, and internal
degenerated edges are present. On the right, the result of A�B, where A is a collision
free region and B is a NFP, and an external degenerated edge is present.

edges. In the subtraction case, coincident shared edges generate
external degenerated edges.

3.5. Data structure

The NFP (represented in Fig. 8 by A


B) and the collision
free region (represented in Fig. 8 by A � B) have two types of
boundaries: conventional polygons, and degenerated edges and/or
vertexes. Conventional polygons are represented by an oriented
sequence of vertexes. In this work, the convention that the left side
of the oriented edge is inside and the right is outside is adopted.
Degenerated edges that are associated with sliding fits are repre-
sented by two vertexes without orientation. Degenerated vertexes
that are associated with exact fits are represented by single ver-
texes. Degenerated boundaries are of special interest as they rep-
resent desirable placements that can produce local optima layouts.
Degenerated elements are stored in a separated data structure.
Thus, the placement solver is capable of accessing these elements
whenever necessary.

4. Proposed algorithm

As previously explained, NFPs and collision free region are
generically represented by conventional polygons and degener-
ated elements. The implementation of the specific non-regularized
Boolean operations over NFPs and collision free regions is ex-
ecuted in two steps (see Fig. 9). The first step is based on
regularized Boolean operations [23,24,26–28]. Initially, the inter-
section between conventional and degenerated boundaries are de-
termined. Afterwards, conventional and degenerated boundaries
are classified. Selected elements from the classified conventional

Fig. 9. System developed to determine the union of NFPs and the difference be-
tween inner fit polygons and NFPs. The intersection and classification among con-
ventional polygons and degenerated boundaries are simultaneously determined.
The collection of boundaries occurs in appropriate modules.

boundary are selected to compose the result conventional bound-
ary; and, selected elements from the classified degenerated bound-
ary are selected to compose the result degenerated boundary. In
the second step, new degenerated elements are created. New de-
generated edges can be originated from the conventional bound-
ary classification (see Fig. 8), and new degenerated vertexes can be
originated from special configurations. The main modules of the
proposed algorithm are explained as follows.

4.1. Intersection determination

As conventional polygons and degenerated elements might in-
tersect each other, all boundaries are simultaneously processed
and their intersections are determined. The intersection deter-
mination is based on the Bentley and Ottmann sweep line algo-
rithm [20]. In this work, the sweep line algorithm is modified to
simultaneously classify degenerated vertexes and isolated degen-
erated edges; i.e., determine if degenerated vertexes and edges are
internal, external or boundary.

In the sweep line algorithm, an imaginary vertical sweep line
moves from left to right across edges and vertexes, halting at event
points. As the sweep line proceeds, the intersections restricted to
the left of the sweep line are determined. There are four kinds of
event points: left end points, right end points, crossings and iso-
lated vertexes. The edges and vertexes that intersect the sweep
line s1 are stored in a list S, which is ordered from bottom to top
(see Fig. 10). When a left end point event happens, the edge is in-
serted in S. In the example of Fig. 10, edges L2, L5 and L6 were
inserted in S. When a right end point is reached, the edge is re-
moved from S. In the example of Fig. 10, edges L1, L3 and L4 were
removed from S. Adjacent edges are processed to verify if they
intersect. If they intersect, the intersection point is determined
and the intersecting edges are divided. In the example of Fig. 10,
edges LB and L7 intersect and they will be divided. Fig. 11 shows
the types of intersections that causes edge division. The edges in
S have the information to which polygon (A or B) and to which
type of boundary (regular or degenerated) they belong. In the ex-
ample, {L1, L2, L3, L4, L5, L6, L7} are edges frompolygonAwith con-
ventional boundaries, and {V1, LA, LB} are elements from polygon B
with conventional and degenerated boundaries.

One simple way of finding whether the degenerated vertex is
inside or outside a conventional polygon is to test howmany times

1034 A.K. Sato et al. / Computer-Aided Design 45 (2013) 1029–1041

Fig. 10. The thick vertical line s1 represents the current position of the sweep line.
Considering that S = {L2, LA, L5, L6, LB, L7}. L1, L3, L4 are not in S. Supposing that
{L1, L2, L3, L4, L5, L6, L7} are edges from polygon A with exclusively conventional
boundary, and {V1, LA, LB} are elements from B (that has conventional and
degenerated boundaries), when the sweep line s2 is processed, S = {L2, LA, L5, L6,
V1, L7, LB} and as the number of edges from the conventional polygon A above V1 is
odd, one can conclude that V1 is internal to A.

