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ABSTRACT

The efficient solution of large-scale linear and nonlinear optimization
problems may require exploiting any special structure in them in an effi-
cient manner. We describe and analyze some cases in which this special
structure can be used with very little cost to obtain search directions
from decomposed subproblems. We also study how to correct these di-
rections using (decomposable) preconditioned conjugate gradient meth-
ods to ensure local convergence in all cases. The choice of appropriate
preconditioners results in a natural manner from the structure in the
problem. Finally, we conduct computational experiments to compare
the resulting procedures with direct methods, as well as to study the
impact of different preconditioner choices.

AMS: 90C26, 90C30, 49M27

1 Introduction

Traditionally, the optimization literature has been interested in studying and developing procedures that
solve optimization problems by treating small parts of these problems separately. The growth in the size
and complexity of optimization models during the past years, and the increasing availability of hardware
and software for distributed computation, has led to an expansion of this interest. These procedures
should be able to exploit any special structures that may be present in the original model, such as
network constraints, integer and continuous variables, dynamic dependencies, etc. Even in those cases
where no special structure is present, decomposition techniques may allow the efficient use of distributed
computation resources for the solution of very large problems.

Many different decomposition techniques have been proposed during the past forty years. Early
proposals were based on linear programming and theoretical results from convex analysis, such as the
well-known Dantzig-Wolfe decomposition [11] and its dual variant, Benders decomposition [3]. Another
frequently used technique is the Lagrangian Relaxation procedure [16, 22, 25], based on convex analysis
theory; it is related to the preceding ones in the sense that it becomes equivalent to the Dantzig-Wolfe
decomposition for linear problems if the cutting plane method [4] is used to update the multipliers. The
Lagrangian Relaxation technique requires the use of nondifferentiable optimization procedures to max-
imize the dual function, and this may lead to slow and oscillatory convergence. Relaxation techniques
based on Augmented Lagrangian functions [10, 5] attempt to address these difficulties and allow for ex-
tensions to nonconvex cases by combining penalization methods with local duality theory. The additional
penalization terms may not have the separability properties of Lagrangian Relaxation transformations;
therefore, additional problem manipulations are required to enforce these properties, such as for example
those proposed by [29, 23, 24].

In some cases, the procedures based on relaxation techniques may present drawbacks: difficulties to
converge to an optimal solution (in the absence of convexity assumptions), and convergence rates that are
very sensitive to the choice of values for the parameters [25, 19]. Moreover, these techniques may require
the computation of a very precise solution of the subproblems resulting from each set of values of the
parameters in each iteration. As a consequence, the computational effort may be quite high, particularly
for large-scale problems.
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There exist many other decomposition techniques that take the structure of the problem into account
to specialize classical optimization procedures, such as for example those of [6, 9, 8]. These techniques
achieve a high level of efficiency, at the price of being strongly dependent on the particular form of the
problem.

Our area of interest is the application of decomposition techniques to the solution of large-scale
nonlinear, and possibly nonconvex, problems with special structure. The recent development of interior-
point techniques for the solution of linear and quadratic problems has implied that these problems can
be efficiently solved by transforming them into nonlinear (although generally convex) problems. In this
sense, the methods that we will describe should be useful for the solution of general (linear and nonlinear)
continuous optimization problems with special structure.

In this paper we will assume that this special structure will fit one of the two following patterns:

• Complicating constraints. Problems with complicating constraints arise frequently in numerous
applications, including multicommodity network flows (in scheduling and transportation models),
allocation of scarce resources among competing activities [1], design and management of water
supply systems and electric power network analysis [31], logistics, econometric data fitting and
statistics [2], etc. These models can be written in the general form

minimize f(x1, . . . , xN ) (1)
subject to h0(x1, . . . , xN ) ≤ 0 (2)

cj(xj) ≤ 0 j = 1, . . . , N, (3)

where the constraints (2) are referred to as complicating constraints; if they were removed, the
resulting problem would be separable.

• Complicating variables. Problems with complicating variables appear in scenario analysis and
stochastic optimization [26], financial planning under uncertainty [21] and structural optimization,
among others. The corresponding models can be written as

minimize f(x0, x1, . . . , xN ) (4)
subject to hj(x0, xj) ≤ 0 j = 1, . . . , N (5)

c0(x0) ≤ 0, (6)

where the variables x0 in (4)-(6) are referred to as complicating variables; if they were fixed to
constant values, the resulting problem would be separable.

In both cases xj ∈ Rnj , and f and each hj , cj are smooth functions for j = 0, . . . , N , with f : Rn → R,
hj : Rn → Rmhj and cj : Rnj → Rmcj , where n =

∑
j nj .

Standard optimization techniques for the solution of the preceding problems use variants of Newton’s
method to find solutions of the system of nonlinear equations that defines the first-order conditions for
the corresponding problem. These methods solve in each iteration a system of linear equations (the KKT
system) with a coefficient matrix defined in terms of the first and second derivatives of the functions in
the problem. The proposals presented in this paper will depend crucially on the observation that the
special structures described above are also apparent both in the derivatives of the functions and in the
coefficient matrices of the resulting linear systems.

The decomposition method we propose is related to Lagrangian decomposition techniques in that
it solves decomposed subproblems obtained after fixing some of the primal and dual variables in the
Lagrangian function. Nevertheless, the updating rules for these fixed variables differ from those standard
in Lagrangian decomposition methods. Alternatively, the proposed method can be seen as being based
on exploiting the problem structure present in the KKT systems in an efficient manner to approximate
them by separable linear systems. In this sense, it is related to the many proposals in the literature for
the distributed solution of linear systems of equations, see for example [27]. The proposed techniques are
also adapted to the fact that we wish to solve a sequence of related linear systems, one for each iterate.
We do not need a very precise solution for each one of these systems, as a sufficient approximation
to Newton’s direction is enough to ensure reasonable convergence properties in the algorithm. In this
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regard, the proposed procedure is also related to optimization methods based on the inexact solution of
the subproblems, see for example [12].

