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Many authors have studied numerical algorithms for solving the linear systems of pentadiagonal type. The well-known fast
pentadiagonal system solver algorithm is an example of such algorithms.The current paper describes new numerical and symbolic
algorithms for solving pentadiagonal linear systems via transformations. The proposed algorithms generalize the algorithms
presented in El-Mikkawy and Atlan, 2014. Our symbolic algorithms remove the cases where the numerical algorithms fail. The
computational cost of our algorithms is better than those algorithms in literature. Some examples are given in order to illustrate
the effectiveness of the proposed algorithms. All experiments are carried out on a computer with the aid of programs written in
MATLAB.

1. Introduction

The pentadiagonal linear systems, denoted by (PLS), take the
following forms:

𝑃𝑋 = 𝑌, (1)

where 𝑃 is 𝑛 − 𝑏𝑦 − 𝑛 pentadiagonal matrix given by
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where 𝑋 = (𝑥
1
, 𝑥
2
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)
𝑡 and 𝑌 = (𝑦

1
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2
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𝑛
)
𝑡 are

vectors of length 𝑛.
This kind of linear systems is well known in the literature

[1–11] and often these types of linear systems are widely used
in areas of science and engineering, for example, in numer-
ical solution of ordinary and partial differential equations
(ODE and PDE), interpolation problems, boundary value
problems (BVP), parallel computing, physics, and matrix
algebra [4–14]. The authors in [7] have developed an efficient
algorithm to find the inverse of a general pentadiagonal
matrix. In [8], the author presented an efficient computa-
tional algorithm for solving periodic pentadiagonal linear
systems. The algorithm depends on the LU factorization
of the periodic pentadiagonal matrix. New algorithms are
used for solving periodic pentadiagonal linear systems based
on the use of any pentadiagonal linear solver. The author
described a symbolic algorithm for solving pentadiagonal
linear systems [9]. In [10], the authors discussed the gen-
eral nonsymmetric problem and proposed an algorithm for
solving nonsymmetric pentadiagonal Toeplitz linear systems.
A fast algorithm for solving a large system with a sym-
metric Toeplitz pentadiagonal coefficient matrix has been
presented [11]. This efficient method depends on the idea
of a system perturbation followed by corrections and is
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competitive with standard methods. In [12], the authors
described an efficient computational algorithm and symbolic
algorithm for solving nearly pentadiagonal linear systems
based on the LU factorization of the nearly pentadiagonal
matrix.

In this paper, we introduce more efficient algorithms
based on transformations which can be described as a natural
generalization of the efficient algorithms in [15].

The current paper is organized as follows. In Section 2,
new numerical algorithms for solving a pentadiagonal linear
system are presented. New symbolic algorithms for solving a
pentadiagonal linear system are constructed in Section 3. In
Section 4, three illustrative examples are presented. Conclu-
sions of the work are given in Section 5.

2. Numerical Algorithms for Solving PLS

In this section, we will focus on the construction of new
numerical algorithms for computing the solution of pentadi-
agonal linear system. For this purpose it is convenient to give
five vectors 𝛼 = (𝛼
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By using those vectors together with the suitable ele-
mentary row operations, one can see that system (1)

may be transformed to the equivalent linear system as
follows:
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The transformed system (8) is easy to solve by a backward
substitution. Consequently, the PLS (1) can be solved using
Algorithm 1.

The numerical Algorithm 1 will be referred to as
PTRANS-I algorithm in the sequel. The computational
cost of PTRANS-I algorithm is 19𝑛 − 29 operations. The
conditions 𝜇

𝑖
̸= 0, 𝑖 = 1, 2, . . . , 𝑛, are sufficient for its validity.
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To find the solution of PLS (1) using the transformed system (8), we proceed as follows:
INPUT Order of the matrix 𝑛 and the components 𝑑
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of the system (1).
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Algorithm 1: First numerical algorithm for solving pentadiagonal linear system.
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To find the solution of PLS (1) using the transformed system (14), we proceed as follows:
INPUT Order of the matrix 𝑛 and the components 𝑑
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𝜌
2

𝜓
2

,

𝑤
1
=
𝑦
1
− 𝑤
3
𝑏
1
− 𝑤
2
𝜌
1

𝜓
1

,

Step 6. Compute the solution vector 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑡 using 𝑥 = 𝑤

1
, 𝑥
2
= 𝑤
2
− 𝜎
2
𝑥
1
.