Fig. 11. Types of intersections that cause edge division.

a ray, starting from the degenerated vertex and going any fixed
direction, intersects the edges of the conventional polygon. The
vertical sweep line s2 plays the ray role, initially the degenerated
vertex V1 from B is checked to lie on A’s conventional boundary.
If the degenerated vertex in question is not on the boundary,
the number of intersections is even if the degenerated vertex is
outside, and it is odd if inside (see Fig. 10).

In the case of a right end point event occurring on a degenerated
edge whose left and right end points are isolated, without any
contacting edge, such right edge point is classified in similarway as
a degenerated vertex. Thus, the intersection module also includes
degenerate vertexes and isolated edges classification. Fig. 12 shows
an example in which all intersecting vertexes are determined.

4.2. Boundary classification

Conventional and degenerated boundaries from polygon A
are classified against polygon B conventional boundary, and vice

Table 1
Boundary collection rules for operation A op B. Conventional boundary and
degenerated edges have the same rules, except that degenerated edges have no
orientation.

op Polygon Label Orientation

Union A or B External or coincident shared No change
Difference A External No change

B Internal Invert
A or B Opposite shared No change

versa. The edges from a conventional boundary can be classified
as: internal, external, coincident shared and opposed shared. As
degenerated boundaries do not have a direction, they can be
classified as: external, internal and boundary.

The classification starts by analyzing intersecting vertexes with
coincident coordinates, they are collected in a circular listD similar
to the one proposed by Leonov and Nikitin [24]. Fig. 13 shows
an example in which vertexes A4, B9 and B12 have the same
coordinates. The circular list D contains all the edges emanating
from the coincident vertexes, and they are ordered according to
their horizontal angle. If a vertex belongs to the regular boundary,
then it has two edges in D; otherwise, it has just one edge. The
circular listD is used to determine counter clockwise and clockwise
adjacency and to identify coincident edges.

Coincident edges have the same vertexes coordinates. For con-
ventional polygon edges, based on both edges orientation, the
edges are classified as coincident or opposed shared. For degen-
erated edges they are classified as boundary. Conventional bound-
aries have sectors in the circular list D. Edges that are internal to
the sector are classified as internal. Special care needs to be taken,
because one conventional boundary can have more than one sec-
tor inD. The edges that were not classified as internal are classified
as external. Fig. 12 shows an example in which all the possible in-
tersections were determined and all the edges were classified as
internal, external, coincident shared or opposite shared.

4.3. Boundary collection

The boundary collection step is the one in which the result is fi-
nally obtained. It has to deal with two important problems: which
edges should be collected and in which order. The first problem is
solved by adopting a set of boundary collection rules, which de-
termine the inclusion of edges in the final result. For conventional
polygons, the rules were defined by Leonov and Nikitin [24] and
are operation-specific. Consider an operation A op B, in which op
can be the union or difference operator. A boundary collection rule
specifies which label is applied to the edge and to which polygon
it belongs (A or B). Also, boundary collection rules determine if the
edge will be included with its original orientation or with inverted
orientation. Collection rules are also defined for degenerated edges
and are naturally equal to the rules of regular boundaries. The only
difference is that, as degenerated edges have no orientation, inclu-
sion orientation is not specified. Table 1 shows the boundary col-
lection rules for union and difference operators. It can be observed
that orientation is not applicable to degenerated edges, so shared
degenerated edges are classified as both coincident shared and op-
posite shared.

Fig. 14 shows four degenerated edge collection cases for differ-
ence Boolean operation. In this case, A is a collision free region and
B is a NFP. As previously explained, a degenerated edge can be clas-
sified as internal, external and boundary. The boundary classifica-
tion can happen with conventional and degenerated boundaries
(see Fig. 14(c) and (d)). Situations in which a degenerated edge
from A is internal to B, and where a degenerated edge from B is
external to A do not create a degenerated edge in the result (see
Fig. 14(a) and (b)).

A.K. Sato et al. / Computer-Aided Design 45 (2013) 1029–1041 1035

Fig. 12. Polygons A and B with all intersecting vertexes determined and classified edges.