The resulting decomposition methodology is simple, having very few parameters to consider, efficient
and very well suited for its implementation in a distributed computation environment. It is also very
general, as it is able to handle both complicating constraints and complicating variables in a similar
manner. On the other hand, the approximations introduced to decompose the problem imply that
the superlinear rate of convergence of a pure Newton approach will in general become a linear rate of
convergence for the decomposition algorithms. This reduction in the convergence rate is often in practice
more than offset by the computational gains achieved through the solution of the smaller problems
obtained from the decomposition. The linear rate of convergence can be improved using a preconditioned
conjugate gradient (PGC) method [18, 17] for the solution of the linear systems of equations. In particular,
we will use a generalized minimal residual (GMRES) procedure [28, 18], as the coefficient matrix of the
system of equations will not be positive definite in general.

The remaining of this paper is organized as follows: In Section 2 we will motivate the proposed
procedure as a modified Lagrangian relaxation technique. Section 3 describes the proposed procedure
and studies its local convergence properties. In Section 4 we present different preconditioner choices for the
proposed algorithm. We also describe in Section 5 practical implementation details and computational
results from the application of this procedure to the solution of both nonlinear and linear problems.
Finally, Section 6 states some conclusions.

2 A modified Lagrangian relaxation procedure

In this section we try to motivate the proposed procedure, by considering a particular implementation
of Lagrangian relaxation for the complicating constraints case, (1)-(3). In Section 3 we will show that
this implementation is a particular case of the more general decomposition procedure we describe in this
paper.

To simplify our discussion, we consider the case in which we have only two groups of variables (N = 2)
and additionally all constraints are equality ones. The simplified problem will have the form

minimize f(x1, x2) (7)
subject to h1(x1, x2) = 0 (8)

h2(x1, x2) = 0 (9)
cj(xj) = 0 j = 1, 2, (10)

where we have introduced some partition of the constraints h0 into h1 and h2.
The basic Lagrangian procedure applied to this problem considers the auxiliary problem

minimize f(x1, x2)− λ̄T
1 h1(x1, x2)− λ̄T

2 h2(x1, x2) (11)
subject to cj(xj) = 0 j = 1, 2, (12)

defined in terms of multiplier estimates λ̄1 and λ̄2. Problem (11)-(12) can be solved by fixing the values
of some of the variables (x̄2 and x̄1) to obtain the subproblems

minimize f(x1, x̄2)− λ̄T
1 h1(x1, x̄2) (13)

subject to c1(x1) = 0,

and

minimize f(x̄1, x2)− λ̄T
2 h2(x̄1, x2) (14)

subject to c2(x2) = 0.

Once the solutions for these subproblems have been computed, the multipliers of the complicating con-
straints can be updated, using for example a subgradient technique,

(λ̄1)k+1 = (λ̄1)k − αh1(x1, x2), (λ̄2)k+1 = (λ̄2)k − αh2(x1, x2). (15)
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Note that the convergence of the procedure requires that the solutions for the subproblems should be
computed up to a certain degree of accuracy.

The procedure proposed in this paper follows a similar approach when applied to problem (7)-(10).
As in the preceding case, to decompose problem (11)-(12) we require some separable approximation for
both f , h1 and h2. We also fix some of the variables in these functions to their last computed values, to
obtain

minimize f(x1, x̄2)− λ̄T
2 h2(x1, x̄2)

subject to h1(x1, x̄2) = 0 (16)
c1(x1) = 0,

and

minimize f(x̄1, x2)− λ̄T
1 h1(x̄1, x2)

subject to h2(x̄1, x2) = 0 (17)
c2(x2) = 0,

where x̄1 and x̄2 denote the values of the corresponding variables at the last iterate. To reduce the
computational cost, we perform a single iteration for each subproblem before updating the parameters
x̄1 and x̄2.

This procedure is not very different from a standard Lagrangian approach, except for performing a
single iteration for each subproblem, but it presents one significant advantage: it provides efficient infor-
mation to update the multiplier estimates λ̄1 and λ̄2. The multipliers corresponding to the subproblem
constraints (16) and (17), ∆λ1 and ∆λ2, have the property that, if the values of x̄1 and x̄2 would be the
optimal ones, the best values for λ1 and λ2 would be given by λ̄1 + ∆λ1 and λ̄2 + ∆λ2. These updated
values can be used for the next iteration.

The resulting procedure is very simple to implement, uses few easily updated parameters and does work
well in practice for certain classes of problems (see Section 5.2). As a consequence, it seems reasonable
to study conditions under which this simplified Lagrangian decomposition scheme would converge. In
the following sections we will present a decomposition scheme that generalizes the procedure described
above to solve different classes of problems, and we analyze its convergence properties.

3 Proposed algorithm

The algorithm we briefly described in the preceding section uses specific procedures to update the values
of the variables and multipliers from one iteration to the next. In this section we wish to expand this
procedure into a more general decomposition algorithm that is efficient to implement and requires as few
parameters as possible, while preserving the basic schemes introduced in the preceding section, that is,
to approximate the functions in the problem by fixing some of the variables to attain separability.

To simplify our presentation, the description of this algorithm will be based on the complicating
constraints model (1)-(3). At the end of the section we will indicate how to extend the corresponding
results to the complicating variables model (4)-(6).