For 𝑖 = 3, 4, . . . , 𝑛 do
Compute and simplify:
𝑥
𝑖
= 𝑤
𝑖
− 𝜎
𝑖
𝑥
𝑖−1

− 𝜙
𝑖
𝑥
𝑖−2

End do.

Algorithm 2: Second numerical algorithm for solving pentadiagonal linear system.

⋅

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑥
1

𝑥
2

𝑥
3

𝑥
4

.

.

.

.

.

.

.

.

.

𝑥
𝑛−2

𝑥
𝑛−1

𝑥
𝑛

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑤
1

𝑤
2

𝑤
3

𝑤
4

.

.

.

.

.

.

.

.

.

𝑤
𝑛−2

𝑤
𝑛−1

𝑤
𝑛

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

.

(14)

The transformed system (14) is easy to solve by a forward
substitution. Consequently, the PLS (1) can be solved using
Algorithm 2.

The numerical Algorithm 2 will be referred to as
PTRANS-II algorithm in the sequel. The computational cost

of PTRANS-II algorithm is 19𝑛 − 29 operations. Also, the
conditions 𝜓

𝑖
̸= 0, 𝑖 = 1, 2, . . . , 𝑛, are sufficient for its validity.

If 𝜇
𝑖
= 0 or𝜓

𝑖
= 0 for any 𝑖 ∈ {1, 2, . . . , 𝑛} then PTRANS-I

and PTRANS-II algorithms fail to solve pentadiagonal linear
systems, respectively. So, in the next section, we develop two
symbolic algorithms in order to remove the cases where the
numerical algorithms fail.The parameter “𝑝” in the following
symbolic algorithms is just a symbolic character. It is a
dummy argument and its actual value is zero.

3. Symbolic Algorithms for Solving PLS

In this section, we will focus on the construction of new
symbolic algorithms for computing the solution of pentadi-
agonal linear systems. Algorithm 3 is a symbolic version of
PTRANS-I algorithm.

The symbolic Algorithm 3 will be referred to as
SPTRANS-I algorithm in the sequel.

Algorithm 4 gives the symbolic version of PTRANS-II
algorithm.

The symbolic Algorithm 4 will be referred to as
SPTRANS-II algorithm in the sequel.
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To find the solution of PLS (1) using the transformed system (8), we proceed as follows:
INPUT Order of the matrix 𝑛 and the components 𝑑

𝑖
, 𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, 𝑒
𝑖
, 𝑓
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (𝑎

𝑛
= 𝑏
𝑛
= 𝑏
𝑛−1

= 𝑐
1
= 𝑒
1
= 𝑒
2
= 0).

OUTPUTThe solution vector𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑡.

Step 1. Use DETGPENTA algorithm [14] or DETGPENTA algorithm [16] to check the non-singularity of the coefficient matrix
of the system (1).

Step 2. If det(𝑃) = 0, then Exit and Print Message (“No solutions”) end if.
Step 3. Set 𝜇

1
= 𝑑
1
. If 𝜇
1
= 0 then 𝜇

1
= 𝑝 end if.

Step 4. Set 𝛼
1
= 𝑎
1
/𝜇
1
, 𝛽
1
= 𝑏
1
/𝜇
1
, 𝑧
1
= 𝑦
1
/𝜇
1
and 𝛾

2
= 𝑐
2
.

Step 5. Set 𝜇
2
= 𝑑
2
− 𝛼
1
𝛾
2
. If 𝜇
2
= 0 then 𝜇

2
= 𝑝 end if.