Fig. 13. Circular list D of edges emanated from coincident vertexes A4 , B9 and B12 .
Source: Example taken from Fig. 12.

a b c d

Fig. 14. Four degenerated edge collection cases for difference Boolean operation. A is a collision free region and B is a NFP. (a) Degenerated edge from A is external to B. (b)
Degenerated edge from B is internal to A. (c) Degenerated edges from A and B are boundary (conventional). (d) Degenerated edges from A and B are boundary (degenerated).

Fig. 15 shows three degenerated edge collection cases for union
Boolean operation. As A and B are NFPs, the vice-versa situation
must be considered. The situation in which a degenerated edge
from A is internal to B does not create a degenerated edge in the
result. Fig. 16 shows five degenerated vertex collection cases for
the difference Boolean operation, where A is a collision free region
and B is a NFP. Situations in which a degenerated vertex from A is
internal to B, and in which a degenerated vertex from B is external
to A do not create a degenerated vertex in the result (see Fig. 16(a)
and (b)). Fig. 17 shows four degenerated vertex collection cases for
union Boolean operation, where A and B are NFPs. The vice-versa
situation must be considered. The situation where a degenerated
vertex from A is internal to B does not create a degenerated vertex
in the result.

The need to adopt a specific collection order in the conven-
tional boundary is justified by the need of obtaining valid oriented
contours in the result. If edges have been collected randomly, a
new step should be added, in which edges are sorted for obtain-
ing a valid oriented contour. By appropriately choosing connected
edges, the final result is a valid connected oriented contour. This
suggests that the collection should follow the oriented contour of
one of the inputs, in which all the edges are connected and cor-
rectly oriented. When an intersection point is encountered, a de-
cision has to be made in order to proceed to the correct contour.

a b c

Fig. 15. Three degenerated edge collection cases for unionBoolean operation.A and
B are NFPs. (a) Degenerated edge from A is external to B. (b) Degenerated edge from
A is boundary (conventional). (c) Degenerated edges from A and B are boundary
(degenerated).

A new set of boundary collection rules is then defined, called jump
rules [24]. According to these rules, when an intersection point is
found, the next edge to be collected is the first in counter-clockwise
order that follows the boundary collection rules. As mentioned,
counter-clockwise adjacency can be determined by using circular
list D (see Fig. 13). Degenerated edges are also contained in this
list, but they should be ignored in the jump rules, as a conven-
tional boundary is being collected. The collection of the degener-
ated boundary is very straightforward. As there is no connection
between degenerated edges or vertexes, they can be directly

1036 A.K. Sato et al. / Computer-Aided Design 45 (2013) 1029–1041

a b c d e

Fig. 16. Five degenerated vertex collection cases for difference Boolean operation. A is a collision free region and B is a NFP. (a) Degenerated vertex from A is external to B.
(b) Degenerated vertex from B is internal to A. (c) Degenerated vertexes from A and B are boundary (conventional). (d) Degenerated vertexes from A and B are on boundary
(degenerated edge–vertex coincidence). (e) Degenerated vertexes from A and B are boundary (degenerated vertexes coincidence).

a b c d

Fig. 17. Four degenerated vertex collection cases for union Boolean operation. A and B are NFPs. (a) Degenerated vertex from A is external to B. (b) Degenerated vertex
from B is boundary (conventional). (c) Degenerated vertex from B is boundary (degenerated edge–vertex coincidence). (d) Degenerated vertexes from A and B are boundary
(degenerated vertexes coincidence).

a b

Fig. 18. Two degenerated edge creation cases. (a) Shows a union Boolean operation
in which A and B are NFPs. It is an opposed shared edge case. (b) Shows a difference
Boolean operation where A is a collision free region and B is a NFP. It is a coincident
shared edge case.

included in the result if they obey the boundary collection rules
(see Figs. 14–17).

4.4. Degenerated boundary creation

Possibly the most significant difference between regularized
and non-regularized Boolean operations algorithms is that, in the
latter, additional checking must be performed to determine if new
elements should be included in the result boundary. Such elements
are always degenerated edges or vertexes. In regularized Boolean
operations algorithms, boundary edges from the result are always
found in the input boundaries. If degenerated boundaries are to
be processed separately, the result of a non-regularized Boolean

operations algorithm can have degenerated edges which were
not contained in the input degenerated boundaries. Furthermore,
degenerated vertexes can also only exist in the final result. To
determine whether a new degenerated edge will be created, a rule
similar to a boundary collection rule is checked. The edge is then
included in the degenerated boundary (see Fig. 18).