We will assume that problem (1)-(3) will be solved using interior-point techniques. These procedures
simplify the description of the algorithm by transforming the problem into an equality constrained one;
they are also computationally very efficient, particularly for large-scale problems. Thus, the optimization
problem will be solved through a sequence of barrier problems in which the inequality constraints have
been rewritten as equalities using slack variables, and the bounds on the variables have been removed via
the addition of barrier terms to the objective function. For a description of the use of these techniques
in the general nonconvex case see for example [32, 13, 33, 14].

The resulting model, to be used as our reference in the description of the decomposition procedure,
will have the general form

minimize f(x1, . . . , xN ;µ) (18)
subject to h(x1, . . . , xN ) = 0 (19)

cj(xj) = 0 j = 1, . . . , N, (20)
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where we assume xj ∈ Rnj , f : Rn → R, h : Rn → Rmh , cj : Rnj → Rmcj , n =
∑

j nj . The function f
includes the barrier terms corresponding to the bounds on the variables, and µ denotes the corresponding
barrier parameter. These terms are not relevant for the description of the decomposition procedure, as
in the barrier terms we take into account only simple bounds on the variables (all other constraints are
transformed into equalities), and the resulting terms are trivially separable.

An implicit assumption for decomposition procedures is that the number of complicating constraints
is not very large, that is, mh �

∑
j mcj . The description of the algorithm does not require that this

condition holds, but the efficiency of our procedure will depend on these values, as we will discuss in
Section 5.1.

In this paper we are mostly interested in the analysis of the local convergence of the proposed de-
composition procedure. As a consequence, the algorithm introduced in this section will not consider
mechanisms to ensure global convergence, such as line searches or trust regions. The scheme of this basic
algorithm is presented in Figure 1, where the values σj and λ will denote the multiplier estimates for
the constraints cj(xj) = 0 and h(x) = 0, respectively. We will denote by x the vector of all (primal)
variables, x =

(
xT

1 . . . xT
N

)T , while σ denotes the vector σ =
(

σT
1 . . . σT

N

)T . In Figure 1, the
positive constant ε represents a termination tolerance and the function L denotes the Lagrangian function
of problem (18)-(20).

Choose initial values x0, σ0 and λ0

Let k ← 0
while ‖∇L(xk, σk, λk)‖+

∑
j ‖cj(xjk

)‖+ ‖h(xk)‖ > ε
Compute a search direction ∆k for variables and multipliers, (Inner

iteration)

∆k =

 ∆xk

∆σk

∆λk


Update xk+1 ← xk + ∆xk

Update σk+1 ← σk + ∆σk

Update λk+1 ← λk + ∆λk

k ← k + 1
end while

Figure 1: Basic algorithm

No explicit procedure is given for the update of the barrier parameter µ. We will assume that any of
the procedures proposed in the literature, see [32, 13] for example, is used to update this parameter. In
this sense, we will be mostly concerned with the (local) convergence of the procedure for a fixed value of
µ.

The decomposition procedure depends crucially on the definition of the inner iteration, that is, the
procedure to compute the search direction ∆k. Our method of reference for this inner iteration is Newton’s
method; in this setting, in each outer iteration k the search direction is computed by solving the following
system of linear equations: ∇2L(x, σ, λ) ∇cT (x) ∇hT (x)

∇c(x) 0 0
∇h(x) 0 0

  ∆x
−∆σ
−∆λ

 = −

 ∇L(x, σ, λ)
c(x)
h(x)

 , (21)

where

∇c(x) =

 ∇c1(x)
. . .

∇cN (x)

 , (22)

and all quantities are evaluated at the current iterate (the subscript k corresponding to the iteration has
been omitted to simplify the notation).
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Observe that, within an interior point framework, this representation would correspond to a primal
approach. Primal-dual approaches are considered to be more efficient than primal ones, but for a primal-
dual approach the resulting linear system would be equivalent to (21), after simplifying the update for
the dual variables. Both systems would only differ in the diagonal terms for the first block of coefficients.
Again, this does not affect the decomposition procedure and we will ignore these details in the description
of the inner iteration.

In Section 2 we introduced an approach for solving problems of this kind, based on Lagrangian
relaxation. That procedure proceeded by fixing the values of some of the variables to obtain decomposable
subproblems, and then used the solutions of these subproblems to update the fixed variables. This
approach is equivalent to replacing the Newton system of linear equations for problem (18)-(20) by
a separable system that approximates it. In particular, fixing variables in the Lagrangian relaxation
approach is equivalent to approximating the matrix ∇2L in (21) by a block diagonal matrix, while the
matrix ∇h is replaced by a matrix having separable blocks.

To generalize this approach, note that the special structure in the original problem appears also in
the constraints, in the sense that the linear system would be separable if two conditions were met: i) the
constraints h(x) = 0 would be separable (would have a separable Jacobian matrix) or would not exist;
and ii) the matrix ∇2L would be separable, that is, it would be block diagonal with blocks corresponding
to the different groups of variables; this would be the case if both f and h are separable. In general, these
conditions are not satisfied, although in many practical cases the departures from them are not large.
The proposed method replaces (21) with a related and separable system, of the form H ∇cT (x) AT

∇c(x) 0 0
A 0 0

  ∆x
−∆σ
−∆λ

 = −

 ∇L(x, σ, λ)
c(x)
h(x)

 , (23)

where H and A are approximations to the Hessian matrix ∇2L and the Jacobian ∇h, respectively, having
the property of being separable in the variables xj . We will use the abbreviated notation K∆N = −g for
system (21), and K̄∆m = −g for the modified system (23).