Step 6. Set 𝛼
2
= (𝑎
2
− 𝛽
1
𝛾
2
)/𝜇
2
, 𝛽
2
= 𝑏
2
/𝜇
2
, and 𝑧

2
= (𝑦
2
− 𝑧
1
𝛾
2
)/𝜇
2
.

Step 7. For 𝑖 = 3, 4, . . . , 𝑛 − 2 do
Compute and simplify:
𝛾
𝑖
= 𝑐
𝑖
− 𝛼
𝑖−2
𝑒
𝑖
,

𝜇
𝑖
= 𝑑
𝑖
− 𝛽
𝑖−2
𝑒
𝑖
− 𝛼
𝑖−1
𝛾
𝑖
,

If 𝜇
𝑖
= 0 then 𝜇

𝑖
= 𝑝 end if.

𝛼
𝑖
=
𝑎
𝑖
− 𝛽
𝑖−1
𝛾
𝑖

𝜇
𝑖

,

𝛽
𝑖
=
𝑏
𝑖

𝜇
𝑖

,

𝑧
𝑖
=
𝑦
𝑖
− 𝑧
𝑖−2
𝑒
𝑖
− 𝑧
𝑖−1
𝛾
𝑖

𝜇
𝑖

,

End do.
𝛾
𝑛−1

= 𝑐
𝑛−1

− 𝛼
𝑛−3
𝑒
𝑛−1

,
𝜇
𝑛−1

= 𝑑
𝑛−1

− 𝛽
𝑛−3
𝑒
𝑛−1

− 𝛼
𝑛−2
𝛾
𝑛−1

. If 𝜇
𝑛−1

= 0 then 𝜇
𝑛−1

= 𝑝 end if.

𝛼
𝑛−1

=
𝑎
𝑛−1

− 𝛽
𝑛−2
𝛾
𝑛−1

𝜇
𝑛−1

,

𝛾
𝑛
= 𝑐
𝑛
− 𝛼
𝑛−2
𝑒
𝑛
,

𝜇
𝑛
= 𝑑
𝑛
− 𝛽
𝑛−2
𝑒
𝑛
− 𝛼
𝑛−1
𝛾
𝑛
. If 𝜇
𝑛
= 0 then 𝜇

𝑛
= 𝑝 end if.

𝑧
𝑛−1

=
𝑦
𝑛−1

− 𝑧
𝑛−2
𝑒
𝑛−1

− 𝑧
𝑛−2
𝛾
𝑛−1

𝜇
𝑛−1

,

𝑧
𝑛
=
𝑦
𝑛
− 𝑧
𝑛−1
𝑒
𝑛
− 𝑧
𝑛−1
𝛾
𝑛

𝜇
𝑛

,

Step 8. Compute the solution vector 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑡 using 𝑥

𝑛
= 𝑧
𝑛
, 𝑥
𝑛−1

= 𝑧
𝑛−1

− 𝛼
𝑛−1
𝑥
𝑛
.

For 𝑖 = 𝑛 − 2, 𝑛 − 3, . . . , 1 do
Compute and simplify:
𝑥
𝑖
= 𝑧
𝑖
− 𝛼
𝑖
𝑥
𝑖+1

− 𝛽
𝑖
𝑥
𝑖+2

End do.
Step 9. Substitute 𝑝 = 0 in all expressions of the solution vector 𝑥

𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

Algorithm 3: First symbolic algorithm for solving pentadiagonal linear system.

Corollary 1 (generalization version of Corollary 2.1 in [15]).
Let �̂� be the backward matrix of the pentadiagonal matrix 𝑃 in
(2) and be given by

�̂� =

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

0 . . . . . . . . . . . . . . . 0 𝑏
1

𝑎
1
𝑑
1

0 . . . . . . . . . . . . 0 𝑏
2

𝑎
2
𝑑
2

𝑐
2

0 . . . . . . . . . 0 𝑏
3

𝑎
3
𝑑
3

𝑐
3

𝑒
3

0 . . . . . . 0 𝑏
4

𝑎
4
𝑑
4

𝑐
4

𝑒
4

0

.