While the creation of degenerated edges follows the same pro-
cedure as the collection of the regular boundary, checking for new
degenerated vertexes is a more complex task. Degenerated ver-
texes arise from the crossing of edges, more specifically, crossing
where no edges followboundary collection rules, including the one
regarding the creation of degenerated edges. This is justified by the
fact that all the intersecting vertexes are part of the final result.
They are usually an endpoint of a collected edge or a degenerated
edge and the only exception is when none of the edges that have
the intersecting vertex as its endpoint are collected. Fig. 19(a) and
(b) show two cases of vertex creation for the union Boolean op-
eration and Fig. 19(c) and (d) show two cases for the difference
Boolean operation. Other possible cases can involve more or less
crossing edges; however, the generation rule is the same, i.e. no
edges must follow the boundary collection rules. It is important
to note that degenerated vertex creation should not be checked
alongside jump rules, as the latter occurs on intersections in which
one edge is already included. Table 2 shows the creation rules for
the union and difference operations.

Degenerated boundaries classification and collection are pro-
cessed in a different module. Degenerated edge creation is only

a b c d

Fig. 19. Four degenerated vertex creation cases. (a)–(b) Show union Boolean operations where A and B are NFPs. (a) Degenerated vertex is created from conventional
boundaries. (b) Degenerated vertex is created from degenerated and conventional boundaries intersection. (c)–(d) Show difference Boolean operations in which A is a
collision free region and B is a NFP. (c) Degenerated vertex is created from conventional boundaries. (d) Degenerated vertex is created from degenerated and conventional
boundaries intersection.

A.K. Sato et al. / Computer-Aided Design 45 (2013) 1029–1041 1037

Fig. 20. Example of a serial determination of the collision free region using exclusively the difference Boolean operation. NFP: nofit polygon. IFP: inner fit polygon. CFR:
collision free region. R1–R5 represents the results of the Boolean operations (DIFF).

Table 2
Generation rules for degenerated edges and vertexes.

op Type Rule

Union Edge Opposite shared labeled
Difference Edge Coincident shared labeled
Both Vertex Crossing of exclusively uncollected edges

possible for conventional boundary coincident edges, and it is thus
processed in the conventional boundary module. On the other
hand, degenerated vertexes can be originated from any crossing
vertex; hence, all the intersections must be checked and thus it
does not fit in a single module. The resulting degenerated bound-
ary is composed of degenerated edges collected from conventional
boundary edges and degenerated vertexes and edges collected
from input degenerated boundaries.

4.5. Parallelization

Collision free region determination is performed using a se-
quence of NFPs as input. Eq. (5) shows the necessary operations to
be performed. In this work; the collision free region is calculated
according to three different implementations. Considering that P

is a queue and n is the number of items in the queue. The first im-
plementation is shown in Algorithm1; it only consists of difference
operators, as the collision free region is determined by serially sub-
tracting every NFP from the inner fit polygon (see Fig. 20). The first
implementation has no parallelization.

Π = Λ(C, Pn+1);
for i = 1 to n do

Π = Π � {i(pop(P)) ⊖ i(Pn+1)};

Algorithm 1: Collision free region determination using exclu-
sively difference Boolean operations serially (DIFF).

The second implementation is an algorithm in which all NFPs
are serially united and then subtracted from the inner fit polygon,
shown in Algorithm 2. Union and difference operators are used in
this implementation, and there is no parallelization (see Fig. 21).
The union of all NFPs is defined as the obstructed region, as it
represents all the forbidden translation for a given item, given a
set of already placed items.

The third implementation is a parallel algorithm to calculate
the obstructed region described in Algorithm 3. In this algorithm,

1038 A.K. Sato et al. / Computer-Aided Design 45 (2013) 1029–1041

Π =i(pop(P)) ⊖i(Pn+1);
for i = 2 to n do

Π = Π


{i(pop(P)) ⊖ i(Pn+1)};
Π = Λ(C, Pn+1) � Π ;

Algorithm 2: Collision free region determination using unions
and one difference Boolean operation (UNI).

