4,165 research outputs found

    A second derivative SQP method: theoretical issues

    Get PDF
    Sequential quadratic programming (SQP) methods form a class of highly efficient algorithms for solving nonlinearly constrained optimization problems. Although second derivative information may often be calculated, there is little practical theory that justifies exact-Hessian SQP methods. In particular, the resulting quadratic programming (QP) subproblems are often nonconvex, and thus finding their global solutions may be computationally nonviable. This paper presents a second-derivative SQP method based on quadratic subproblems that are either convex, and thus may be solved efficiently, or need not be solved globally. Additionally, an explicit descent-constraint is imposed on certain QP subproblems, which ā€œguidesā€ the iterates through areas in which nonconvexity is a concern. Global convergence of the resulting algorithm is established

    Nonconvex Generalization of ADMM for Nonlinear Equality Constrained Problems

    Full text link
    The ever-increasing demand for efficient and distributed optimization algorithms for large-scale data has led to the growing popularity of the Alternating Direction Method of Multipliers (ADMM). However, although the use of ADMM to solve linear equality constrained problems is well understood, we lacks a generic framework for solving problems with nonlinear equality constraints, which are common in practical applications (e.g., spherical constraints). To address this problem, we are proposing a new generic ADMM framework for handling nonlinear equality constraints, neADMM. After introducing the generalized problem formulation and the neADMM algorithm, the convergence properties of neADMM are discussed, along with its sublinear convergence rate o(1/k)o(1/k), where kk is the number of iterations. Next, two important applications of neADMM are considered and the paper concludes by describing extensive experiments on several synthetic and real-world datasets to demonstrate the convergence and effectiveness of neADMM compared to existing state-of-the-art methods

    A Primal-Dual Augmented Lagrangian

    Get PDF
    Nonlinearly constrained optimization problems can be solved by minimizing a sequence of simpler unconstrained or linearly constrained subproblems. In this paper, we discuss the formulation of subproblems in which the objective is a primal-dual generalization of the Hestenes-Powell augmented Lagrangian function. This generalization has the crucial feature that it is minimized with respect to both the primal and the dual variables simultaneously. A benefit of this approach is that the quality of the dual variables is monitored explicitly during the solution of the subproblem. Moreover, each subproblem may be regularized by imposing explicit bounds on the dual variables. Two primal-dual variants of conventional primal methods are proposed: a primal-dual bound constrained Lagrangian (pdBCL) method and a primal-dual ā„“\ell1 linearly constrained Lagrangian (pdā„“\ell1-LCL) method

    Sequential Convex Programming Methods for Solving Nonlinear Optimization Problems with DC constraints

    Full text link
    This paper investigates the relation between sequential convex programming (SCP) as, e.g., defined in [24] and DC (difference of two convex functions) programming. We first present an SCP algorithm for solving nonlinear optimization problems with DC constraints and prove its convergence. Then we combine the proposed algorithm with a relaxation technique to handle inconsistent linearizations. Numerical tests are performed to investigate the behaviour of the class of algorithms.Comment: 18 pages, 1 figur

    A Method to Guarantee Local Convergence for Sequential Quadratic Programming with Poor Hessian Approximation

    Full text link
    Sequential Quadratic Programming (SQP) is a powerful class of algorithms for solving nonlinear optimization problems. Local convergence of SQP algorithms is guaranteed when the Hessian approximation used in each Quadratic Programming subproblem is close to the true Hessian. However, a good Hessian approximation can be expensive to compute. Low cost Hessian approximations only guarantee local convergence under some assumptions, which are not always satisfied in practice. To address this problem, this paper proposes a simple method to guarantee local convergence for SQP with poor Hessian approximation. The effectiveness of the proposed algorithm is demonstrated in a numerical example

    A Parallel Riccati Factorization Algorithm with Applications to Model Predictive Control

    Full text link
    Model Predictive Control (MPC) is increasing in popularity in industry as more efficient algorithms for solving the related optimization problem are developed. The main computational bottle-neck in on-line MPC is often the computation of the search step direction, i.e. the Newton step, which is often done using generic sparsity exploiting algorithms or Riccati recursions. However, as parallel hardware is becoming increasingly popular the demand for efficient parallel algorithms for solving the Newton step is increasing. In this paper a tailored, non-iterative parallel algorithm for computing the Riccati factorization is presented. The algorithm exploits the special structure in the MPC problem, and when sufficiently many processing units are available, the complexity of the algorithm scales logarithmically in the prediction horizon. Computing the Newton step is the main computational bottle-neck in many MPC algorithms and the algorithm can significantly reduce the computation cost for popular state-of-the-art MPC algorithms

    A decomposition procedure based on approximate newton directions

    Get PDF
    The efficient solution of large-scale linear and nonlinear optimization problems may require exploiting any special structure in them in an efficient manner. We describe and analyze some cases in which this special structure can be used with very little cost to obtain search directions from decomposed subproblems. We also study how to correct these directions using (decomposable) preconditioned conjugate gradient methods to ensure local convergence in all cases. The choice of appropriate preconditioners results in a natural manner from the structure in the problem. Finally, we conduct computational experiments to compare the resulting procedures with direct methods, as well as to study the impact of different preconditioner choices

    A DECOMPOSITION PROCEDURE BASED ON APPROXIMATE NEWTON DIRECTIONS

    Get PDF
    The efficient solution of large-scale linear and nonlinear optimization problems may require exploiting any special structure in them in an efficient manner. We describe and analyze some cases in which this special structure can be used with very little cost to obtain search directions from decomposed subproblems. We also study how to correct these directions using (decomposable) preconditioned conjugate gradient methods to ensure local convergence in all cases. The choice of appropriate preconditioners results in a natural manner from the structure in the problem. Finally, we conduct computational experiments to compare the resulting procedures with direct methods, as well as to study the impact of different preconditioner choices.

    Optimization by nonhierarchical asynchronous decomposition

    Get PDF
    Large scale optimization problems are tractable only if they are somehow decomposed. Hierarchical decompositions are inappropriate for some types of problems and do not parallelize well. Sobieszczanski-Sobieski has proposed a nonhierarchical decomposition strategy for nonlinear constrained optimization that is naturally parallel. Despite some successes on engineering problems, the algorithm as originally proposed fails on simple two dimensional quadratic programs. The algorithm is carefully analyzed for quadratic programs, and a number of modifications are suggested to improve its robustness
    • ā€¦
    corecore