.

. . . . c c c c c c c
.
.
.

.

.

. c c c c c c c . . .
.
.
.

.

.

. c c c c c c . . . . . .
.
.
.

𝑏
𝑛−2

𝑎
𝑛−2

𝑑
𝑛−2

𝑐
𝑛−2

𝑒
𝑛−2

0 . . . . . . . . . 0

𝑎
𝑛−1

𝑑
𝑛−1

𝑐
𝑛−1

𝑒
𝑛−1

0 . . . . . . . . . . . . 0

𝑑
𝑛

𝑐
𝑛

𝑒
𝑛

0 . . . . . . . . . . . . . . . 0

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

,

𝑛 ≥ 4.

(15)

Then the backward pentadiagonal linear system

�̂�𝑉 = 𝑌, 𝑉 = (V
1
, V
2
, . . . , V

𝑛
)
𝑡 (16)

has the solution V
𝑖
= 𝑥
𝑛−𝑖+1

, 𝑖 = 1, 2, . . . , ⌊𝑛⌋, where ⌊𝑗⌋ is the
floor function of 𝑗 and 𝑋 = (𝑥

1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑡 is the solution

vector of the linear system (1).

Proof. Consider the 𝑛 × 𝑛 permutation matrix𝑀 defined by

𝑀 =

(
(
(
(
(
(

(

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1

.

.

. 1 0

.

.

. c
.
.
.

0 1
.
.
.

1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

)
)
)
)
)
)

)

. (17)
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For this matrix, we have

𝑀
−1
= 𝑀. (18)

Since

�̂� = 𝑃𝑀 (19)

then, using (18) and (19), the result follows.

Corollary 2 (generalization version of Corollary 2.2 in [15]).
The determinants of the coefficient matrices 𝑃 and �̂� in (2) and
(15) are given, respectively, by

det (𝑃) =
𝑛

∏

𝑖=1

𝜇
𝑖
=

𝑛

∏

𝑖=1

𝜓
𝑖
,

det (�̂�) = (−1)
𝑛(𝑛−1)/2

𝑛

∏

𝑖=1

𝜇
𝑖
= (−1)

𝑛(𝑛−1)/2

𝑛

∏

𝑖=1

𝜓
𝑖
,

(20)

where 𝜇
1
, 𝜇
2
, . . . , 𝜇

𝑛
and 𝜓

1
, 𝜓
2
, . . . , 𝜓

𝑛
satisfy (7) and (13),

respectively.

Proof. Using (8), (14) and (19) complete the proof.

4. Illustrative Examples

In this section, we give three examples for the sake of
illustration. All experiments were performed in MATLAB
R2014a with an Intel Core i7-4700MQ CPU@2.40GHz
2.40GHz.

Example 1 (Case I: 𝜇
𝑖

̸= 0 and 𝜓
𝑖

̸= 0 for all 𝑖). Find the
solution of the following pentadiagonal linear system of size
10:

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

1 2 1 0 0 0 0 0 0 0

3 2 2 5 0 0 0 0 0 0

1 2 3 1 −2 0 0 0 0 0

0 3 1 −4 5 1 0 0 0 0

0 0 1 2 5 −7 5 0 0 0

0 0 0 5 1 6 3 2 0 0

0 0 0 0 2 2 7 −1 4 0

0 0 0 0 0 2 1 −1 4 −3

0 0 0 0 0 0 2 −2 1 5

0 0 0 0 0 0 0 −1 4 8

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

⋅

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑥
1

𝑥
2

𝑥
3

𝑥
4

𝑥
5

𝑥
6

𝑥
7

𝑥
8

𝑥
9

𝑥
10

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

8

33

8

24

29

82

71

17

57

108

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

.