Fig. 21. Example of a serial determination of the collision free region by initially
determining the obstructed region. NFP: nofit polygon. IFP: inner fit polygon. CFR:
collision free region. R1–R5 represents the results of the Boolean operations (UNI).

union operations are processed in parallel. Initially, all NFPs are de-
termined and pushed in queue R. Each thread pops two NFPs, the
NFPs are united to define an obstructed region, and the obstructed
region is pushed back at the end of the queue. Just one thread ac-
cesses the queue at a time. If the queue does not have two ob-
structed regions, the threads that finished the union operation are
kept in an idle state until the queue has enough obstructed regions.
The procedure is repeated n − 1 times, where n represents the to-
tal number of NFPs, until the queue has just one obstructed region.
At this moment, the threads are killed and the collision free region
is determined by subtracting the obstructed region from the inner
fit polygon. Fig. 22 shows a example of parallel collision free re-
gion determination using the proposed algorithm. All horizontally

Fig. 22. Example of a parallel determination of the collision free region. NFP: nofit
polygon. IFP: inner fit polygon. CFR: collision free region. R1–R5 represents the
results of the Boolean operations. Considering that the original sequence of NFPs
is {NFP1 , NFP2 , NFP3 , NFP4 , NFP5 , NFP6}, the results are determined in the following
order: {R1 , R2 , R3 , R4 , R5 } (UD).

aligned operations are performed in parallel. Finally, to obtain the
collision free region, the obstructed region is subtracted from the
inner fit polygon.

for i = 1 to n do
Π = {i(pop(P)) ⊖ i(Pn+1)};
pushBack(R, Π);

for i = 2 to n do
Π =pop(R)


pop(R);

pushBack(R, Π);
Π = Λ(C, Pn+1)�pop(R);

Algorithm 3: Collision free region determination using parallel
unions and one difference Boolean operation (UD).

5. Results
In order to demonstrate the speed of the proposed approach,

generation statistics for 15 benchmark problems gathered from the
literature are shown. These data sets can be found on the EURO
Special Interest Group on Cutting and Packing (ESICUP) website.1
For each problem, the time to generate 1000 times the collision
free region for all items is reported. Placement order and position
of items were randomly defined. The last item in the sequence is
the item to be placed. Table 3 displays the results obtained using
exclusively the difference Boolean operation (see Fig. 20). All the
experiments were conducted on an i7 860 multi-core processor
with 4 cores and 4 GB RAM. Sato et al. [29] used this approach to
determine the collision free region, and the Albano, Dagli, Jakobs
and Marques solutions found by the proposed algorithm are the
best results published in the literature.

Fig. 23 shows an example of the determination of the collision
free region for a single item. The final layout, current item P7 and

1 http://www.fe.up.pt/esicup.

http://www.fe.up.pt/esicup

A.K. Sato et al. / Computer-Aided Design 45 (2013) 1029–1041 1039

d

e

f

g

h

a b c

7

Fig. 23. Determination of the collision free region for item P7 . Items and container geometry obtained from the Fu problem instance. Items P1 , P2 , P3 , P4 , P5 and P6 are
already placed. The final collision free region has one degenerated vertex and two degenerated edges where item P7 can be placed.

Table 3
Generation of all collision free region in benchmark data sets repeated 1000 times.
TNP: total number of polygons; ANE: the average number of edges (cited from [6]—
the total number of vertexes is exactly the same as the total number of edges).

Case TNP ANE Time (s)

Albano 24 7.25 2.33
Dagli 30 6.30 2.20
Dighe1 16 3.87 0.63
Dighe2 10 4.70 0.58
Fu 12 3.58 0.62
Jakobs1 25 5.60 1.54
Jakobs2 25 5.36 1.91
Mao 20 9.22 1.77
Marques 24 7.37 2.23
Shapes0 43 8.75 4.24
Shapes1 43 8.75 4.38
Shapes2 28 6.29 1.39
Shirts 99 6.63 12.53
Trousers 64 5.06 12.00

the corresponding collision free region, represented by the hatch
pattern filled polygons with degenerated edges and a degenerated
vertex, are displayed in Fig. 23(a). The inner fit polygon of item
P7 can be observed in Fig. 23(b). Fig. 23(c)–(h) represent the
difference sequence, each relating to one Boolean operation. Both
input polygons, the intermediate collision free region and the NFP,
are shown on the left. The placed item used to generate the NFP is
exhibited on the right and the result is displayed in the middle.

To compare processing times for the three implementations
proposed, a new batch of tests was executed. A parallel version of
the algorithm with the obstructed region is also included in the
tests. Table 4 shows execution times obtained for these evalua-
tions. Three serial implementationswere developed:DIFF,UNI and
UD (serial). The minimum between the three is selected to create
the graph shown in Fig. 24. Considering the same implementation,
the main difference in time among the cases is related to the total
number of edges. One might observe that Shapes0, Shapes1 and

1040 A.K. Sato et al. / Computer-Aided Design 45 (2013) 1029–1041

Fig. 24. Parallel collision free region generation times.

