8 research outputs found

    On Solving Pentadiagonal Linear Systems via Transformations

    Get PDF
    Many authors have studied numerical algorithms for solving the linear systems of pentadiagonal type. The well-known fast pentadiagonal system solver algorithm is an example of such algorithms. The current paper describes new numerical and symbolic algorithms for solving pentadiagonal linear systems via transformations. The proposed algorithms generalize the algorithms presented in El-Mikkawy and Atlan, 2014. Our symbolic algorithms remove the cases where the numerical algorithms fail. The computational cost of our algorithms is better than those algorithms in literature. Some examples are given in order to illustrate the effectiveness of the proposed algorithms. All experiments are carried out on a computer with the aid of programs written in MATLAB

    Space programs summary no. 37-61, volume 3 for the period 1 December 1969 - 31 January 1970. Supporting research and advanced development

    Get PDF
    Planetary atmospheres, space communications, and spacecraft power, control, antennas, materials, and propulsion system

    Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2018

    Get PDF
    This open access book features a selection of high-quality papers from the presentations at the International Conference on Spectral and High-Order Methods 2018, offering an overview of the depth and breadth of the activities within this important research area. The carefully reviewed papers provide a snapshot of the state of the art, while the extensive bibliography helps initiate new research directions

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal
    corecore