The matrices H and A can be obtained by setting to zero a sufficient number of elements in the pre-
ceding matrices to ensure separability. For example, the terms in ∇2L corresponding to cross derivatives
for variables belonging to different blocks could be replaced by zeros, while the constraints in ∇h could
be divided into groups associated with each block of variables; the nonzero coefficients in each set of
constraints not associated with the corresponding block of variables could then be set to zero. This is
very similar to the approach used in Section 2, where the zeros were introduced by fixing the values of
some of the variables in the subproblems.

We now analyze sufficient conditions (on the search directions) to guarantee the local convergence of
the method shown in Figure 1.

3.1 A simple inner iteration

If system (21) is solved exactly to compute ∆N , we have the standard Newton algorithm, that has assured
local convergence under certain assumptions on the problem. As system (21) is not separable, we will
not use this approach. Alternatively, consider a simplified inner iteration where at iteration k we define

∆k ≡ ∆m,k = −K̄−1
k gk. (24)

In some cases ∆m may be close enough to ∆N to preserve some of the local convergence properties
of Newton’s method. This will happen if K̄k is sufficiently close in some sense to Kk, that is, if the
modification required in the system to make it separable is small. In these cases the problem can be
directly decomposed by ignoring some of the elements in ∇2L and ∇h in the computation of the search
directions, without taking any additional correction steps and without losing local convergence. We
now give a result based on classical results from the theory of iterative methods for linear systems of
equations, see for example [30], that provides sufficient conditions to ensure local convergence in this
simplified setting.

For the remainder of this section, we will assume that problem (18)-(20) satisfies the following hy-
potheses: For a given second-order KKT point of problem (18)-(20), y∗ = (x∗, σ∗, λ∗), it holds that:
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A.1 The functions f , cj , h have Lipschitz-continuous second derivatives in an open set containing y∗.

A.2 The Jacobian of the constraints,
(
∇cT

1 (x1) . . . ∇cT
N (xN ) ∇hT (x)

)T , has full row rank at y∗.

A.3 The sufficient second-order optimality conditions for problem (18)-(20) are satisfied at y∗.

We will also require the approximations K̄k to satisfy the following condition:

C.1 The matrices K̄k are nonsingular for any yk, and the sequence {K̄k}k converges to a nonsingular
matrix K̄∗ as yk → y∗.

This condition is imposed to ensure that the solution of the system (24) should be well defined at all
iterations, and its behavior should be reasonable near the solution. Any factorization approach that
controls the ill-conditioning in the system should ensure its satisfaction.

In the following theorem K∗ denotes the matrix K evaluated at y∗, and for any given matrix A, ρ(A)
denotes its spectral radius.

Theorem 1 Under assumptions A.1 to A.3 and condition C.1, if at the second-order KKT point y∗ it
holds that

ρ∗ = ρ
(
I − (K̄∗)−1K∗) < 1, (25)

then the procedure using (24) converges locally to y∗ with linear rate at least equal to ρ∗.

Proof. Let yk be an iterate that is sufficiently close to y∗ so that assumption A.1 holds and Kk is
nonsingular. This last property follows from the assumptions.

From the corresponding Taylor series expansion,

gk = g∗ + K∗(yk − y∗) + o(‖yk − y∗‖),

where g∗ = 0. Also, by definition in the algorithm yk+1 = yk + ∆k and ∆k = −K̄−1
k gk. Consequently,

yk+1 − y∗ = yk + ∆k − y∗ = (I − K̄−1K∗)(yk − y∗) + o(‖yk − y∗‖)

and taking norms
‖yk+1 − y∗‖ ≤ ‖I − K̄−1

k K∗‖‖yk − y∗‖+ o(‖yk − y∗‖).

This result together with the condition on the spectral radius implies that the sequence {yk−y∗} converges
to zero. Dividing by ‖yk − y∗‖ and taking limits, the result on the rate of convergence follows. �

A consequence of this result is that certain problems, even if they are not directly separable, can be
solved efficiently by computing a search direction from a separable system of equations (the one defined by
K̄). In particular, the proposed method based on the Lagrangian relaxation technique that we described
in Section 2 would fit this framework and would be locally convergent under the conditions of Theorem
1.

Note that the convergence criterion in Theorem 1, ρ∗ < 1, is the classical condition for the convergence
of iterative methods for the solution of systems of linear equations, such as iterative refinement, Jacobi
or Gauss-Seidel. It is not easy in general to check in advance if this condition will hold for a given
problem. But the convergence condition of the decomposition algorithm and that for the convergence
of the iterative refinement method are the same, and this fact would provide a simple way to check the
convergence condition at a given iteration as the algorithm progresses. If iterative refinement generates
convergent iterates for the KKT system at a sequence of iterations of the decomposition procedure, then
the full algorithm should also converge.

3.2 A locally convergent algorithm

Our next step will be to develop a decomposition algorithm that is locally convergent, independently of
any conditions on the approximating matrix K̄k. To attain this goal we will use a modification of the
simple inner iteration proposed above, based on adding correction steps to the direction ∆m,k.

To compute ∆m,k we need some factorization of the matrix K̄k, and this is a computationally expensive
procedure. It would seem reasonable to obtain these correction steps through procedures that do not
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require any additional factorizations. A simple way to do this is to apply an appropriate version of the
preconditioned conjugate gradient (PCG) method (see [18]) to system (21), as the solution of this system
has the desired local convergence properties. A natural choice for the preconditioner is the matrix K̄k,
whose factors would be already available. As the matrix K is not positive definite (except perhaps in the
unconstrained convex case), we have chosen to use GMRES (see [28]), a variant of the PCG procedure
that does not impose any condition on the coefficient matrix of the system.