Trousers have a similar total number of edges (376), but the pro-
cessing time for Trousers is almost three times the Shapes0 and
Shapes1 time processing. As intermediary results of Shapes0 and
Shapes1 are determined, the total number of edges is kept low. On
the other hand, the intermediary results for Trousers have a high
total number of edges. Considering that the same sequence of NFPs
is used for all the implementations, for the same case there are dif-
ferences in the time processing as NFPs are combined in different
ways. The three serial implementations show different time pro-
cessing as intermediary results have a different total number of
edges. From Fig. 24, it is possible to observe that the adoption of
the obstructed region is only beneficial in puzzleswith a high num-
ber of items. It can also be noted that Dighe1, Dighe2, Fu, Jakobs1,
Mao, Marques and Shapes2 problems ran slower using the parallel
algorithm when compared to its faster serial counterpart.

6. Conclusions

The collision free region concept is defined and non regularized
Boolean operations are shown to be necessary to correctly deter-
mine it. Three different algorithms can be defined to determine the
collision free region: one based exclusively on difference opera-
tions, and the other based on union and difference operations. One
algorithm that uses union and difference operations can be paral-
lelized (UD).

The collision free region has two types of boundaries: conven-
tional boundary and degenerated vertexes and edges. A robust non
regularized Boolean operation algorithm using finite precision is
proposed in order to compute the union between NPFs and the dif-
ference between a collision free region and a NFP. The proposed
algorithm robustly determines conventional boundaries, degener-
ated vertexes and degenerated edges.

Table 4
Single collision free region generation repeated 1000 times. TNE: total number of
edges;DIFF: execution times (s) using only differences (serial);UNI: execution time
(s) using unions anddifference;UD: execution times (s) using unions anddifference.

Case TNE DIFF UNI UD
Serial 2 cores 3 cores 4 cores

Albano 174 2.33 3.80 3.13 2.66 2.47 2.48
Dagli 189 2.20 3.49 2.53 2.01 1.83 1.65
Dighe1 62 0.63 0.97 1.03 0.96 0.98 0.94
Dighe2 47 0.58 0.85 0.93 0.89 0.93 0.93
Fu 43 0.62 0.67 0.85 0.88 0.79 0.78
Jakobs1 140 1.54 2.92 2.37 1.95 1.87 1.71
Jakobs2 134 1.91 2.90 2.34 1.98 1.89 1.75
Mao 184 1.77 2.98 2.31 2.08 2.08 1.98
Marques 177 2.23 4.29 3.24 2.64 2.55 2.54
Shapes0 376 4.24 7.16 4.57 3.43 3.11 3.05
Shapes1 376 4.38 7.31 4.66 3.44 2.96 2.68
Shapes2 176 1.39 2.58 2.06 1.73 1.63 1.52
Shirts 656 12.53 17.28 6.54 4.47 3.95 3.41
Trousers 324 12.00 17.21 6.93 5.02 4.88 4.74

The parallelized algorithm was implemented and tested. Exe-
cution times for serial and parallelized algorithms were measured
and the advantage of the parallelized algorithmwas only observed
in problems with a larger number of items.

Acknowledgments

André Kubagawa Sato was supported by CNPq and FAPESP
(Grant 2010/19646-0). Thiago Castro Martins was supported
by FAPESP (Grant 2009/14699–0). Marcos Sales Guerra Tsuzuki
was partially supported by CNPq (Grants 304.258/2007–5 and
309.570/2010–7). Thiago de Castro Martins was partially sup-
ported by CNPq (Grant 06415/2012-7). This research was sup-
ported by FAPESP (Grants 2008/13127–2 and 2010/18913–4).

A.K. Sato et al. / Computer-Aided Design 45 (2013) 1029–1041 1041

References

[1] Bennell JA, Oliveira JF. The geometry of nesting problems: a tutorial. European
Journal of Operational Research 2008;397–415.

[2] Adamowicz M, Albano A. Nesting two dimensional shapes in rectangular
modules. Computer Aided Design 1976;8(1):27–33.

[3] BabuAR, BabuNR. A generic approach for nesting of 2Dparts in 2D sheets using
generic and heuristic algorithms. Computer Aided Design 2001;33:879–91.