(21)

Solution. We have

𝑛 = 10, 𝑑 = (1, 2, 3, −4, 5, 6, 7, −1, 1, 8)
𝑡, 𝑎 = (2, 2, 1,

5, −7, 3, −1, 4, 5)
𝑡, 𝑏 = (1, 5, −2, 1, 5, 2, 4, −3)

𝑡, 𝑐 = (0,

3, 2, 1, 2, 1, 2, 1, −2, 4)
𝑡, 𝑒 = (0, 0, 1, 3, 1, 5, 2, 2, 2, −1)

𝑡,
and 𝑦 = (8, 33, 8, 24, 29, 98, 99, 17, 57, 108)

𝑡.

(i) Applying the PTRANS-I algorithm, it yields

(a) 𝜇 = (1, −4, 2, −3/8, 27, 245/9, 3289/441,
−335/383,−2897/484, 3439/279)𝑡, and det(𝑃) =
∏
10

𝑖=1
𝜇
𝑖
= 4989610795975/4701708;

(b) PTRANS-I(𝑛, 𝑑, 𝑎, 𝑏, 𝑐, 𝑒, 𝑦) = (1, 2, 3, 4, 5, 6, 7,

8, 9, 10)
𝑡.

(ii) Applying the PTRANS-II algorithm, it yields

(a) 𝜓 = (−6213/3613, 1603/1405, 1487/433,
−5173/239, 383/156, 988/161, 69/11, −77/12,
−3/2, 8)

𝑡, and det(𝑃) = ∏
10

𝑖=1
𝜓
𝑖

=

557494642026514353/525327436055;
(b) PTRANS-II(𝑛, 𝑑, 𝑎, 𝑏, 𝑐, 𝑒, 𝑦) = (1, 2, 3, 4, 5, 6,

7, 8, 9, 10)
𝑡.

Example 2 (Case II: 𝜇
𝑖
= 0 and 𝜓

𝑖
= 0 for some 𝑖). Find the

solution of the following pentadiagonal linear system of size
4:

(

3 2 1 0

−3 −2 7 1

3 2 −1 5

0 1 2 3

)(

𝑥
1

𝑥
2

𝑥
3

𝑥
4

)=(

6

3

9

6

). (22)

Solution. We have

𝑛 = 4, 𝑑 = (3, −2, −1, 3)
𝑡, 𝑎 = (2, 7, 5)

𝑡, 𝑏 = (1, 1)
𝑡,

𝑐 = (0, −3, 2, 2)
𝑡,

𝑒 = (0, 0, 3, 1)
𝑡, and 𝑦 = (6, 3, 9, 6)

𝑡.

The numerical algorithms PTRANS-I and PTRANS-II
fail to solve the pentadiagonal linear system (22) since 𝜇

2
= 0.
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To find the solution of PLS (1) using the transformed system (14), we proceed as follows:
INPUT Order of the matrix 𝑛 and the components 𝑑

𝑖
, 𝑎
𝑖
, 𝑏
𝑖
, 𝑐
𝑖
, 𝑒
𝑖
, 𝑓
𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (𝑎

𝑛
= 𝑏
𝑛
= 𝑏
𝑛−1

= 𝑐
1
= 𝑒
1
= 𝑒
2
= 0).

OUTPUTThe solution vector𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑡.

Step 1. Use DETGPENTA algorithm [14] or DETGPENTA algorithm [16] to check the non-singularity of the coefficient matrix
of the system (1).

Step 2. If det(𝑃) = 0, then Exit and Print Message (“No solutions”) end if.
Step 3. Set 𝜓

𝑛
= 𝑑
𝑛
. If 𝜓
𝑛
= 0 then 𝜓

𝑛
= 𝑝 end if.