In each (outer) iteration k, the movement direction ∆k is defined from the inner iteration indicated
in Figure 2. In this inner iteration tk denotes a positive termination tolerance to be specified later on; for

Solve K̄k ∆m,k = −gk

Let ∆̃0 ← ∆m,k and i← 0
while ‖Kk ∆̃i + gk‖ > tk‖gk‖

Apply one iteration of GMRES using K̄k as preconditioner
to compute ∆̃i+1

i← i + 1
end while
∆k ← ∆̃i

Figure 2: Inner iteration

the convergence analysis we only require 0 < tk ≤ t̄ < 1 for all k and some constant t̄. Note that, within
the inner iteration, all systems of equations have K̄ as their coefficient matrix; in consequence they can
be solved in a distributed manner.

The termination condition for the inner iteration is given in terms of the residuals of the system
of Newton equations. This criterion has been chosen as it is easy to implement, it enforces the local
convergence of the overall procedure, as we will see below, and it is efficient in practice. We now study
the local convergence of the modified method. Note first that, as GMRES solves the system of equations
Kk∆k = −gk, from the convergence of GMRES, the termination condition for the inner iteration is
satisfied in a finite number of (inner) iterations.

We now establish that, close to a second-order KKT point y∗ for problem (18)-(20), the method is
locally convergent. As a first step, we start by relating the sizes of gk and ∆k.

Lemma 1 Under assumptions A.1 to A.3, if yk is close enough to y∗, then there exist constants r1 and
r2 such that

‖gk‖ ≤ r1‖∆k‖, ‖gk‖ ≥ r2‖∆k‖.

Also, there exists a constant r3 such that

‖∆k‖ ≤ r3‖yk − y∗‖.

Proof. From the termination condition we must have

‖gk + Kk ∆k‖ ≤ tk‖gk‖. (26)

Also, from assumption A.1 it will hold that ‖Kk‖ ≤ r̄ for some constant r̄ and all yk close enough to y∗.
Consequently, we will have that

tk‖gk‖ ≥ ‖gk‖ − r̄‖∆k‖ ⇒ ‖gk‖ ≤
r̄

1− t̄
‖∆k‖.

From assumptions A.1 to A.3 and condition C.1 it must follow that, for all yk close enough to y∗, the
smallest singular value of Kk is bounded away from zero. Let r̃ > 0 be such a bound. Then

‖gk + Kk ∆k‖ ≥ ‖Kk ∆k‖ − ‖gk‖ ≥ r̃‖∆k‖ − ‖gk‖,

and from (26),
(1 + t̄)‖gk‖ ≥ r̃‖∆k‖,
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implying the second inequality.
Finally, from this second inequality and

gk = g∗ + O(‖yk − y∗‖) = O(‖yk − y∗‖),

we obtain the third inequality. �
We are now ready to prove a local convergence result for this algorithm.

Theorem 2 Under assumptions A.1 to A.3 and condition C.1, the sequence {yk} generated using the
algorithm in Figure 2 converges locally to y∗ with linear rate of convergence no larger than t̄.

Proof. If yk is close enough to y∗, from Lemma 1 and assumption A.1

gk+1 = gk + Kk(yk+1 − yk) + o(‖yk+1 − yk‖) = gk + Kk∆k + o(‖∆k‖).

Taking norms and using the termination condition for the inner iteration (26) and Lemma 1,

‖gk+1‖ ≤ ‖gk + Kk ∆k‖+ o(‖gk‖) ≤ tk‖gk‖+ o(‖gk‖).

From this inequality it follows that gk → 0, and from Lemma 1 this implies yk → y∗. Dividing by
‖gk‖ and taking limits it follows from Lemma 1 that the rate of convergence is at least equal to t̄. �

From this result, the choice of tk should offer a compromise between the rate of convergence of the
algorithm, and consequently the number of outer iterations required for convergence, and the compu-
tational cost of each outer iteration. In section 5.1 additional information will be provided on how to
choose tk from a practical point of view.

3.3 The complicating variables case

The preceding paragraphs have analyzed problems with complicating constraints. We consider now the
complicating variables case (4)-(6) in a similar manner. If we apply a barrier approach to the solution of
this problem, we obtain the resulting model

minimize f(x0, x1, . . . , xN ;µ) (27)
subject to hj(x0, xj) = 0 j = 1, . . . , N (28)

c0(x0) = 0, (29)

where the objective function includes the relevant barrier terms. If we apply Newton’s method, the
corresponding KKT system of equations (at a given iteration) would have the form ∇2L(x, σ, λ) ∇hT (x) ∇cT

0 (x0)
∇h(x) 0 0
∇c0(x0) 0 0

  ∆x
−∆σ
−∆λ

 = −

 ∇L(x, σ, λ)
h(x)

c0(x0)

 , (30)

where now x =
(

xT
0 xT

1 · · · xT
N

)T , σj denotes the multiplier for hj(x0, xj), σ =
(

σT
1 · · · σT

N

)T ,
λ is the multiplier for c0(x0) = 0 and

∇h(x) =

 ∇x0h1 ∇x1h1

...
. . .

∇x0hN ∇xN
hN (x)

 .