[4] Lee W-C, Ma H, Cheng B-W. A heuristic for nesting problems of irregular
shapes. Computer Aided Design 2008;40:625–33.

[5] Dowsland KA, Vaid S, Dowsland BW. An algorithm for polygon placement
using a bottom-left strategy. European Journal of Operational Research 2002;
141:371–81.

[6] Gomes AM, Oliveira JF. Solving irregular strip packing problems by hybridising
simulated annealing and linear programming. European Journal ofOperational
Research 2006;171:811–29.

[7] Egeblad J, Nielsen BK, Odgaard A. Fast neighborhood search for two- and three-
dimensional nesting problems. European Journal of Operational Research
2007;183:1249–66.

[8] Imamichi T, YagiuraM, Nagamochi H. An iterated local search algorithm based
on nonlinear programming for the irregular strip packing problem. Discrete
Optimization 2009;6:345–61.

[9] Martins TC, Tsuzuki MSG. Simulated annealing applied to the irregular
rotational placement of shapes over containers with fixed dimensions. Expert
Systems with Applications 2010;37:1955–72.

[10] Ghosh PK. An algebra of polygons through the notion of negative shapes.
CVGIP: Image Understanding 1991;54:119–44.

[11] DeanHT, Tu Y, Raffensperger JF. An improvedmethod for calculating the no-fit
polygon. Computers & Operations Research 2006;33:1521–39.

[12] Bennell JA, Song X. A comprehensive and robust procedure for obtaining the
nofit polygon usingMinkowski sums. Computers &Operations Research 2008;
267–81.

[13] Agarwal PK, Flato E, Halperin D. Polygon decomposition for efficient
construction of minkowski sums. Computational Geometry 2002;21:39–61.

[14] Li Z, Milenkovic V. Compaction and separation algorithms for non-convex
polygons and their applications. European Journal of Operational Research
1995;84:539–61.

[15] Burke EK, Hellier RSR, Kendall G, Whitwell G. Complete and robust no-fit
polygon generation for the irregular stock cutting problem. European Journal
of Operational Research 2007;179:27–49.

[16] Gomes AM, Oliveira JF. A 2-exchange heuristic for nesting problems. European
Journal of Operational Research 2002;141:359–70.

[17] Berg M, Cheong O, Kreveld M, Overmars M. Computational geometry:
algorithms and applications. 3rd ed. Springer-Verlag; 2008.

[18] Martins TC, Tsuzuki MSG. Simulated annealing applied to the rotational
polygon packing. In: Proceedings of the IFAC symposium information control
problems in manufacturing. 2006. p. 475–80.

[19] Hoffmann CM. The problems of accuracy and robustness in geometric
computation. Computer 1989;22:31–41.

[20] Bentley JL, Ottmann TA. Algorithms for reporting and counting geometric
intersections. IEEE Transactions on Computers 1979;C-28:643–7.

[21] Hu C-Y, Patrikalakis NM, Ye X. Robust interval solid modelling part I:
representations. Computer Aided Design 1996;10:807–17.

[22] Wallner J, Krasauskas R, Pottmann H. Error propagation in geometric
constructions. Computer Aided Design 2000;32:631–41.

[23] Martínez F, Rueda AJ, Feito FR. A new algorithm for computing Boolean
operations on polygons. Computers & Geosciences 2009;35:1177–85.

[24] Leonov MV, Nikitin AG. An efficient algorithm for a closed set of Boolean
operations on polygonal regions in the plane. Tech rep. A.P. Ershov Institute
of Informatics Systems; 1997.

[25] Requicha AAG. Representation of solid objects—theory, methods and systems.
ACM Computing Surveys 1980;12(6):437–64.

[26] Greiner G, Hormann K. Efficient clipping of arbitrary polygons. ACM
Transactions on Graphics 1998;17:71–83.

[27] Liu YK, Wang XQ, Bao SZ, Gombosi M, Zalik B. An algorithm for polygon
clipping, and for determining polygon intersections and unions. Computers
& Geosciences 2007;33:589–98.

[28] Vatti BR. A generic solution to polygon clipping. Communications of the ACM
1992;35:56–63.

[29] Sato AK, Martins TC, Tsuzuki MSG. An algorithm for the strip packing problem
using collision free region and exact fitting placement. Computer AidedDesign
2012;44:766–77.