Step 4. 𝜎
𝑛
= 𝑐
𝑛
/𝜓
𝑛
, 𝜙
𝑛
= 𝑒
𝑛
/𝜓
𝑛
, 𝑤
𝑛
= 𝑦
𝑛
/𝜓
𝑛
and 𝜌

𝑛−1
= 𝑎
𝑛−1

.
Step 5. Set 𝜓

𝑛−1
= 𝑑
𝑛−1

− 𝜎
𝑛
𝜌
𝑛−1

. If 𝜓
𝑛−1

= 0 then 𝜓
𝑛−1

= 𝑝 end if.
Step 6. 𝜎

𝑛−1
= (𝑐
𝑛−1

− 𝜙
𝑛
𝜌
𝑛−1
)/𝜓
𝑛−1

, 𝜙
𝑛−1

= 𝑒
𝑛−1
/𝜓
𝑛−1

, and 𝑤
𝑛−1

= (𝑦
𝑛−1

− 𝑤
𝑛
𝜌
𝑛−1
)/𝜓
𝑛−1

.
Step 7. For 𝑖 = 𝑛 − 2, 𝑛 − 3, . . . , 3 do

Compute and simplify:
𝜌
𝑖
= 𝑎
𝑖
− 𝜎
𝑖+2
𝑏
𝑖
,

𝜓
𝑖
= 𝑑
𝑖
− 𝜙
𝑖+2
𝑏
𝑖
− 𝜎
𝑖+1
𝜌
𝑖
,

If 𝜓
𝑖
= 0 then 𝜓

𝑖
= 𝑝 end if.

𝜎
𝑖
=
𝑐
𝑖
− 𝜙
𝑖+1
𝜌
𝑖

𝜓
𝑖

,

𝜙
𝑖
=
𝑒
𝑖

𝜓
𝑖

,

𝑤
𝑖
=
𝑦
𝑖
− 𝑤
𝑖+2
𝑏
𝑖
− 𝑤
𝑖+1
𝜌
𝑖

𝜓
𝑖

,

End do.
𝜌
2
= 𝑎
2
− 𝜎
4
𝑏
2
,

𝜓
2
= 𝑑
2
− 𝜙
4
𝑏
2
− 𝜎
3
𝜌
2
. If 𝜓
2
= 0 then 𝜓

2
= 𝑝 end if.

𝜎
2
=
𝑐
2
− 𝜙
4
𝜌
2

𝜓
2

,

𝜌
1
= 𝑎
1
− 𝜎
3
𝑏
1
,

𝜓
1
= 𝑑
1
− 𝜙
3
𝑏
1
− 𝜎
2
𝜌
1
. If 𝜓
1
= 0 then 𝜓

𝑖
= 𝑝 end if.

𝑤
2
=
𝑦
2
− 𝑤
4
𝑏
2
− 𝑤
3
𝜌
2

𝜓
2

,

𝑤
1
=
𝑦
1
− 𝑤
3
𝑏
1
− 𝑤
2
𝜌
1

𝜓
1

,

Step 8. Compute the solution vector 𝑋 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑛
)
𝑡 using 𝑥 = 𝑤

1
, 𝑥
2
= 𝑤
2
− 𝜎
2
𝑥
1
.

For 𝑖 = 3, 4, ..., 𝑛 do
Compute and simplify:
𝑥
𝑖
= 𝑤
𝑖
− 𝜎
𝑖
𝑥
𝑖−1

− 𝜙
𝑖
𝑥
𝑖−2

End do.
Step 9. Substitute 𝑝 = 0 in all expressions of the solution vector 𝑥

𝑖
, 𝑖 = 1, 2, . . . , 𝑛.

Algorithm 4: Second symbolic algorithm for solving pentadiagonal linear system.

(i) Applying the SPTRANS-I algorithm, it yields

(a) 𝜇 = (3, 𝑝, −2, (8𝑝 − 21)/𝑝)
𝑡, det(𝑃) =

(∏
4

𝑖=1
𝜇
𝑖
)
𝑝=0

= 126;
(b) SPTRANS-I(𝑛, 𝑑, 𝑎, 𝑏, 𝑐, 𝑒, 𝑦) = (((25𝑝 − 42)/

(16𝑝− 42), −21/(8𝑝− 21), 21(𝑝− 2)/2(8𝑝− 21),
and (9𝑝 − 21)/(8𝑝 − 21))𝑡)

𝑝=0
= (1, 1, 1, 1)

𝑡.