The procedures described for problem (18)-(20), and in particular the construction of the approximate
system (23), can be applied in the same manner to approximate this KKT system, to obtain H AT ∇cT

0 (x0)
A 0 0

∇c0(x0) 0 0

  ∆x
−∆σ
−∆λ

 = −

 ∇L(x, σ, λ)
h(x)

c0(x0)

 , (31)

for some approximations H and A to∇2L and∇h respectively. These approximations should be separable
in the variables x0, x1, . . . , xN . For example, the blocks that correspond to the variables x0 in ∇h could
be made equal to zero (if that would not imply a loss of rank), as well as the blocks in ∇2L associated
with cross derivatives for x0 and xi with i 6= 0. The algorithms described in Figures 1 and 2 could be
applied with only the obvious modifications to adapt them to (30) and (31).
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4 Preconditioning

The efficiency of the procedures described in Section 3 depends crucially on an appropriate choice of the
preconditioner K̄k for the KKT system in each iteration of the proposed method. More specifically, the
convergence of the procedure in Figure 2 will depend on the proximity of K̄−1

k Kk to the identity matrix
I. If we write

K̄−1
k Kk = I + Bk, (32)

then we have two criteria to select a good preconditioner in terms of the properties of the matrix Bk in
(32).

• The matrix Bk has a small spectral radius. From Theorem 1 convergence would follow if σmax(Bk) <
1, where σmax(Bk) denotes the largest singular value of Bk. The rate of local convergence would
depend on the magnitude of this value, that is, it would be faster as σmax(Bk) becomes smaller.

• The matrix Bk is a perturbation matrix of small rank. If exact arithmetic is used, the number
of inner (GMRES) iterations required to find the exact solution of the system of linear equations
(the Newton direction) is at most r = rank(Bk) + 1, see [17] for example; more precisely, it is at
most equal to the number of different singular values of Bk. In practice, if these singular values are
clustered in a small number of groups (for example, if many of them are equal to zero) then the
preconditioned GMRES procedure would behave efficiently. This is the case for example if only a
few of the rows and columns of Kk are modified to obtain K̄k.

Note also that the preconditioner must satisfy condition C.1, and in particular it must be a full-rank
matrix.

Based on these remarks, we now present several preconditioner choices for the algorithm in Figure 2.
All these choices are based on replacing some of the entries in the KKT matrix, Kk, by zeros. If these
entries are chosen appropriately, the resulting system can be trivially decomposed.

1. The complicating constraints can be decomposed by introducing zeros in ∇h to obtain a separable
matrix. For example, by partitioning h into two subsets of constraints h1 and h2, we could define
the matrix A in (23) as (again assuming N = 2 for simplicity)

A =
(
∇x1h1 0

0 ∇x2h2

)
.

If this can be done without reducing the rank of A below that of ∇h, then the matrix K̄−1
k Kk has

at most 2mh eigenvalues different from one, and the rest of eigenvalues are equal to 1. The rank of
matrix Bk in (32) is 2mh.

We have found that this procedure works reasonably well for problems with complicating con-
straints, but it usually leads to reduced-rank preconditioner matrices in problems with complicating
variables.

2. An alternative approach that complements the preceding one if there are difficulties with the rank
of the preconditioner, proceeds by replicating the complicating constraints (19) N times, if the
resulting number of equations would not exceed the number of variables. The KKT matrix, Kk,
would have the form (we assume N = 2 for simplicity)(

∇2L̃ ∇T h̃

∇h̃ 0

)
,

where

∇2L̃ =
(
∇2L ∇cT (x)
∇c(x) 0

)
and

∇h̃ =
(
∇x1h ∇x2h 0
∇x1h ∇x2h 0

)
.
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The right-hand side would be replicated in a similar manner. The preconditioner, K̄, would have
the form

K̄ =
(

H̃ ÃT

Ã 0

)
,

where

Ã =
(

A1 0 0
0 A2 0

)
,

and H̃, A1 and A2 are approximations to the Hessian ∇2L̃ and the Jacobians ∇x1h and ∇x2h,
respectively. It is important to select these matrices, A1 and A2, in such a way that the resulting
preconditioner matrix K̄ has full rank. Observe that the KKT matrix Kk is singular, but the system
is compatible.

If H̃, A1 and A2 can be chosen to coincide exactly with the previous Hessian and Jacobian matrices,
the matrix K̄−1

k Kk would have 2mh eigenvalues equal to zero, 2mh eigenvalues equal to 2, and the
remaining eigenvalues are equal to one. The resulting matrix Bk in (32) has rank 4mh.

This approach seems to work well in practice in problems with complicating variables, but is less
adequate for problems with complicating constraints, as we will comment in Section 5.

3. We may consider other preconditioners based on the structure of the problem. Note though that
it is not easy to construct simple (and efficient) preconditioners, as the KKT matrix, Kk, is not
positive definite and in particular has a block of zeros in the diagonal. Nevertheless, this block of
zeros can be handled via the Schur complement, for example. We now describe a preconditioner
based on that of [8] that is based on this remark. We will use the notation K∆N = −g to represent
(21). To solve this system we can compute the Schur complement of K with respect to its zero
blocks. If the constraints are ordered so that the complicating constraints are the last ones, the
resulting Schur complement has the form

S =
(
∇c(x)
∇h(x)

)
∇2L(x, σ, λ)−1

(
∇c(x)T ∇h(x)T

)
=

(
B CT

C D

)
where the matrix B = ∇c ∇2L−1 ∇cT inherits the special structure of the original problem, at
least if the objective function is separable. Using this property, the Schur complement of S with
respect to D could be computed in a reasonably efficient manner; this new Schur complement is
typically dense and a diagonal (or polynomial) preconditioner is used to approximate it. See [8] for
additional details.

5 Numerical results

In this section we describe the implemented versions of the algorithm, and present numerical results
obtained by applying several variants of the proposed decomposition algorithm to a set of test problems.

5.1 Practical implementation

Several versions of the algorithm (using different preconditioners K̄) have been implemented in Matlab
to test its behavior on linear and nonlinear problems with special structure. The implementation is based
on the description in Figures 1 and 2, but it includes a few additional details that are included in Figure
3.

The following issues are of particular interest:

• The proposed algorithm carries out several iterative refinement iterations, while the norm of the
residuals is decreasing. In practice, this is a cheap way to improve the quality of the computed
direction, and it works quite well in many problems for which it holds that ρ(K̄−1K) < 1.

• The initial value for the termination tolerance for GMRES, tk,is chosen in terms of the behavior of
the problem in the first iteration.
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Choose initial values x0, σ0 and λ0

Set r0 = 0 and let k ← 0
while ‖∇L(xk, σk, λk)‖+

∑
j ‖cj(xjk

)‖+ ‖h(xk)‖ > ε

Solve K̄k ∆m = −gk (Inner iteration)
Compute ω0 = ‖gk + Kk ∆m‖
Solve ∆̃1 = ∆m −K

−1

k (gk + Kk ∆m)
Compute ω1 = ‖gk + Kk ∆̃1‖
if k = 0

t0 = 0.8ω0/ω1

end if
Let ∆̃0 ← ∆m and j ← 0
while ωj+1 < ωj and j < J

compute ∆̃j+1 = ∆̃j −K
−1

k (gk + Kk ∆̃j)
j ← j + 1
ωj+1 = ‖gk + Kk ∆̃j‖

end while
Let ∆̃0 ← ∆̃j and i← 0
while ‖K̄−1

k (gk + Kk ∆̃i)‖ > tk‖K̄−1
k gk‖ = tk‖∆m‖

Do one iteration of GMRES, using K̄k as preconditioner, to com-
pute ∆̃i+1

i← i + 1
end while
∆k ← ∆̃i

Update xk+1 ← xk + ∆xk

Update σk+1 ← σk + ∆σk

Update λk+1 ← λk + ∆λk

Compute rk = ‖gk + Kk ∆k‖ and choose tk+1 as

tk+1 =


min{1.25tk, 0.95} if rk−1/rk > 1,

min{0.25tk, 0.95} if rk−1/rk < 0.99,

min{0.75tk, 0.95} otherwise,

k ← k + 1
end while

Figure 3: Decomposition algorithm

• The termination tolerance tk is updated dynamically taking into account the rate of reduction in
the residual norm rk. This strategy is very similar to that used in trust-region methods to adjust
the size of the region and works well in practice.

5.2 Test problems and results

We have tested the algorithm on a set of test problems from two models that present both coupling
patterns described in Section 1. The first model, corresponding to the complicating constraints case, is
a multi-area optimal power flow problem (OPF). In [31] a single-area formulation of the OPF problem
is discussed. It is an important problem for the secure and economic operation of interconnected power
systems; it determines, in a precise way, the active and reactive power that each generation unit in the
system must generate, to ensure that all demand and security constraints for the system are satisfied,
at a minimal cost for all interconnected areas. The resulting multi-area OPF problem is a large-scale
non-convex optimization problem.

A model for this problem in compact form has the structure given in (1)-(3), where xj would be
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Table 1: Main characteristics of test problems.

Case N c n m
MOPF1 2 10 24 27
MOPF2 3 35 72 101
MOPF3 2 15 224 167
MOPF4 2 50 128 191
MOPF5 3 25 336 251
MOPF6 3 50 1032 1344
MOPF7 6 110 2064 2972
SP1 6 151 2845 1520
SP2 6 188 1820 686
SP3 16 151 7335 3900
SP4 16 188 4540 1726

the variables for each area j of the global system. Equations (2) represent the power flow equations
and transmission capacity limits for those buses and lines interconnecting different areas. Constraints
(3) include the power flow equations and transmission capacity limits, only for those lines and buses
lying within a given area, and limits over dependent and control variables. The sets of equations (2)-(3)
represent both equality and inequality constraints. In these models, the objective function (1) is the total
operation cost for the system, a quadratic function of xj for all j.

The second model, corresponding to the complicating variables case, is a two-stage stochastic pro-
gramming model [7]. It is a large-scale linear program that minimizes the cost of first-period decisions
plus the expected cost of second-period recourse decisions, while satisfying some first-period constraints.
The stochastic problem is solved as a deterministic one by considering a discrete distribution with as-
sociated probabilities. Under these approximations, the deterministic equivalent form of the problem
is

minimize
x,y1,...,yN

cT x +
N∑

i=1

πi (qT
i yi) (33)

subject to Ax = b (34)
Bkx + Wiyi = hi, for i = 1, 2, . . . , N (35)
x ≥ 0, yi ≥ 0, for i = 1, 2, . . . , N, (36)

where x denotes the first-period variables, yi denotes variables corresponding to second-period decisions
and (34),(35) are the first-period and second-period constraints, respectively.

Table 1 shows the most relevant characteristics for a series of instances corresponding to each one of
the two models. The first column gives the problem name; the second column indicates the number N of
areas/scenarios; a third column shows the number of complicating constraints/variables; the fourth and
fifth columns present the total number of variables and functional constraints, respectively.

The first seven cases are multi-area OPF models; their description can be found in reference [15]. Case
I corresponds to the IEEE 9 bus system with two areas. Case II is based on the IEEE 30 bus system,
replicated three times using seven interconnecting lines. Cases III and V are based on the IEEE RTS 24
bus system; it has been duplicated for case III, and replicated three times in case V. Case IV is based on
the IEEE 57 bus system, divided into two areas with eleven interconnecting lines; the division has been
chosen to force a large value for the spectral radius. Finally, cases VI and VII are based on the IEEE
118 bus system, replicated three times for case VI, and six times for case VII.