(ii) Applying the SPTRANS-II algorithm, it yields

(a) 𝜓 = (21/4, −24/13, −13/3, 3)
𝑡, det(𝑃) =

∏
4

𝑖=1
𝜓
𝑖
= 126;

(b) SPTRANS-II(𝑛, 𝑑, 𝑎, 𝑏, 𝑐, 𝑒, 𝑦) = (1, 1, 1, 1)𝑡.

Example 3. We consider the following 𝑛 × 𝑛 pentadiagonal
linear system in order to demonstrate the efficiency of
Algorithms 3 and 4:

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

9 −4 1 0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0

−4 6 −4 1 0 0

1 −4 6 −4 1 0 0

0 1 −4 6 −4 1 d 0

.

.

. d d d d d d d
.
.
.

.

.

. d d d d d d d
.
.
.

.

.

. d d d d d d 0

.

.

. 0 1 −4 6 −4 1

.

.

. 0 1 −4 5 −2

0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1 −2 1

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)
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Table 1: Comparisons between our proposed algorithms and state-of-the-art algorithms in literature.

𝑛
‖x − 𝑥‖

∞
and CPU time (S)

PTRANS-I PTRANS-II Algorithm 3 [9] 𝐴 \ 𝑏 (MATLAB) SYMPENTAINV [7]
500 1.5856 × 10−7 0.0069 0 0.0086 6.8579 × 10−8 0.0048 9.98 × 10−8 0.0023 1.5881 × 10−7 0.3317
5000 8.3674 × 10−4 0.0062 0 0.0391 3.0253 × 10−4 0.0057 2.50 × 10−4 0.7548 8.3654 × 10−4 108.0919
10000 0.0058 0.0114 0 0.0511 0.0052 0.0101 0.0106 4.5464 0.0058 812.9783
50000 2.1415 0.0308 0 0.1687 7.9056 0.0119 0.0159 655.51 — —

⋅

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

𝑥
1

𝑥
2

𝑥
3

𝑥
4

.

.

.

.

.

.

.

.

.

𝑥
𝑛−2

𝑥
𝑛−1

𝑥
𝑛

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

=

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(

(

6

−1

0

0

.

.

.

.

.

.

.

.

.

0

0

0

)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)
)

)

.

(23)

Analytically, one can see that the exact solution of the
above system is x = (1, 1, . . . , 1)

𝑡. In Table 1, we give some
comparisons between our proposed algorithm and the state-
of-the-art algorithms in literature. Table 1 shows solutions
obtained by our proposed algorithms and other algorithms in
literature for different sizes. Our obtained results show that
our algorithm PTRANS-II gives better absolute error than
those algorithms used in comparisons for large values of 𝑛.
Moreover the obtained results indicate that the value of the
running time for Algorithm 3 [9] is small in comparisonwith
other algorithms for large sizes.

5. Conclusion

There aremany numerical algorithms that have been used for
solving linear systems of pentadiagonal type. All numerical
algorithms including the PTRANS-I and PTRANS-II algo-
rithms of the current paper fail to solve the pentadiagonal
linear system if 𝜇

𝑖
= 0 and 𝜓

𝑖
= 0 for any 𝑖 ∈ {1, 2, . . . , 𝑛}.

The symbolic algorithms SPTRANS-I and SPTRANS-II of
the current paper are constructed in order to remove the cases
where the numerical algorithms fail. Using numerical exam-
ples we have obtained that SPTRANS-II algorithm works
as well as Algorithm 3 [9] and (A\y) MATLAB algorithms.
Hence, it may become a useful tool for solving linear systems
of pentadiagonal type.
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