The next four problems correspond to a subset of POSTS, a portable stochastic programming test
set, a small test set of stochastic programming recourse problems designed to highlight different qualities
of general linear recourse problems [20].

The first set of results shown in Table 2 corresponds to the implementation described in Section 3.1 for
a simplified inner iteration, corresponding to a special case of the Lagrangian decomposition algorithm.
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Table 2: Numerical results using a simple inner iteration.

Case Id Td

MOPF1 30 3.632 10−2

MOPF2 59 1.975 10−1

MOPF3 38 6.155 10−1

MOPF4
MOPF5 58 1.198 100

MOPF6 39 2.367 10−1

MOPF7 52 8.245 100

SP1
SP2
SP3
SP4

Table 3: Numerical results with proposed preconditioners.

Case Ig Id Tg Td ICG

MOPF1 13 13 3.000 10−2 0.000 100 0
MOPF2 22 23 2.200 10−1 3.715 10−1 74
MOPF3 21 21 5.130 10−1 3.509 10−1 10
MOPF4 23 42 5.000 10−1 2.385 100 391
MOPF5 26 26 1.051 100 9.932 10−1 57
MOPF6 36 35 8.473 100 7.108 100 15
MOPF7 43 39 3.585 101 2.513 100 9
SP1 20 20 7.117 101 9.857 101 43
SP2 27 27 1.857 102 4.410 100 145
SP3 21 22 5.928 102 9.103 102 58
SP4 28 28 1.183 102 1.086 101 291

As in all other cases in this section, a primal-dual interior point procedure has been used to generate
the equality constrained problems (18)-(20). The second and third columns of table 2 indicate the total
number of iterations required by the decomposition procedure and the CPU time in seconds needed to
solve the linear systems, respectively. The blank entries correspond to cases in which the algorithm did
not converge, as the corresponding problems did not satisfy condition (25). It is remarkable to note that
so many of the MOPF problems did in fact satisfy this condition, and the simple algorithm was able to
obtain solutions for them.

Table 3 presents a comparison of the results obtained from applying a direct approach (Newton
method) to the test problems, and the decomposition procedure described in figure 3. Both procedures
have been initialized using the same starting point, and the stopping tolerances have been the same
for both procedures. The choice of preconditioner for the decomposition procedure has been made to
ensure that the resulting preconditioner satisfies condition C.1 (the preconditioner has full rank). For
problems with complicating constraints, the preconditioner described in item 2 of Section 4 tends to
produce matrices K̄k that are rank deficient; as a consequence, for the MOPF problems we have used the
preconditioner described in item 1 of Section 4. For problems with complicating variables, the situation
is the opposite one, that is, preconditioner 1 tends to yield matrices K̄k that are rank deficient; for the
SP problems we have used the preconditioner described in item 2 of Section 4.

The second and third columns of table 3 indicate the total number of iterations required by the direct
method (Ig) and the decomposition procedure Id, respectively, for each one of the problems. The fourth
and fifth columns show the CPU time in seconds needed to solve the linear systems in the direct approach
and the decomposition procedure, respectively. Finally, the sixth column provides the total number of
iterations performed by the GMRES subroutine. The results show the good behavior of the proposed
procedure and its preconditioner: there is a reduction in running times for nearly all cases. Note that
these results have been obtained in a sequential computation environment. When comparing these results
with the ones in Table 2 it is also interesting to note that the simple procedure covered in that table
does not produce much lower running times for those cases when it converges. The improvement in the
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Table 4: Numerical results with other preconditioners.

Schur preconditioner Diagonal preconditioner
Case Id Td ICG Id Td ICG

MOPF1 13 1.400 10−1 23 13 0.000 100 0
MOPF2 22 1.681 100 128
MOPF3 21 4.024 100 132 21 8.430 10−1 29
MOPF4 23 6.439 100 257
MOPF5 26 1.189 101 313
MOPF6 36 1.357 103 246
MOPF7 43 1.708 104 593 41 6.068 101 606
SP1 21 3.832 101 239
SP2 27 4.220 101 184
SP3 96 5.915 102 2785
SP4 29 1.064 103 265

number of major iterations compensates for the additional effort required by the procedure in Table 3 in
each iteration.

Table 4 gives the results for the same problems when other preconditioners are used in the decom-
position procedure; its format is similar to Table 3. Missing entries correspond to cases in which the
corresponding algorithm failed to converge. The Schur preconditioner, described in item 3 of Section 4,
required a large number of GMRES iterations, and consequently running times were higher than those in
Table 3 in nearly all cases. The use of a simple diagonal preconditioner led to a reasonably fast algorithm
in those few cases in which it converged, but the number of failures was very high. This result emphasizes
the importance for convergence of fast and accurate results in the computation of the search direction.

6 Conclusions

We have discussed a decomposition algorithm motivated on a particular case of a Lagrangian relaxation
procedure, that proceeds by computing an approximate solution to the KKT equations using a precon-
ditioned conjugate gradient procedure. The natural choice of preconditioner based on a decomposable
approximation to the system works very well in practice, better than other preconditioners and even that
the direct solution of the system in many cases when this is feasible.

Another important issue we have considered is the termination criterion for the inexact computation
of the search directions. We propose using a dynamic update of the termination tolerance based on
the quality of the preceding directions. This approach results in a small number of conjugate gradient
iterations, and also in a reduced number of Newton steps.
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